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Introduction: Brain-machine interfaces (BMIs) attempt to establish
communication between the user and the device to be controlled. BMIs
have great challenges to face in order to design a robust control in the real field
of application. The artifacts, high volume of training data, and non-stationarity
of the signal of EEG-based interfaces are challenges that classical processing
techniques do not solve, showing certain shortcomings in the real-time domain.
Recent advances in deep-learning techniques open a window of opportunity to
solve some of these problems. In this work, an interface able to detect the evoked
potential that occurs when a person intends to stop due to the appearance of an
unexpected obstacle has been developed.

Material and methods: First, the interface was tested on a treadmill with five
subjects, in which the user stopped when an obstacle appeared (simulated by a
laser). The analysis is based on two consecutive convolutional networks: the first
one to discern the intention to stop against normal walking and the second one
to correct false detections of the previous one.

Results anddiscussion: The results were superior when using themethodology of
the two consecutive networks vs. only the first one in a cross-validation pseudo-
online analysis. The false positives per min (FP/min) decreased from 31.8 to 3.9
FP/min and the number of repetitions in which there were no false positives and
true positives (TP) improved from 34.9% to 60.3% NOFP/TP. This methodology
was tested in a closed-loop experiment with an exoskeleton, in which the brain-
machine interface (BMI) detected an obstacle and sent the command to the
exoskeleton to stop. This methodology was tested with three healthy subjects,
and the online results were 3.8 FP/min and 49.3% NOFP/TP. To make this model
feasible for non-able bodied patients with a reduced and manageable time frame,
transfer-learning techniques were applied and validated in the previous tests, and
were then applied to patients. The results for two incomplete Spinal Cord Injury
(iSCI) patients were 37.9% NOFP/TP and 7.7 FP/min.
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1. Introduction

Assistive walking devices are one of the technologies with
the greatest projection for the rehabilitation of patients with
severe motor dysfunction. The scientific community is designing
frameworks for the more effective validation and control of these
devices in the clinical setting. One alternative for improving the
control of these devices is to actively involve the patient in the
control. In this sense, neuroscience has much to say about how
to close the motor intention-action loop (Ortiz et al., 2021). The
field of brain-machine interfaces (BMI) is an emerging area, which
is responsible for developing technologies for processing brain
signals and establishing a connection between these signals and
assistive devices. In practice, most BMIs use electroencefalographic
(EEG) signals to record brain activity due to its relatively low
cost, ease of use, and non-invasiveness (Wada et al., 2019).
This technique uses electrodes placed on the scalp to record the
electrical activity of superficial neurons (primarily the pyramids
of the cortex), reflecting ongoing brain processes with exceptional
temporal resolution (Bamdad et al., 2015). However, EEG also has
important disadvantages as, for example, its low spatial resolution
(Bamdad et al., 2015). Furthermore, it is highly sensitive to a wide
range of artifacts, such as muscle movements, eye movements,
or cardiac activity (Bamdad et al., 2015). Therefore, EEG is
an extremely complex signal and with a high noise-to-signal
ratio, making the direct decoding of individual brain processes
particularly difficult to carry out. Nevertheless, a control signal can
be used: visual potentials, within these steady-state visual evoked
potentials (SSVEP), P300 potential, and error-related potentials
(ErrPs). These potentials are quite identifiable in the average of
the EEG as it mitigates the variability due to the noisy of the
single-trial. However, designing robust classification paradigms
that are capable of neglect this variability in the single-trial analysis
remains a challenge within the field of BCIs (Blankertz et al.,
2002). A large number of studies have addressed this problem by
improving pattern recognition algorithms for ERP detection (Lotte
et al., 2007). Methods based on linear discriminant analysis (LDA)
(Salazar-Varas et al., 2015; Elvira et al., 2019) and support vector
machines (SVM) are the most classic approaches (Rakotomamonjy
and Guigue, 2008) achieve reasonable performance, especially
when a large number of training examples are available. Bringing
these paradigms to their ultimate goal, that is, real-time control,
is a field in which literature works are starting to arrive. Applying
these algorithms in the control of devices, such as exoskeletons, is a
challenge, especially in terms of reliability.

In literature, the control of exoskeletons using exogenous
potentials has been studied for command control, such as SSVEPs,
which requires some voluntary control.

In Kwak et al. (2015), an asynchronous BMI based lower
limb exoskeleton control system using SSVEPs was developed
by decoding EEG signals in real time. The system used a visual
stimulation unit with five LEDs fixed to the exoskeleton and a
canonical correlation analysis method for frequency extraction.

One of these evoked potentials, the ErrPs, could be combined
with interfaces like this. This way, if a potential is detected in
response to an unexpected obstacle, the assistive device would stop.
In this sense, there are works in the literature that address this

issue, but not yet in real time (He et al., 2018). For example, classic
machine learning algorithms trained with a considerable number
of repetitions, common spatial patters (CSP) (Salazar-Varas et al.,
2015) and a series of temporal features extracted from the signal
(Elvira et al., 2019) were tested. In this type of application, a
relevant factor to consider is the amount of false positives that
could be generated in a real-time test. Of these works, the latter
is the one that brings the paradigm closest to a realistic operation.
However, aspects such as the number of repetitions and the increase
of noise-to-signal ratio when having an assistive device such as
an exoskeleton, must be taken into account to reformulate the
techniques to be applied (López-Larraz et al., 2016). To reduce
some of these problems, alternatives are arising that have been
gaining more relevance in the last decade, such as neural networks
(Zhang et al., 2020).

