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Brain-machine interfaces (BMI) have developed rapidly in recent years, but

still face critical issues such as accuracy and stability. Ideally, a BMI system

would be an implantable neuroprosthesis that would be tightly connected and

integrated into the brain. However, the heterogeneity of brains and machines

hinders deep fusion between the two. Neuromorphic computing models, which

mimic the structure and mechanism of biological nervous systems, present

a promising approach to developing high-performance neuroprosthesis. The

biologically plausible property of neuromorphic models enables homogeneous

information representation and computation in the form of discrete spikes

between the brain and the machine, promoting deep brain-machine fusion and

bringing new breakthroughs for high-performance and long-term usable BMI

systems. Furthermore, neuromorphic models can be computed at ultra-low

energy costs and thus are suitable for brain-implantable neuroprosthesis devices.

The intersection of neuromorphic computing and BMI has great potential to lead

the development of reliable, low-power implantable BMI devices and advance the

development and application of BMI.
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1. Introduction

Brain-machine interface (BMI) is a technology that enables direct interaction between
the brain and external devices such as cursors, robotic arms, and prosthetic limbs, which has
demonstrated great potential in various applications, including gaming, smart homes, and
neural or motor rehabilitation (Hochberg et al., 2012).

Most recently, intracortical brain-machine interfaces (iBMI), which decode information
from single-neuron-level neural signals, have seen rapid progress and enabled new forms
of neuroprosthesis, such as brain-to-handwriting (Willett et al., 2021), BMI-based speech
synthesis (Moses et al., 2021), and implantable neural therapies for epilepsy (Berényi et al.,
2012) and depression (Scangos et al., 2021). The emergence of BMI technology companies,
represented by Neuralink, has sparked a wave of rapid development of brain-implantable
hardware and devices, boosting the clinical application of BMIs.
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FIGURE 1

Neuromorphic computing facilitates deep brain-machine fusion.

2. Challenges for high-performance
BMIs

Ideally, an iBMI system would take the form of brain-
implantable neuroprosthesis and would work collaboratively with
the brain, like an extension of the brain (Wu et al., 2016).
The brain and the iBMI-based neuroprosthesis should be closely
connected and integrated, with both sides adapting to, learning
with, and compensating for each other as one. However, such a deep
connection is difficult to achieve, given the fundamental difference
between the brain and the machine. Specifically, from the side
of the biological brain, information is encoded in spike trains of
neurons. While from the side of computing machines, the basic
unit for computation is vectors in real values. The gap between
representation and computing lays a barrier to deep fusion between
brain and machine, degrading the performance of iBMI systems.
Lacking the deep connection between the brain and the machine,
the existing iBMI systems still face critical challenges that have
seriously hindered clinical application, including:

2.1. Degree of freedom and accuracy

Most motor iBMIs can only control 2–3 degrees of freedom
at the same time, typical applications include 2D cursors and 3D
robotic arms. The accuracy of the online control process is around
60–90% with full brain control with a path efficiency of 0.4–0.8
(Collinger et al., 2013; Wodlinger et al., 2014), which still cannot
meet the clinical use requirements.

2.2. Adaptation

Most existing BMI systems lack the ability to adapt over
time and exhibit limited cross-day or long-term performance (Qi
et al., 2019; Degenhart et al., 2020). Since brain signals change
dynamically over time, a BMI system usually has to be recalibrated
every day to maintain its performance, which seriously affects the
user experience (Brandman et al., 2018).

2.3. Low-cost computing

In particular, brain signals are high-throughput data, and
neural decoding approaches are commonly energy-intensive,
leading to issues such as low battery life. Thus, most existing brain-
implantable devices only contain a limited number of channels
(usually below 50 recording channels) (Rosenthal and Reynolds,
2019; Shupe et al., 2021). Especially, for brain-implantable devices,
existing wireless devices usually cannot continuously work for
more than 1–2 days (Shaikh et al., 2019).

3. Neuromorphic computing
facilitates deep brain-machine
fusion

Neuromorphic computing models, which mimic the structure
and mechanism of biological neural circuits, provide a promising
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new option for building high-performance neuroprosthesis
(Figure 1).

