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Protocols have been proposed to optimize neuromodulation targets and parameters 
to increase treatment efficacies for different neuropsychiatric diseases. However, 
no study has investigated the temporal effects of optimal neuromodulation 
targets and parameters simultaneously via exploring the test–retest reliability of 
the optimal neuromodulation protocols. In this study, we employed a publicly 
available structural and resting-state functional magnetic resonance imaging 
(fMRI) dataset to investigate the temporal effects of the optimal neuromodulation 
targets and parameters inferred from our customized neuromodulation protocol 
and examine the test–retest reliability over scanning time. 57 healthy young 
subjects were included in this study. Each subject underwent a repeated structural 
and resting state fMRI scan in two visits with an interval of 6 weeks between two 
scanning visits. Brain controllability analysis was performed to determine the 
optimal neuromodulation targets and optimal control analysis was further applied 
to calculate the optimal neuromodulation parameters for specific brain states 
transition. Intra-class correlation (ICC) measure was utilized to examine the test–
retest reliability. Our results demonstrated that the optimal neuromodulation 
targets and parameters had excellent test–retest reliability (both ICCs > 0.80). The 
test–retest reliability of model fitting accuracies between the actual final state 
and the simulated final state also showed a good test–retest reliability (ICC > 0.65). 
Our results indicated the validity of our customized neuromodulation protocol 
to reliably identify the optimal neuromodulation targets and parameters between 
visits, which may be reliably extended to optimize the neuromodulation protocols 
to efficiently treat different neuropsychiatric disorders.
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1. Introduction

Neuromodulation is effective in treating different neuropsychiatric disorders such as 
Parkinson’s disease (PD) and Depression (Horn and Fox, 2020). For example, repetitive 
transcranial magnetic stimulation (rTMS) has shown effectiveness as a non-invasive 
neuromodulation tool to treat depression, which has been approved by the FDA (Perera et al., 
2016). Nevertheless, current neuromodulation outcomes are highly variable due to patient 
heterogeneity. Meanwhile, the utilization of empirical stimulation targets and parameters for 
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treating different individuals further reduces the possibility to 
accommodate the heterogeneity. Thus, previous studies have proposed 
optimized and personalized neuromodulation protocols to consider 
patient heterogeneity (Cole et al., 2021; Modak and Fitzgerald, 2021; 
Klooster et al., 2022). For example, prior study utilized the resting-
state functional magnetic resonance imaging (fMRI) signal to locate 
the optimal stimulation target inside the dorsolateral prefrontal cortex 
(DLPFC) and change the stimulation intensities according to the 
depth of the stimulation location to ensure delivering of 90% resting 
motor threshold (RMT) for personalized neuromodulation treatment 
(Cole et al., 2021). However, even though the stimulation target is 
optimized, the target is still constrained within the DLPFC, and the 
stimulation parameters like frequency, duration, and amplitude, were 
not optimized for specific brain states transition. To maximize the 
neuromodulation efficacy for treating various diseases, it is important 
to personalize the neuromodulation protocols by simultaneously 
optimizing the stimulation targets and parameters across the whole 
brain for specific brain states transition. In addition, it is also 
important to ensure the stability of the optimal neuromodulation 
protocols for each individual subject across visits to reduce the time 
needed for treatment, reduce and costs, and properly interpret the 
results (Jannati et al., 2019).

Recently, network control theory has been proposed to optimize 
the neuromodulation targets in human brain (Gu et al., 2015). Brain 
network controllability has been developed to characterize the brain’s 
dynamic properties, assuming the brain system is deliberately shifted 
or guided along a particular trajectory to support specific goals (Gu 
et al., 2015; Fang et al., 2021, 2022a,b). As such, it provides a potentially 
powerful tool for modeling the neuromodulation process in human 
brain (Tang and Bassett, 2018). Previous studies have illustrated that 
the brain controllability measurements can predict the effects of 
external stimulation on the neural activations, where the brain 
dynamics are identified by the structural brain connectivity network 
via the diffusion tensor imaging (DTI) (Bassett and Sporns, 2017; 
Medaglia et al., 2018; Tang and Bassett, 2018; Fang et al., 2021). For 
example, previous study has shown that the stimulation of high 
controllability brain region will easily move the brain network system 
to nearby brain states with little control energy (Muldoon et al., 2016). 
Meanwhile, another study utilizes controllability measures to assess 
the TMS effects on language performance and illustrates that brain 
network controllability in the inferior frontal gyrus (IFG) is related to 
controlled language variability and susceptibility to TMS (Medaglia 
et al., 2018). Together, these results indicate that brain controllability 
measurements are potential biomarkers for determining optimal 
stimulation targets for optimal neuromodulation in clinical practice.