In Bellary and Conrad (2019), a deep convolutional network
architecture using batch normalization and dropout layers was
proposed to classify ErrPs elicited when the user was asked to
monitorize the behavior of external events during EEG recordings
with an accuracy of 79.2 ± 5.3%. In Usama et al. (2021), the
objective was to classify single-trial ErrPs produced by individuals
with stroke, investigate test-retest reliability, and compare different
classifier calibration schemes with different classification methods
such as Artificial Neural Network (ANN) and Linear Discriminant
Analysis (LDA) with waveform features as input for meaningful
physiological interpretability. The results showed that user and
session specific calibration was needed for optimal decoding.

Specifically, transfer-learning techniques and fine-tuning help
with the problem of not having a large amount of subject-specific
data (Zhang et al., 2020). The great abstraction power of these
algorithms is utilized to combine data from several subjects and
extract descriptive features of the process. This technique has been
discussed in some works in the literature. In Fahimi et al. (2019),
a framework using a deep convolutional neural network (CNN) to
detect attentive mental state from multi-channel raw EEG data was
proposed. The approach included developing an end-to-end deep
CNN to decode attentional information. Two strategies were tested
during inter-subject transfer learning. The first one used a leave-
one-subject-out strategy where a generalized network was learned
using data from a pool of subjects and then the learned knowledge
was transferred to a new subject reaching an accuracy of 79.1 ±

7.6%. The second one tried a subject adaptation approach that
addressed the issue of information change/shift when transferring
knowledge from the source to the target by retraining on a small
sample size of the new subject’s data, showing an increase of
accuracy to 89.3± 4.4%.

Despite the fact that fine-tuning allows to reduce the number
of repetitions needed by a subject for an acceptable accuracy, it
still requires data from other subjects. This problem results in an
endemic issue in the field: the difficulty of obtaining large amounts
of high-quality data from subjects, with a minor content of artifacts
and with a high user engagement, which in many cases results in a
low performance of the application.

The objective of this study is to explore how to create an
effective exogenous BMI model based on convolution networks
that can be applied in the clinical field, with a reduced calibration
time and sufficient efficacy for the subject to perform multiple
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repetitions. The BMI designed in this study aims to detect the
user’s EEG response to the intention to stop at an unexpected
obstacle. The final purpose of the study is that the BMI detects the
user’s stopping activity and sends a command to an exoskeleton to
close the control loop. For the development of the model, a novel
approach is chosen that consists of two validation networks, to try
to make the decoding more solid and reliable during sustained
periods of time. The model is validated first on treadmill and
then with control tests with a lower limb exoskeleton. This paper
shows how a two-network approach is able to capture the changing
dynamics of the EEG signal and how, by using transfer-learning
models, generic data could be applied to specific user models
reducing the number of repetitions while still obtaining acceptable
results. The model was tested in non able bodied patients. This first
validation step would help future studies to be able to scale these
systems with more data and to increase consistency.

2. Materials and methods

In this work, the materials used for the conduct of tests, both
treadmill tests and close-loop exoskeleton tests, are presented. The
protocol followed by the subjects for the tests on the treadmill
and exoskeleton is discussed. The methods used for preprocessing
the EEG signal are showed, as well as the methodology used for
training the two NN1 and NN2 classifiers that are responsible for
encoding and decoding the EEG signal. Additionally, the metrics
used for evaluating the models in both pseudo-online and online
evaluations are explained. Finally, the way in which fine tuning can
improve the model’s performance and its application to the BMI
model for tests with patients is discussed.

2.1. Materials

The experimental setup is shown in Figure 1. For the
electroencephalographic (EEG) recording, an actiCAP cap (Brain
Products GmbH, Germany) with 27 electrodes was utilized. The
electrodes followed the 10-10 distribution of the international
system (Fz, FC5, FC1, FCz, FC2, FC6, C3, Cz, C4, CP5, CP1,
CP2, CP6, P3, Pz, P4, PO7, PO3, PO4, PO8, FC3, FC4, C5, C1,
C2, C6, CP3, CPZ, CP4, P1, P2, and POz). Four electrodes were
placed for recording electrooculography (EOG). The reference was
placed on the left earlobe (A1) and the ground on the right earlobe
(A2). The EEG signal was recorded at 500Hz and amplified using
the actiCHamp equipment (Brain Products GmbH, Germany).
A hardware notch filter at 50Hz provided in the brain product
equipment mitigated the network contribution. Hardware also
filtered the signal over 0.1Hz to mitigate the DC component.

First data analysis used a Performance 750 treadmill (Pro-
form) and a laser line projected in front of the treadmill, with a
wavelength of 635 nm (red color) and an output power of 3 mW
to warn the subject about the obstacle appearance. To detect the
actual subject’s stop, three inertial measurement units (IMUs) (WIT
Motion, China) placed at head, left foot, and right foot were used.
For each sensor, the accelerations on each of the axes: “Acc X”,
“Acc Y”, and “Acc Z” were used for analysis. They collected the
information at a 100Hz pace. The synchronization of the EEG,

IMUs, and laser activations was managed by a custom software
developed in Matlab (MathWorks Inc., Massachusetts, USA).

The H3 lower limb exoskeleton (Technaid, Madrid, Spain) was
used for the second group of experiments, which also included real-
time closed-loop control. The H3 is a walking exoskeleton with
6 degrees of freedom where hip, knee and ankle of each leg are
motorized joints. The communication between the BMI and the H3
was done through a Bluetooth port. The connection was established
on an Intel Core i7 laptop computer using MATLAB software.

2.2. Subjects

The study was conducted in accordance with the guidelines
of the Declaration of Helsinki and was approved by the
Institutional Review Board of Miguel Hernández University of
Elche (DIS.JAP.03.18, 22/01/2019). Informed consent was obtained
from all subjects involved in the study. The ethics committee
consents to the exposure of images as long as the face is pixelated
or indistinguishable.