Neuromorphic computing technologies, such as spiking
neural networks (SNNs), simulate neuron models of the brain
and compute in the form of discrete spikes (Maass, 1997).
Computational neuron models, such as the Hodgkin–Huxley
model, spike response model, and leaky integrate-and-
fire (LIF), mimicking the behavior of biological neurons,
are the basic unit for information representation and
computation. And the learning process is based on discrete
spikes generated by the neuromorphic neurons, following the
Hebbian rules and spike timing-dependent plasticity (STDP)
rule that resemble biological nervous systems. Additionally,
supervised algorithms like tempotron and resume (Gütig and
Sompolinsky, 2006), which are derived from artificial neural
network technologies, can also be utilized in the learning
process.

Another advantage of neuromorphic computing is the ability
of ultra-low-cost computing. The spike-based computing is an
event-driven asynchronous process, which greatly saves computing
energy consumption and realizes ultra-low power consumption
computing deployed on neuromorphic chips. Taking partial
integro-differential equations solving task as an example, the
neuromorphic computing systems simulate the brain’s neural
processes, the neuromorphic computing chip TrueNorth (Merolla
et al., 2014) demonstrates a much lower power consumption
(10−3 to 10−1 W) than commodity server-class computing
chips (such as the Intel Xeon E5-2662, which consumes around
102 W) (Smith et al., 2022), while still achieving comparable
performance.

These features make the neuromorphic computing model
a suitable option for developing such high-performance
neuroprosthesis.

3.1. Providing a deep and precise
connection between brain and machine

With the natural biological plausibility, neuromorphic models
enable homogeneous information representation and computation
between brain and machine, by direct information transfer in
the form of spike trains, which can potentially enclose the
connection between both sides. Traditionally, neuronal spike
trains are transformed into continuous values in temporal
bins to be fed into decoders (Hochberg et al., 2012; Willett
et al., 2021), where the precise timing and spike order between
neurons are inevitably lost. The direct spike-based interaction
between brain and machine enables more precise information
transfer, thus can boost the accuracy and stability of BMI
systems.

3.2. Facilitating brain-machine
co-adaptation

With the Hebbian learning rule that is shared between
biological neurons and neuromorphic neurons, BMI systems can
learn and develop adaptively with the brain in an online process,

which is able to bring new breakthroughs for long-term BMI
systems. Besides, neuromorphic models are also expected to
overcome the issue of “catastrophic forgetting,” which is prevalent
in current machine learning models (Imam and Cleland, 2020).
They thus are able to perform continuous learning, and facilitate
long-term and stable BMIs.

3.3. Enabling fully-implantable BMI
devices

With the assistance of neuromorphic chips, neuromorphic
models can compute with ultra-low energy cost (Basu et al., 2018),
providing an ideal solution for wireless fully brain-implantable
neuroprosthesis devices (Shaikh et al., 2019).

Currently, although there are only a few studies on the
intersection of neuromorphic computing and BMI, they
demonstrate the potential advantages of neuromorphic-model-
based neural decoding. Imam and Cleland (2020) proposed
a neuromorphic olfactory circuit for online learning of odor
recognition and demonstrated the superiority of neuromorphic
models in online one-shot learning and continuous learning.
Li et al. (2019) proposed a “bioelectronic nose” using SNN
decoder to decode odor information from neural activities
recorded from the olfactory bulb of rats, demonstrating that
neuromorphic models have improved performance and sensitivity
(quicker response) compared to traditional machine learning
approaches. Kasabov (2014) proposed a special neuromorphic
model called NeuCube, which has demonstrated superior
performance in brain signal processing tasks. Dethier et al.
(2013) implemented a Kalman filter with spike computing
and constructed a real-time cursor control BMI system, and
found that a neuromorphic network with 2,000 neurons can
achieve a success rate of over 94%, and the performance is
stably maintained for at least 1 h in a pinball task. These
studies demonstrated the advantages of neuromorphic model-
based BMIs to some extent, while the deep fusion between
the brain and machine, and the close intersection between
neuromorphic computing and BMI is to be studied. Especially,
with the advantages of neuromorphic computing models, the
performance of BMI can be improved in both accuracy and
stability, and BMI devices can hopefully meet the requirements of
being small, energy-efficient, and fully brain-implantable, which
could greatly benefit the clinical use and commercialization of
BMIs.

4. Discussion

The field of BMI is currently in a period of rapid
development. Neuromorphic computing, with its advantages of
biological plausibility, continuous learning, and ultra-low energy
consumption, perfectly aligns with the core challenges that BMI
faces. The intersection of neuromorphic computing and BMI holds
immense promise for the development of reliable and low-power
implantable BMI devices and would significantly improve the long-
term stability and usability of BMIs.
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