To optimize the neuromodulation parameters, a potential 
framework for such optimization is optimal control analysis. Optimal 
control analysis deals with the calculation of optimal parameters that 
can steer the brain network dynamic to a specific state (Ross, 2015). 
The purpose of optimal control analysis is to minimize the difference 
between the initial state and the expected target state, and the control 
energy necessary to steer the brain between various states through a 
period of time (Stiso et al., 2019). Previous study has demonstrated 
that the optimal control analysis could predict the effect of direct 
electrical stimulation in improving the memory encoding (Stiso et al., 
2019). In addition, a recent study has reported that the optimal control 
analysis can infer the optimal control energy needed for seizure 
control in patients with epilepsy (Scheid et  al., 2021). The results 

indicated that the control energy to steer the brain from an ictal brain 
state to a seizure-free state is smallest during seizure onset.

Although optimal neuromodulation protocols have been 
proposed by incorporating the network control theory and optimal 
control analysis, whether the optimized stimulation targets and 
parameters exhibit good test–retest reliability is still unclear. Test–
retest reliability measure is important for the inference of convincing 
conclusions and serve as potential clinical biomarkers (Elliott et al., 
2020). Currently, as the employment of plasticity-induced 
neuromodulation protocols becomes more popular, increasing 
attention has been given to the test–retest reliability studies using 
structural and functional MRI data to design optimal neuromodulation 
protocols (Fox et al., 2013; Rosenstock et al., 2017; Ning et al., 2019). 
Test–retest reliability of the optimal neuromodulation protocols may 
be potentially affected by several factors such as the stimulation targets 
and the stimulation parameters between visits. However, no systematic 
study has been performed to investigate the test–retest reliability of 
neuromodulation protocols by simultaneously considering the test–
retest reliability of the optimal stimulation targets and parameters 
based on brain controllability and optimal control analysis.

In this study, we analyzed a recently public structural and functional 
MRI dataset, which included 57 healthy young subjects who was each 
scanned twice around 6 weeks apart. We  first located the optimal 
stimulation targets for each subject based on the brain controllability 
analysis using DTI data scanned from the two visits, respectively, and 
assessed the test–retest reliability of the optimal stimulation targets. 
Then, we calculated the optimal stimulation parameters to steer the 
resting brain state from visit 1 to visit 2 based on optimal control analysis 
and evaluated the test–retest reliability of the optimal stimulation 
parameters and the model fitting accuracies between the actual final 
state and the simulated target state. This work offers a systematic support 
for assessing the test–retest reliability of optimal neuromodulation 
protocols by considering the reliability of both the stimulation targets 
and parameters, providing reliability for future clinical applications.

2. Materials and methods

2.1. Participants

Repeatedly measured DTI and resting-state fMRI (rs-fMRI) data 
were obtained from the Connectivity-based Brain Imaging Research 
Database (C-BIRD) at Beijing Normal University (Lin et al., 2015). 
Fifty-seven healthy young adults (M/F: 30/27, age 23.05 ± 2.29 years) 
underwent repeated MRI scans in two visits with an interval of around 
6 weeks (40.94 ± 4.51 days) between two visits. Seven subjects were 
excluded due to the loss of rs-fMRI data in the open-source dataset. 
Written informed consent was given by each participant, and the 
study was approved by the Institutional Review Board of the State Key 
Laboratory of Cognitive Neuroscience and Learning at Beijing 
Normal University. All participants were right-handed, native Chinese 
speakers and had no history of neurological or psychiatric disorders.

2.2. Data acquisition

The instruction before and after MRI scans is shown in Table 1. 
All MRI data were obtained using a SIEMENS Trio Tim 3.0 T 
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scanner (Siemens Healthcare, Erlangen Germany) with a 12-channel 
phased-array head coil in the Imaging Center for Brain Research, 
Beijing Normal University (Lin et al., 2015). Structural MRI data 
were acquired using a T1-weighted, sagittal 3D magnetization 
prepared rapid gradient echo (MP-RAGE) sequence. Diffusion 
weighted imaging data were acquired using a single-shot twice-
refocused spin-echo diffusion echo-planar imaging (EPI) sequence 
with implementation of the parallel imaging scheme named 
GeneRalized Autocalibrating Partially Parallel Acquisitions. The 
rs-fMRI data were obtained using a T2*-weighted echo-planar 
imaging (EPI) sequence. The detailed acquisition parameters can 
refer to (Lin et al., 2015).