Five healthy individuals were used to set up the model on
a treadmill of which two were women and three were men,
the average age is 24.8 ± 1.8. These individuals are referred as
Treadmill Subjects ST.X, where X is the number of the subject.

Three healthy individuals were used for exoskeleton
registration of which two were women and one was men, the
average age is 25.7 ± 2.3. These individuals are referred as
Exoskeleton Subjects SE.X, where X is the number of the subject.

The healthy subjects reported no diseases and they participated
voluntarily in the study by giving their informed consent according
to the Helsinkin declaration.

Two patients took part in the experiments at the National
Hospital of Paraplegics of Toledo (Spain) over a period of 2 days,
with ages of 21 and 55. These patients are referred as Exoskeleton
Patients PE.X, where X is the number of the referred patient. The
different session days are referred as PE.X Dn, where n is the first
or second day.

2.3. Experimental procedure for registration

2.3.1. Treadmill experiments
The subjects performed nine trials. Each trial had a duration

of 120 seconds, during which the laser line was projected for one
second with a random time between successive stimuli between
10 and 12 s. The total number of lasers per trial was nine which
provides a total number of 81 repetitions.

The test began with the treadmill stopped for the IMUs
calibration. Subjects remained steady and relaxed during the first
15 s for the convergence of the eye artifact elimination algorithm
(Kilicarslan et al., 2016), then the treadmill was activated and the
subject started walking at a constant pace of 2 km/h. When the
subject was walking without holding on to themachine and at stable
way, the 120 s trial was initiated.

The moment when the subject stopped was detected by
analyzing the acceleration of two IMUs positioned on each foot.
The signal from each IMU was preprocessed as follows: the
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FIGURE 1

Treadmill setup for healthy subject (Left); and setup with exoskeleton for healthy subject and non-able bodied patients (Right).

modulus for the three axes of the accelerometer was taken, this
signal was then filtered and the absolute value of the signal was
taken. A peak detection algorithm (findpeaks in Matlab) was
applied to this signal and peaks above a threshold of one were
chosen. The first peak was chosen before two seconds after the
laser appeared. The algorithm marked this moment for the left
and right foot IMUs and chose the last point from these two
in the timeline (see Figure 2). All repetitions were reviewed by a
technician and any that were incorrectly labeled by the algorithm
were corrected according to the specified criteria. The labeled
moment was resampled from IMUs frequency to EEG frequency
(100–500 Hz).

2.3.2. Exoskeleton experiments
The EEG recording configuration was common with the

treadmill setup. However, the treadmill was substituted by the
H3 exoskeleton (Technaid, Spain). IMUs were not necessary as
the exoskeleton provided the stop information and performed the
function of tracking movement that the treadmill previously did
(see Figure 1 right).

The repetition blocks of walking/obstacle were reduced due
to the characteristics of commanding the exoskeleton, which
is more demanding than a treadmill. Each healthy subject
performed 8 trials. Each trial had a duration of 120 s, and

the laser appearance was controlled in a similar way (1 second
duration every 10–12 s). However, a period of four seconds
after each activation of the exoskeleton was discarded to assure
a stable exoskeleton walking which reduces the number of
repetitions per trial to 5. The total amount of repetitions were
40.

As patients are more prone to fatigue, the number of trials was
reduced to 4 and the randomized interval between laser repetitions
was reduced to 6–8 s, obtaining 20 valid repetitions for patient.

During the close-loop tests, the subject remains at rest for
15 seconds. Then, the start signal is given and the exoskeleton
starts walking. After that, at any moment the BMI can send an
obstacle command and stop it. When this happens, the subject
must help and not prevent the stopping. Exoskeleton then stops
by the pre-established command and begins its preparation to
start walking for the next laser repetition. During this second
walking period which is the period of analysis, the BMI works
without pre-established commands. This means that the subject
must keep the output of the walking class during the walking
period to avoid a FP. After the FP phase is passed, then the
laser appears. At this moment the subject must try to stop the
exoskeleton, if the model decodes the stopping intention correctly,
the BMI outputs a stop command to stop the exoskeleton. ending
the repetition. Then, the subject prepares for the next repetition.
If the exoskeleton does not stop, a False negative is computed
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FIGURE 2

IMU stop detection based on the analysis of the right and left foot: Trial 2, Repetition 1, Subject SE.1.

and the subject should continue, without impeding the walk,
till the next laser for stopping appears corresponding to a new
repetition.

2.4. EEG analysis

2.4.1. Preprocessing
After the 0.1 Hz high-pass and 50 Hz filters applied

by the brain products equipment, an ocular artifact filtering
algorithm was applied to each of the 27 EEG channels (H∞,
Kilicarslan et al., 2016), using the four EOG channels as
reference (applied sample-by-sample). After that, four second-
order filters by state variables, were applied to the H∞ filtered
signal to obtain the following bands: 0.4–3 Hz, 2–4 Hz, 3–6
Hz, 5–8 Hz. Signals are given to the neural networks in these
frequency bands.

The moment marked by the laser appearance defines the data
classes. Activity that occurs before the event marked as obstacle
appearance is labeled as class 1, referring to the walking moments
prior to the obstacle appearance. Activity after the laser appearance
and before the stop is labeled as class 2 which indicates the
activity related to the obstacle stimulus and stopping. In this
period, P300 intention potentials, error, and visual potentials may
overlap in different frequencies and locations (see Figure 3). The
classifiers employ epochs with a length of 0.6 s shifted at a 0.1 s
pace.

2.4.2. Network classifiers
The BMI developed looks for achieving a low FP/min ratio

without comprimising the correct detection of the stopping. This
critical aspect has led this work to approach a classification training
model that is slightly different from the current state-of-the-art by
introducing a novel way of training BMIs for EEG tasks.

Two classifiers have been proposed, which use the network
scheme outlined in Figure 5. The two classifiers have been designed
with the same network and training parameters. The network
structure has been inherited from the work presented in Altan
et al. (2019) (see Table 1). The present study employs a network
that comprises three convolutional layers with max-pooling. The
first layer is dedicated to preserve the spatial characteristics of
EEG signals. Subsequently, two traditional convolutional layers,
two fully-connected layers, and a dropout layer are utilized. Batch
normalization and rectified unit (ReLU) activation are applied
following each convolution operation in the convolutional layers.
Training parameters are summarized in Table 2. The networks were
trained using a computer equipped with an 11th Gen Intel(R)
Core(TM) i7–11800 H system, 16GB of RAM, and a 64-bit
architecture.

2.4.2.1. NN1 model
The first classifier (NN1) is trained with four epochs before

and after the laser appearance for each repetition, i.e., 0.9 s before
and after the stimulus were considered for Model NN1, see NN1
Training case in Figure 4. For the validation, the model is trained
with N-1 trials using a leave-one-out cross-validation for the testing

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1154480
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Quiles et al. 10.3389/fnins.2023.1154480

FIGURE 3

Average for all channels with di�erent frequencies, in relation to the red laser event for subject SE.1.

TABLE 1 Table with the parameters of the NN1 and NN2 network.

Layers Kernel Filter numbers

Input - -

conv 64x2 6

Batch normalization - -

ReLu - -

Max-pool 1x2 6

conv 1x11 12

Batch normalization - -

ReLU - -

Max-pool 1x2 12

conv 1x10 12

Batch normalization - -

Relu - -

Max-pool 1x2 12

Dropouc - -

Fully connected 60 60

ReLU - -

Fully connected 2 2

softmax - -

of the remaining trial, 8/1 for treadmill experiments and 7/1 or 5/1
for healthy and patient exoskeleton experiments.

2.4.2.2. NN1 + NN2 model
The second classifier (NN2) acts as a corrector of the first

classifier output. It is used during the pseudo-online and online

TABLE 2 Table with the training parameters of the NN1 and NN2 network.

Parameters Value

Optimización Stochastic gradient descent with momentum

Impulse 0.9

Learning rate 0.01

L2 regularization 0.0001

Fall factor 0.1

Dropt period 10

Epoch number 500

Batch size 100

analysis of the treadmill and exoskeleton experiments. To create
this model, several steps are carried out using the training trials. For
each of the N-1 trials used for the creation of the NN1model, data is
segmented as Class 1 for the epochs corresponding to the 8 s before
the laser appearance, and as Class 2 for the seconds between the
laser output and the actual stop, which is an undetermined time, but
usually lower than 8 s. Notice, that due to the continuous time of
analysis in pseudo and online analysis there are transition epochs.
To determine the label of an epoch at least 0.4 of the 0.6 seconds
must be in a class. As an epoch has a 0.6 s length, class 1 contains
data from [-8,0.2] seconds and class 2 contains data from [-0.2, stop
cue] seconds, being 0 the moment the laser is detected (see NN1
Prediction in Figure 4).

Each of the epochs of the training trials are then tested in the
NN1 model, providing true (green epochs) or false (yellow epochs)
detections for each class (see Figure 4 NN1 Prediction). The false
detections (yellow epochs) of Class 1 correspond to False Positives
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FIGURE 4

The training diagram for creating the two training models is as follows: in each training data package, the NN1 is first applied to a temporal window
close to the Laser Obstacle, and then each epoch is predicted with the same repetitions over a wider temporal window. False Stops and True Stops
are selected and balanced to be used in the NN2 model creation.

FIGURE 5

The prediction for the combination of NN1 and NN2 using pseudo-online (without output command) and online (with output command) is done as
follows: each epoch is preprocessed with the described filtering stages, and each channel and filter is concatenated for input to the first network.
This network can classify the epoch as walk or stop, that is 0 or 1. If it’s a 0, it stops at the current output, but if it is a 1, the second classifier will check
if it considers it a False Stop or a True Stop and in any case this value will pass to the current output. These values are accumulated and the Final
Output is the mode of the last five outputs.

(FP) and the true detections (green epochs) of Class 2 correspond
to True Positives (TP). The NN2 model is then created using the
data of the FP and the TP balancing the number of epochs for each
class so both classes of the NN2 model have the same number of
epochs (see NN2 Training in Figure 4).

Once both models are created, testing trials are first classified
by the NN1 model. If a Class 1 (Walking) is obtained as output,
a walking command is registered by the BMI. However, if a Class
2 (Stop) is obtained, the epoch is then tested in the NN2 model
to improve the BMI robustness. The NN1 model is corrected by
the NN2 model, depending on the second classification as a false
stop command (Class 1 of the NN2model) or a true stop command
(Class 2 of the NN2 model). In order to issue a stop command, at
least 3 stop commands in 5 consecutive epochs must be registered.
Figure 5 shows how the control of the output device is commanded
by the BMI. In pseudo-online simulations the output is registered
for validation purposes, while in online experiments is sent to the
exoskeleton, providing the subject the close-loop feedback.

2.4.2.3. Metrics for the assessment of the BMI
performance

The validation of each of the models is carried out in a
different way during pseudo-online and online analysis. During

the pseudo-online validation the remaining training trial is tested
in the system and the TP and FP/min are averaged following a
leave-one-out cross-validation. For the online close-loop tests done
with the exoskeleton, no cross-validation was done and the metrics
correspond to the average results of the specific test trials, using all
the training trials in the creation of the models.