2.3. Data preprocessing

Preprocessing of DTI data was performed using DSI Studio 
toolbox.1 Image distortion and motion artifact induced by the eddy 
currents were corrected to reduce the noisy components. Q-space 
diffeomorphic reconstruction (QSDR) method was then utilized to 
reconstruct the DTI data (Yeh and Tseng, 2011). The diffusion-
weighted images in native space were first reconstructed and the 
quantitative anisotropy (QA) in each voxel was calculated. The 
computed QA values were then utilized to warp the brain to a template 
QA volume in MNI space using the SPM non-linear registration 
method (Tzourio-Mazoyer et  al., 2002), where the spin density 
functions were reconstructed. Fiber tracking was then conducted with 
the following parameters: angular cutoff = 90, step size = 1.0 mm, 
minimum length = 10 mm, spin density function smoothing = 0.0, 
maximum length = 800 mm. A modified FACT algorithm was then 
utilized to perform deterministic fiber tracking until 100,000 
streamlines were reconstructed for each individual subject.

Preprocessing of resting-state fMRI data was perform using the 
SPM12-based DPABI toolbox (Yan et al., 2016). First 10 time points 
were removed to keep magnetization equilibrium. The preprocessing 
steps included spatial normalization, slice-time correction, spatial 
smoothing, head motion correction, and linear trend removal. A 
temporal bandpass filter from 0.01 to 0.08 T was then used to filter the 
low-frequency drift, cardiac noise, and physiological respiratory. 
Parcellation of the brain was performed using the 
Desikan-Killiany-Tourville (DKT) atlas, resulting in 62 regions of 
interest (ROIs) (Klein and Tourville, 2012).

1 https://dsi-studio.labsolver.org/

2.4. Brain controllability analysis

Controllability represents the ability of a specific brain region in 
steering the state of the dynamic network system into different brain 
states (Gu et al., 2015). One of the critical steps to employ the brain 
controllability analysis is to define a structural connectivity network 
and the network dynamic of the brain (Gu et  al., 2015). In our 
calculation, the structural brain network was estimated by the 
streamlines connecting each two-brain region constructed by the DTI 
data. A simplified, noise-free, and linear time-invariant network 
dynamic model was then be built as follows:

 x t Ax t Bu t+( ) = ( ) + ( )1  (1)

where x  with dimension N  × 1 (N  is the number of brain regions) 
describes the brain state of different brain regions over time, and A 
with dimensions N  × N  is the weighted structural connectivity matrix 
as described above. The matrix B with dimension N  × m  represents 
the input matrix and the matrix u  with dimension m × 1 represents 
the external stimulation. The m denotes the number of targeted nodes.

2.4.1. Average controllability
Average controllability represents the ability of a specific brain region 

in steering the network dynamic system into many easy-to-reach states 
with minimal input energy (Gu et al., 2015). It was calculated as the H2
-norm of the network system. Mathematically, it was defined as:
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Cognitively, the high average controllability brain areas are critical 
in moving the brain to different cognitive states that require little 
cognitive effort.

2.4.2. Modal controllability
Modal controllability represents the ability of a specific brain area 

in moving the brain network system into many difficult-to-reach 
states (Gu et al., 2015). Mathematically, it was defined as:
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TABLE 1 Instructions before and after MRI scan.

(a) Do not undertake strenuous exercise on the day before the fMRI scan

(b) Do not consume hard drinks on the day before the MRI scan

(c) Do not consume stimulating drinks for 6 h before the MRI scan

(d) Have a good rest on the day before the MRI scan to ensure good conditions for scanning

(e) Lie still to rest and relax, keep motionless as possible during MRI scan

(f) Keep eyes closed but do not fall asleep (for resting-state fMRI scan)

(g) Ask the subjects whether they kept their eyes closed or fall asleep during the scan
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vij is the element of the eigenvectors matrix of A and λ j  is the jth 
eigenvalue. Cognitively, high modal controllability brain areas are 
critical in moving the brain into various cognitive states that require 
a lot of cognitive effort.

2.5. Personalization of the neuromodulation 
parameters via optimal control analysis

Details of parameters estimation of optimal control process can 
be found in (Stiso et al., 2019). Briefly, the optimization problem was 
first defined as:

 
minu

T

T T K Kx x t S x x t u t u t
0

∫ − ( )( ) − ( )( ) + ( )′ ′ρ d

 
(4)

 
s t x Ax t Bu t x x x T xT. . , , and = ( ) + ( ) ( ) = ( ) =0 0

where xT  represents the target state, T represents the control 
horizon, and ρ  is to weight the input constraint. S represents the group 
of nodes to constrain.

Brain area with the maximum controllability was first selected as 
the optimal stimulation target, and then, optimal control analysis was 
applied to the stimulation target to steer the resting brain state at visit 
1 to the resting brain state at visit 3 via performing the open-loop 
control. The maximum modal correlation between the actual final state 
(resting state at visit 2) and the simulated final state was then calculated 
to quantify the stimulation effects of the targeting strategies. The model 
fitting accuracy was computed by selecting the control horizon 𝑇 from 
0 to 0.75, with an increased step of 0.05 to the 𝑇 (so 𝑇 = 0.05, 0.10, 0.15, 
0.20, …), and calculating the maximum model correlation within this 
period. The total energy necessary to steer the brain into different 
cognitive states can be described as:
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(5)

2.6. Reliability analysis of brain 
controllability and optimal parameters

Intra-class correlation (ICC) was employed to quantify the test–
retest reliability of the brain controllability measurements and optimal 
neuromodulation parameters between visit 1 and visit 2 (Koo and Li, 
2016). The ICC value was calculated based on the equation:

 
ICC

BMS WMS

BMS WMS
=

−
+ −( )m 1  

(6)

where BMS WMS( )  represents the between-subject (within-
subject) mean square and m represents the number of repeated 
measurements (here, m = 2). We calculated the ICC values of the brain 
controllability measurements and the optimal neuromodulation 
parameters of each subject. Then, the reliability was assessed with the 

classifying criteria of ICC values: less than 0.4 indicated low reliability; 
0.40 to 0.60 indicated fair reliability, 0.60 to 0.75 indicated good reliability, 
and 0.75 to 1.00 indicated excellent reliability (Koo and Li, 2016).

2.7. Statistical analysis

The average and modal controllability distribution was statistically 
compared, respectively, between visit 1 and visit 2 using paired t-test 
(Kim, 2015). Linear regression analysis was performed to identify the 
relationship of global average and modal controllability, respectively, 
between visit 1 and visit 2 (Draper and Smith, 1998). Similarly, the 
same linear regression analysis was applied to find the relationship of 
regional average and modal controllability, respectively, between visit 
1 and visit 2. The ICC was employed to verify the test–retest reliability 
of the brain controllability and the optimal neuromodulation 
parameters between visit 1 and visit 2. The ICC was also calculated to 
evaluate the test–retest reliability of the brain controllability in default 
mode network (DMN), frontoparietal network (FPN), and cognitive 
control network (CCN), respectively. Paired t-test was performed to 
compare the optimal neuromodulation parameters and the model 
fitting accuracies between visit 1 and visit 2. Linear regression analysis 
was also performed to identify the relationship between the simulated 
target state and actual target state. Outliers, defined by mean plus/
minus three standard deviations, were excluded (Howell et al., 1998). 
All p values were corrected by Bonferroni correction (Armstrong, 
2014) (see Figure 1).

3. Results

3.1. Brain controllability distribution maps 
across visits

The average and modal controllability distribution over the brain 
averaged across subjects were first documented and statistically 
compared, respectively, between visit 1 and visit 2 (Figure 2A). The 
results indicated that there was no significant difference of both 
average and modal controllability measurements, respectively, 
derived from visit 1 and visit 2 (p > 0.05), indicating high stability of 
the controllability measurements calculated from the DTI data. 
Furthermore, the relationship of the controllability measurements 
between visit 1 and visit 2 were explored using linear regression 
analysis (Figure  2B). The results showed that the global average 
controllability and the global modal controllability at visit 1 were 
significantly correlated with the respective measurements at visit 2 
(r = 0.83, p < 0.01), indicting the stability of the brain controllability 
measurements in a global scale. In addition, the results also showed 
that the regional average and modal controllability, respectively, were 
significant correlated between visit 1 and visit 2 (r = 0.99, p < 0.01). 
Together, these results indicated that the brain controllability 
measurements were stable across recording sessions.