The metrics assessed are: percentage of repetitions in which
there were 0 FP and in the laser part there was at least one TP
(NOFP/TP), percentage of repetitions in which there were no FP
(NOFP) regardless of whether there was later a TP, percentage
of repetitions that there was (TP) regardless of whether there
was or not a FP, and finally, the number of FP per minute
(FP/min).The FP/min metric gives an idea of how many FP
there would be per minute, however it does not give an idea of
how these are spread over the repetitions. Then, to assess how
homogeneously the FPs are distributed, the NOFP metric gives
an approximation of how many repetitions there are no FPs.
Therefore, if this value is high but the FP/min are also high, it
means that the FP were very accumulated in some repetitions.
To evaluate how the FP affect the TP, i.e. how they would affect
a real case, the NOFP/TP metric gives an idea of how many
repetitions would have been totally correct if the test had been in
real time.
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TABLE 3 Number of repetitions used for the comparison between the original model (NN1 + NN2) and the updated TL + FT model in the pseudo-online

analysis.

Number of repetitions used

Original model TL + FT model

Experiment Number of
subjects

Training Test Training Test

Treadmill (9 trials) 5 72 9 4 x 81 + 20 9

Exoskeleton (8 trials) 3 35 5 2 x 40 + 20 5

TABLE 4 Number of repetitions used by the BMI during its testing for the exoskeleton close-loop experiments with two able bodied subjects and two

SCI patients.

Number of repetitions used

TL + FT model

Experiment Subject Training Test

Able bodied exoskeleton

SE.1 40 30

SE.3 40 35

SCI exoskeleton

PE.1 D1 3 x 40 + 20 20

PE.1 D2 3 x 40 + 20 23

PE.2 D1 3 x 40 + 20 27

Number of repetitions used for testing the original model (NN1 + NN2) in online experiments with real-time close-loop control of the exoskeleton with able bodied subjects. Only two of the

three able bodied subjects performed the experiments. TL data corresponds to the 3 able bodied subjects + the 20 training repetitions of the SCI subjects in the session fine-tuned with them.

Test repetitions are variable as the subjects were not able to complete the same number of repetitions due to their condition.

For close-loop tests, the SuFP metric is added, which is the time
it took for the BMI to fail, in those repetitions in which the BMI
obtained a FP. In these tests the TP metric is only computed for
those repetitions that passed the walking phase period.

2.5. Model validation with fewer
repetitions: Fine-tuning

When using a BMI with non-able bodied subjects it is
important to limit the time of experimentation as much as possible.
However, this can affect the quality of the model. An optimization
of the number of repetitions needed to create it becomes critical, as
it has been reported that traditional machine learning algorithms
are strongly affected by the number of repetitions used for the
model training (Lotte et al., 2007).

The current research studies how the reduction of the number
of training repetitions done by the subject affects the BMI
performance. This can be mitigated thanks to the use of other
subjects information through transfer learning (TL) (Goodfellow
et al., 2016). The objective is to reduce the number of subject
repetitions to 20, i.e. the number of repetitions conducted by non-
able bodied subjects. The updated model uses the training trials of
all the subjects (including the subject under analysis) and then it
is fine-tuned (FT) using the 20 training repetitions of the subject
under analysis.

To validate the approach, the results of the TL+FT model
will be compared with the original model. As the objective is to
develop a BMI capable to work in close-loop control in real time,
there is not leave-one-out cross validation for the pseudo-online

analysis. The original model is done by all the repetitions of the
N-1 first trials. However, the TL+FL is first trained with all the
training information of the rest of the subjects and with the first
20 repetitions of the first N-1 trials, and then, it is fine tuned with
the same first 20 repetitions of the first N-1 trials. The results for
each case are just computed for the last N trial. Table 3 shows the
number of repetitions used for each model for the pseudo-online
analysis comparison.

The non-able bodied subjects were tested online using the
exoskeleton, providing real-time feedback to the subject with the
TL+FT model using the information of the 3 able-bodied subjects
+ the 20 repetitions of the training trials of each non-able subject
in the day session. The number of testing repetitions was variable,
depending on the fatigue shown by the subjects. Table 4 shows
the number of repetitions used for the training and testing of the
online BMI. The results were compared with the ones obtained by
two able bodied subjects with the original model which number of
repetitions are also shown in Table 4.

3. Results

Results’ section is structured as follows. First subsection
compares the performance of the NN1 model vs. the NN1+NN2
improved model for the treadmill and exoskeleton experiments
with able bodied subjects. Second subsection provides the results
of the two able bodied subjects that also tested the exoskeleton in
close-loop control. Finally, third subsection shows the results of
the two SCI patients that tried the TL+FT improved BMI with the
exoskeleton in close-loop control.
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TABLE 5 Comparison of the performance of the BMI for treadmill experiments using NN1 model vs. NN1 + NN2 model.

Pseudo-Online NN1 Pseudo-Online NN1 and NN2

NOFP/TP NOFP TP Fp/min NOFP/TP NOFP TP Fp/min

(%) (%) (%) (%) (%) (%)

ST.1 56.8 60.5 96.3 21.9 72.8 91.4 77.8 2.6

ST.2 40.7 43.2 95.1 31.0 81.5 91.4 88.9 2.9

ST.3 15.1 20.7 73.6 42.2 51.9 79.6 70.4 4.1

ST.4 33.3 37.5 91.7 29.9 45.8 65.3 76.4 5.2

ST.5 28.4 32.1 90.1 34.2 49.4 79.0 65.4 4.9

x 34.9 38.8 89.3 31.8 60.3 81.3 75.8 3.9

σ 15.4 14.7 9.2 7.4 15.9 10.8 8.8 1.2

The results show per subject the average of the leave-one-out cross validation of the training trials.

3.1. Pseudo-online analysis of treadmill
experiments in able bodied subjects

Table 5 shows a comparison of the performance of the BMI
during a pseudo-online analysis of the treadmill data. Results are
provided for the leave-one-out cross-validation of each subject (8/1
trials ratio). They compare the BMI performance when the classifier
is only based on the NN1 model with the one that corrects the
NN1 output with the NN2 classifier. The results of the Pseudo-
Online with a single classifier are lower than those of the two-
classifier methodology. Examining column by column, in average
FP/min were reduced from 31.8 to 3.9. However, true positives
(TP) were lower with the updated BMI, decreasing from 89.3%
to 75.8%, making the BMI a bit more conservative. Nevertheless,
repetitions with no FP increased from just a 38.8% to a 81.3%, while
the repetitions with no FP and TP increased from 34.9% to 60.3%.
As there is an improvement of the performance of the BMI based on
the NN1+NN2 model the exoskeleton experiments were assessed
using this combined model.

3.2. Pseudo-online analysis of exoskeleton
experiments in able bodied subjects

Table 6 shows the results of the combined model for the leave-
one-out cross-validation of each subject during the exoskeleton
experiments (7/1 trials ratio). In comparison with the treadmill,
results show an increase in the FP/min and a lower ratio for the
repetitions with NOFP and NOFP/TP.

3.3. Close-loop control of exoskeleton
experiments in able bodied subjects

Two of the able bodied subjects were able to fulfill several test
trials in order to validate the behavior of the developed BMI in
close-loop control. Data were registered and processed in real time,
stopping the exoskeleton based on the online decoding of their
brain signals. The model used included all the training registers.
The results show the average metrics for the test trials carried out
for each subject (see Table 7).

TABLE 6 Performance of the BMI for exoskeleton experiments using

NN1+NN2 model.

Pseudo-online NN1 and NN2

NOFP/TP (%) NOFP (%) TP (%) Fp/min

SE.1 32.5 67.5 55.0 14.3

SE.2 57.5 65.0 90.0 15.0

SE.3 50.0 62.5 77.5 11.6

x 46.7 65.0 74.2 13.6

σ 12.8 2.5 17.7 1.8

The results show per subject the average of the leave-one-out cross validation of the training

trials.

The behavior of the BMI was more robust in the close-loop
control than in the open-loop control represented by the pseudo-
online analysis. Although, the ratio of the repetitions that did not
present FP (NOFP) was a little lower, descending from 67.5% to
53.3% for SE.1 and from 62.5% to 54.3% for SE.3, the ratio of
repetitions which had a TP with no FP (NOFP/TP) increased from
32.5% to 53.3% for SE.1 and kept a similar level 50.0% vs. 48.5% for
SE.3. The number of FPwas also lower, changing from 14.3 and 11.6
FP/min to 3.9 and 3.7 FP/min for SE.1 and SE.3 respectively. Notice
that close-loop experiments really make the exoskeleton to stop
and only compute a FP per repetition. Therefore, the NOFP/TP
is a more fair index to compare the behavior of the online vs. the
pseudo-online analysis. TP showed a more responsive behavior of
the BMI, increasing from 55.0% to 93.8% for SE.1 and from 77.5%
to 89.5% for SE.3. This fact makes it possible for the user to walk
between 8 and 12 s without the interface stopping in at least 50%
of the lasers. Individual metrics for each of the repetitions can be
consulted in Supplementary material.

3.4. Reduction of the number of training
trials. Analysis pseudo-online of the
treadmill and exoskeleton experiments
with able bodied subjects

In order to evaluate how the reduction of the number of
training trials used affects the NN1+NN2 model classification
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performance, the data of the treadmill and exoskeleton able bodied
subjects was assessed in a pseudo-online analysis for the last test
trial. The trial was tested with models created with a different
number of training repetitions. As it tries to represent the situation
of an actual experiment, the first repetitions were included to
include any possible influence of subject’s lack of focus as the
experiment goes on, and there was not a leave-one-out cross
validation. In the case of the treadmill experiments, the number
of repetitions used was 72, 40, and 20, and in the case of the
exoskeleton experiments 35 and 20.

These results (see Table 8) show that all BMI indices are
worse as the number of repetitions decrease. The objective is to
diminish the number of repetitions to 20 for the experiments with
non-able bodied subjects. However, the NOFP/TP ratio descends
from 44.4% to 28.9% and the TP from 64.4% to 40.0% in the
treadmill experiments. In the case of exoskeleton experiments as
the reduction is just from 35 repetitions to 20 the decrease is lower,
from 53.3% to 40.0% in the NOFP/TP ration and even increasing
from 60.0% to 66.7% in the TP ratio.

To mitigate this worsening, a transfer learning + fine-tuning
model (TL+FT) was tested, following the best subject-adaptation
model adopted in Fahimi et al. (2019). Table 3 shows the number
of repetitions used for creating the fine-tuned model. This includes
all the training repetitions of the rest of the subjects (81 repetitions
x 4 subjects, treadmill, and 40 repetitions x 2 subjects, exoskeleton)
and the first 20 repetitions of the subject under analysis using TL.
After that the model is retrained with the first 20 repetitions of the
subject (FT). Testing is carried out in the same way than in Table 8
using all the repetitions of the last trial.