3.2. Reliability of brain controllability across 
visits

The ICC of global average and modal controllability of 
different individuals were shown in Figure 3A. According to the 
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ICC classification criteria, the ICC values larger than 0.75 
indicate excellent reliability. From the results shown in Figure 3A, 
we can see that the global average and modal controllability of 
most subjects were higher than 0.8, indicating the excellent test–
retest reliability of the global average and modal controllability 
measures. The results shown in Figure 3B demonstrated the ICC 
of average and modal controllability measurements within three 
human brain psychological sub-networks, including DMN, FPN, 
and CNN. The results indicated that the test–retest reliability of 
controllability measurements in these critical sub-networks were 
also excellent. Together, these results indicated that the test–
retest reliability of global and regional controllability 
measurements were excellent in various individual subjects.

3.3. Reliability of optimal neuromodulation 
parameters

The results in Figure 4A shows an example of the optimal control 
simulation based on the structural brain networks constructed from 
the DTI data recorded from visit 1 and visit 2, respectively. The first 
column shows the fitting curve between the resting brain state at visit 

1 (initial state, blue color) and the resting brain state at visit 2 (actual 
final state, red color). The resting brain state was represented by the 
z-scored mean of rs-fMRI signal amplitudes over times at each region 
of interest (ROI). The second column shows the fitting curve between 
the actual final state (red line) and the simulated final state (dark blue 
line) after exerting the optimal neuromodulation parameters to the 
optimal neuromodulation targets based on the structural brain 
network constructed from visit 1 and visit 2, respectively. The third 
column shows the regression results to find the relationship between 
the Observation (actual final state) and the Simulation (simulated final 
state). Results showed that the Observation and the Simulation curves 
were fitted well, and all significantly correlated no matter which 
structural brain network based on (based on the structural brain 
networks at visit 1: r = 0.52, p < 0.001, visit 2: r = 0.46, p < 0.001). 
Meanwhile, the ICC of the optimal neuromodulation parameters and 
accuracies were computed (Figure 4B). The results showed that there 
was no significant difference of the optimal neuromodulation 
parameter, including optimal neuromodulation parameters (p = 0.96), 
which was the optimal control energy calculated, and accuracy 
(p = 0.93) between visit 1 and visit 2. The ICC of the optimal 
neuromodulation parameters was 0.83 and the accuracy was 0.65, 
indicating excellent and good reliability according to the classification 
criteria of ICC.

4. Discussion

Test–retest reliability of neuromodulation measurements 
influence their utility as potential neurophysiologic biomarkers for 
therapeutic intervention. As the use of plasticity-induced 
neuromodulation protocols become more common, it is necessary to 
investigate the reliability of the optimal stimulation targets and 
parameters derived from the brain network system. Therefore, this 
study proposed a comprehensive investigation of our customized 
optimal neuromodulation protocols by assessing the test–retest 
reliability of the optimal stimulation targets and the parameters 
derived from the brain controllability analysis and optimal control 
analysis, respectively. Our results suggested that the global 
controllability and regional controllability of DMN, FPN, and CNN 
exhibited excellent reliability with all ICC values larger than 0.80. 
Meanwhile, our results also demonstrated that the optimal 
neuromodulation parameters also showed excellent test–retest 
reliability with ICC value larger than 0.83. Finally, our results showed 
that the model fitting accuracies between the actual final state and the 
simulated final state displayed good test–retest reliability with ICC 
value larger than 0.65. Together, these results indicated the reliability 
of our proposed neuromodulation protocol to be employed in future 
clinical practice.

Brain controllability analysis on structural brain network predict 
the capability of the brain to alter large-scale neural circuit, assuming 
the structural brain networks can modulate the transition between 
brain states (Gu et  al., 2015). Specifically, the average and modal 
controllability diagnostics are the measurements to assess the ability 
of the brain to enter various cognitive states. Average controllability is 
to quantify the nodes’ capability to move the brain network system 
into many easily reachable state, while the modal controllability is to 
evaluate the nodes’ ability to steer the brain network system into 
different difficult-to-reach cognitive states. If the control energy can 

FIGURE 1

Schematic of methods. (A) Depiction of network construction and 
the control sets representation. (B) Schematic of the optimal control 
paradigm. In the optimal control design, the initial brain state x(0) has 
some position in space that evolves over time toward a predefined 
target state.
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represent the cognitive efforts and the brain states can represent the 
cognitive functions, then the easily reachable states refers to the brain 
states that require little cognitive effort to reach, while the difficult-to-
reach states represent the brain state that needs lots of cognitive effort 
to enter (Gu et al., 2015).