The results of the TL + FT model shown in Table 9 improve
the indices of the original treadmill and exoskeleton pseudo-online
analysis. For the treadmill tests, the results improve increasing the
NOFP/TP (44.4% vs. 55.6%) and NOFP (71.1% vs. 77.8%), as do
the FPs which drop from 8.5 to 6.0 FP/min. For the exoskeleton
results, the only index that does not improve is the NOFP/TP ratio
(53.3% vs. 46.7%). This can be due to a casuistically bad distribution
of the FP. Although the FP/min is lower, reducing from 14.0 to 2.0
and the ratio of repetitions without FP (NOFP) is also much more
higher (66.7% vs. 86.7%).

3.5. BMI validation with non-able bodied
subjects in close-loop control of the H3
exoskeleton

Once proved that the updated TL+FT model helps to improve
the performance of the BMI, even though the number of training
repetitions is dramatically reduced, the new model was tested in
real-time close-loop control of the H3 exoskeleton with non-able
bodied subjects. As only two non-able bodied subjects were tested,
the TL was applied to the able bodied subject data, fine-tuning with
the 20 training repetitions carried out by each non-able bodied
subject. See Table 4 to check the number of repetitions used for
training the BMI model. As the number of testing repetitions
depended on the fatigue of the SCI patients, the number of test trials
was variable, performing 20, 23 and 27 trials in the three sessions
recorded. Comparing Table 10 with Table 7 it is clear that the BMI

works in a more responsive way for the SCI subjects, showing a
more sensitive behavior with an average of 100% vs. 91.7% ratio of
TP and a NOFP/TP ratio of 37.9% vs. 49.3% for the three sessions.
The average time since the start of the exoskeleton till a FP was
computed was of 3.5±0.2 vs. 4.9±0.3 seconds. A higher FP index,
even as it is not desirable, it is not such critical for a BMI that looks
for a correct stop of a sudden obstacle, as it is more secure to have
a higher TP at the cost of a higher FP value. Individual metrics for
each of the repetitions can be consulted in Supplementary material.

4. Discussion

4.1. Discussion of the results

Themain objective of the paper is to develop a BMI for stopping
a exoskeleton when an unexpected obstacle appears preventing
any possible risk of collision. As the BMI must be able to work
in real-time, providing a close-loop control of the exoskeleton, all
the analysis were developed with this in mind. Experimental data
was first analyzed asynchronously in a pseudo-online study and
validated after that in close-loop control with able bodied and SCI
patients.

Results in the treadmill experiments demonstrate that a two
step classifier (NN1+NN2 model) limits in a great way the number
of FP (stops before the laser appears), even as it could make the
system a little less responsive (lower TP). The comparison between
the treadmill vs. exoskeleton experiments in the leave-one-out cross
validation keep an acceptable TP ratio around 75%, but with an in
increase in the indices associated with the FP. This is an expected
outcome as it has been demonstrated that the difficulty to use a BMI
working in combination with an exoskeleton is higher than with
a treadmill (Ferrero et al., 2021). The two factors that can cause
the worse performance with an exoskeleton are the existence of a
higher noise-to-signal ratio and the difficulty to to keep a high level
of focus on the motor task using the crutches. As Table 3 shows
the number of repetitions used for creating the model was also
much lower in the case of the exoskeleton experiments (72 vs. 35)
which is another of the reasons of the inferior performance of the
exoskeleton experiments in the pseudo-online results regarding the
treadmill experiments. Nevertheless, as the objective of the BMI is
to be able to stop when an obstacle appears, the capability of the
tool to detect correctly an obstacle (TP) is a more crucial point than
to keep an interrupted gait without undesirable stops (FP).

Close-loop control of the exoskeleton with the two able bodied
subjects did not only keep the TP ratio of the pseudo-online
analysis, but increased it to 91.7% without decreasing too much the
ratio of repetitions that did not show a FP (53.8% vs. 65.0%). There
are not many studies that test a BMI commanding an exoskeleton
in real-time close-loop control (Ortiz et al., 2021), so even as a
lower FP ratio is desirable, the performance of the BMI in real time
presents an interesting case of study.

Other important contribution of the research focuses on the
reduction of the time needed to perform a experimental session
through the reduction of the number of training trials needed to
create the model. This is accomplished using the information of
other subjects through TL and fine-tuning the model with just
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TABLE 7 Performance of the BMI working in close-loop control of the exoskeleton.

Subjects NOFP/TP (%) NoFP (%) SuFP (s) TP (%) FP/min

SE.1 50.0 53.3 5.2 93.8 3.9

SE.3 48.5 54.3 4.7 89.5 3.7

x 49.3 53.8 4.9 91.7 3.8

σ 1.1 0.7 0.3 3.0 0.2

Two of the three able bodied subjects completed the test trials.

TABLE 8 Comparison of the BMI performance depending on the number of training repetitions used for the model creation for the treadmill and

exoskeleton experiments with able bodied subjects.

Number of
repetitions for
the model

Pseudo-online NN1 and NN2

NOFP/TP (%) NOFP (%) TP (%) Fp/min

Treadmill 72 44.4 71.1 64.4 8.5

40 35.6 55.6 62.2 11.7

20 28.9 66.7 40.0 18.7

Exoskeleton 35 53.3 66.7 60.0 14.0

20 40.0 60.0 66.7 18.0

Results are averaged for the five treadmill and three exoskeleton subjects.

TABLE 9 Analysis transfer learning for treadmill and exoskeleton model in healthy subjects.

Pseudo-online NN1 and NN2

NOFP/TP (%) NOFP (%) TP (%) Fp/min

Treadmill 72.0 44.4 71.1 64.4 8.5

TL + FT 55.6 77.8 75.0 6.0

Exoskeleton 35.0 53.3 66.7 60.0 14.0

TL + FT 46.7 86.7 60.0 2.0

TABLE 10 Performance of the BMI working in close-loop control of the exoskeleton.