As reported by a previous study, the stimulation of brain regions 
with high average controllability contributes to easily steering the 
brain network system into nearby brain network states with little 

control energy (Muldoon et al., 2016). In addition, previous study has 
also employed the brain controllability measurements to identify the 
relationship between the regional controllability and the controlled 
language variability and susceptibility to TMS and found that a 
statistic that quantified the IFG’s theoretically predicted control of 
difficult-to-reach states explained vulnerability to TMS in the closed-
ended response task (Medaglia et al., 2018). These studies, together, 
indicate that the brain controllability measurements are useful to 

FIGURE 2

Average and modal controllability between Visit 1 and Visit 2. (A) Average and modal controllability distribution(averaged across subjects) and statistical 
comparison between Visit 1 and Visit 2. (B) Regression of global and regional average and modal controllability between Visit 1 and Visit 2. For global 
controllability, the x and y axes representeach single subject, while for regional controllability, the x and y axes represent each single brain area.
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design the neuromodulation protocols by defining the optimal 
stimulation targets for modulating various neurophysiological 
behaviors. In our study, we went even further to investigate the test–
retest reliability of the brain controllability measurements to reliably 
select the optimal stimulation targets for later optimal control analysis. 
Our results showed that the test–retest reliability of global average and 
modal controllability, and the regional average and modal 
controllability, especially the brain areas located in DMN, FPN, and 
CNN, were excellent with all the ICC values larger than 0.8. DMN, 
FPN, and CCN are three distinct brain networks that play important 
roles in controlling brain function. Specifically, DMN plays a crucial 
role in regulating and controlling brain activity during rest and 
introspection. It is thought to be involved in self-referential thinking, 
episodic memory, and social cognition. The DMN also plays a role in 
regulating the level of arousal and attention, as it is active during states 
of mind-wandering and relaxation. Differently, FPN plays a key role 

in controlling attentional processes. It is responsible for maintaining 
and manipulating information in working memory and for directing 
attention to relevant information. The FPN is also involved in 
decision-making, planning, and problem-solving. Besides, CCN is 
involved in the control and regulation of cognitive and emotional 
processes. It plays a role in attentional control, response inhibition, 
and conflict resolution. The CCN also helps regulate the emotional 
responses to stimuli and to modulate emotional processing. These 
three networks work together to regulate and control brain function, 
supporting a wide range of cognitive and perceptual processes. 
Dysfunction in any of these networks has been linked to a range of 
neuropsychiatric disorders, highlighting their significance in brain 
function and disease. Hence, it is of utmost importance to study the 
test–retest reliability of DMN, FPN, and CCN networks in healthy 
individuals, which will aid in future exploration of neural control 
pattern changes in patients with different neuropsychiatric conditions. 

FIGURE 3

ICC of average and modal controllability between Visit 1 and Visit 2. (A) ICC of global average and modal controllability in each individual. (B) ICC of 
regional average and modal controllability in different brain sub-networks.
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These results provide confidence for future clinical application to 
employ the brain controllability measurements for reliably 
determining the optimal stimulation targets.

While brain neuromodulation has great therapeutic potential, its 
optimization remain challenging, in part due to a lack of 
understanding of how stimulation affects different brain states of both 
neighboring and distant brain areas (Stiso et  al., 2019). Recently, 
optimal control analysis has already been applied to optimize the 
neuromodulation parameters for each individual patient to steer the 
brain states from an initial state to an expected targeted state over a 
period of time (Stiso et al., 2019). Previous studies have quantified the 
effectiveness of the optimal control parameters inferred by the optimal 
control analysis to predict the influence of direct electrical stimulation 
to improve the performance of memory encoding. Besides, it has been 
employed to compute the optimal control energy necessary for seizure 
control in patients with epilepsy (Scheid et al., 2021). Again, in our 
study, we went even further to assess the test–retest reliability of the 
optimal stimulation parameters calculated by the optimal control 
analysis. Our results showed that the optimal stimulation parameters 
also achieved excellent test–retest reliability with the ICC value larger 

than 0.8, indicating that we can employ the optimal control analysis 
to reliably compute the optimal neuromodulation parameters based 
on the structural brain networks constructed from different visits. 
Besides, we also calculated the model fitting accuracies between the 
simulated final state and actual final state and demonstrated that the 
model fitting accuracies could achieve a good reliability with the ICC 
value larger than 0.65. Together, these results indicated the feasibility 
and the excellent reliability of our optimal neuromodulation protocol 
across visits.