Subjects NoFP/TP % NoFP % SuFP % TP % FP/min

PE.1 D1 35.0 35.0 3.3 100.0 8.4

PE.2 D2 40.7 40.7 3.6 100.0 6.9

PE.1 D2 43.5 43.5 3.4 100.0 6.9

x 37.9 37.9 3.5 100.0 7.7

σ 4.0 4.0 0.2 0 1.1

In the experiments two of the non-able bodied subjects complete the test trials.

20 repetitions. The pseudo-online comparison in Table 9 shows
that a reduction of the repetitions does not affect the TP, even
increasing for the treadmill experiments. The FP indices are also
improved, so a more robust BMI is presented. It is hard to
establish a comparison with other literature works as they usually
perform an offline analysis of the data, i.e. without simulating a
real-time processing and validation of the signals. However, in
order to compare the performance, an specific leave-one-out cross-
validation for the accuracy in the identification of epochs of the
two classes of model NN1 using TL+FT was computed. It showed

a 89.9% accuracy which is similar to the 89.3% shown in Fahimi
et al. (2019). Nevertheless, epoch accuracy of a classifier tested in
an offline analysis does not give an accurate behavior of the possible
behavior of the BMI in real time close-loop control and this index is
given just as a comparison to other TL EEG-based literature works.

Finally, a validation of the BMI is presented in the research
for two SCI patients completing 3 experimental sessions. Results
show for the SCI patients a 100% TP ratio with a higher value of FP
indices in comparison to the experimental tests conducted by able
bodied subjects. It is hard to establish a pair to pair comparison as
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able bodied subjects did not use the TL+FTmodel for the close-loop
tests. Generally, non-able bodied subjects show lower results than
able bodied as they are more prone to fatigue. In fact, PE.2 was not
able to complete the experimental tests in the first session, so only
data from the second session is provided. However, the BMI was
sensitive enough to assess a TP each time the patient was able to
keep moving the exoskeleton till the laser appearance. This means
that the SCI subjects were able to stop the exoskeleton quickly each
time the laser appeared.

It can be affirmed that in the assembly of this work for
exoskeleton we have obtained results superior to those of previous
works, with traditional algorithms. Also taking into account that
our algorithm has been applied with few repetitions per subject. Of
the results that can be compared with other studies due to some
differences in the assembly and number of repetitions: our study
obtained a 60%TP and 2FP/min compared to the study of Salazar-
Varas et al. (2015) whose extraction of characteristics was with CSP
and the model was trained with LDA obtaining results of 30.0%TP
and 6.7FP/min and the study of Elvira et al. (2019) whose extraction
of characteristics were temporal and the model was trained with
LDA obtaining results of 63.9%TP and 2.6FP/min.

If the literature examples of BMIs working in real-time close-
loop control of an experiment are limited, those that work with
non-able bodied are much more unusual (Ortiz et al., 2021). This
makes hard to compare our SCI results with other works that study
the EEG response to an obstacle with SCI patients.

4.2. Limitations of the study

As the number of subjects is limited, it is not possible to perform
an statistical study to assure that the conclusions extracted are not
due to the variation in performance of the subjects, which is a
reported problem of EEG studies in other works (Ortiz et al., 2020,
2021). It is important to remark, that a lot of the experiments in
literature are based on datasets acquired from one subject, and
analyses based on more than 10 subjects are rare (Wierzga et al.,
2018). Moreover, results even as they are given as a case of study,
could be used for the comparison of other future studies.

The weaker point of the proposed close-loop control BMI is
the limited number of repetitions the subject was able to keep the
exoskeleton walking to reach the laser appearance. This value was
in average 53.8% for able bodied subjects and only a 37.9% for SCI
patients. Even though the most important index for the correct
detection of the obstacle is marked by the TP, achieving a 91.7%
for able bodied subjects and a 100% for patients. This means that
the BMI is able to correctly stop the exoskeleton after the laser
appearance with a high accuracy. However, a more comfortable
BMI would require a reduction of the FP to avoid undesirable stops
of the exoskeleton.

Future research should be focus on the reduction of the
FP without compromising the correct detection of the laser. To
decrease FP, the first step should be to increase the mode (five in
this study) and observe the extent to which true positives (TP) are
degraded. This could be done with an adjustment algorithm.

Exploring the nature of FPs and why they occur in bursts could
help. They could be related to noise that may be increased by the

location of the reference (in this study the ear), e.g. the reference at
FCz may decrease noise due to motion artifacts. Studying the most
appropriate reference could be a potential source of improvement,
especially in movement-based BMIs.

Finally, increasing the sample size is always a consideration
that could help to improve the BMI performance. However, this
is one of the main challenges in the field of deep learning in
BMIs. Obtaining specific data and conducting this type of testing
involves a significant effort in terms of instrumentation and user
involvement. An alternative that is gaining popularity in the field is
to train the network on various tasks (a network that is capable of,
for example, segmenting images very well) and then retrain it on the
specific task [in this case EEG specific task, like obstacle reaction,
Sadiq et al. (2022)], which could be another future approach to test.

In conclusion, in this work, a CNNmodel has been explored to
create a BMI that, through two step classifiers, is able to distinguish
the walking pattern of the evoked potential generated in the EEG
when the user decides to stop due to an unexpected obstacle. It has
been shown that the performance of the proposed BMI depends
on the number of repetitions with which it is trained. The transfer
learning model with fine-tuning was able to address this issue. The
network has been tested on SCI patients with success and with
acceptable percentages, even though a reduction of FP should be
addressed in future works.
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