In this study, the term “stimulation parameter” refers to the 
control energy, which can be  further decomposed into different 
parameters like stimulation intensity and frequency for external 
stimulation devices such as rTMS and tACS used in clinical practice. 
Therefore, in clinical applications, we  can initially determine the 
stimulation target based on brain controllability analysis and fix the 
stimulation frequency, such as 10 Hz for depression treatment using 
rTMS. Next, we can optimize the time-varying stimulation intensity 
using optimal control analysis for neuromodulation in patients. 
Recent advancements in neuromodulation devices, such as the Soterix 
Medical M×N 33/65 High Definition-transcranial Electrical 

FIGURE 4

Optimal control analysis. (A) Optimal control simulation. The first column represents the initial state (blue line) and target state (red line). The second 
column represents the fitting between the simulated final state and (dark blue line) the actual final state (red line) based on two different structural brain 
networks, respectively. The third column represents the regression results between the simulated target state (Simulation) and the actual target state 
(Observation). (B) Statistics of the optimal neuromodulation targets and parameters between Visit 1 and Visit 2.
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Stimulator,2 enable automatic generation of stimulation waveform via 
any stimulation electrode combination. Hence, we believe that our 
proposed brain controllability and optimal control analysis, coupled 
with auto-generation of waveform technology, will improve the 
efficacy and accuracy of neuromodulation while reducing its 
complexity in clinical applications.

To the best of our knowledge, this study represents the first 
effort to assess the test–retest reliability of the neuromodulation 
protocol by simultaneously considering the test–retest reliability of 
the optimal stimulation targets and the optimal stimulation 
parameters inferred from the brain controllability analysis and 
optimal control analysis, respectively. There are certain limitations 
existed in this study. First, our proposed brain controllability 
analysis and optimal control analysis rely on particular assumptions 
and constraints such as the linearity and stationarity of the network. 
Failing to consider non-linear and non-stationary effects may lead 
to inaccurate predictions and may obscure important features of the 
network. These limitations need further improvement and 
validation in future research to enhance the accuracy of identifying 
optimal stimulation targets and parameters. In addition, a more 
fine-grained parcellation atlas should be utilized in future studies 
to reflect both functional and structural features of the brain (e.g., 
the Glasser, Schaefer, or Brainnetome atlas) (Schaefer et al., 2018), 
which will be helpful to improve the accuracy and specificity of 
brain mapping, enhance the producibility of findings across 
different studies, and aid the development of personalized medicine. 
Secondly, this study only includes healthy young participants, 
limiting the generalization of the results. Future research will 
include a broader range of participant groups with patients of 
different age, genders, and disease phenotypes, to better understand 
the application of our proposed personalized neuromodulation 
strategy in treating various neuropsychiatric disorders. Additionally, 
in this study, we described the brain state using the z-scored mean 
of the amplitude of resting state fMRI signals, however, it can also 
be described by other representations such as the power, entropy, 
and graph measures (Whitten et al., 2011; Li et al., 2019; Fang et al., 
2020; Kang et  al., 2021). Besides, the effectiveness of 
neuromodulation interventions can be influenced by various factors 
such as individual differences, region-specificity, stimulation 
parameters, and stimulation patterns. To comprehensively evaluate 
the intervention effects, future research will consider these factors 
since they may significantly impact the reliability and effectiveness 
of neuromodulation interventions. Finally, the initial state and 
target state defined in this study were both resting brain states 
described by the resting state fMRI signals. This may not be able to 
fully reveal the advantage of our neuromodulation protocol in 
steering any two brain states transition. However, this will 
be  improved in future studies when we record both resting and 
task-induced fMRI signals such as working memory, motor 
performance, and other cognitively demanding tasks from the same 
subjects. The proposed personalized neuromodulation approach 
will be  validated by other neuroimaging modalities such as 
functional near-infrared spectroscopy (fNIRS) and 
electroencephalogram (EEG) to design more portable and costless 

2 https://soterixmedical.com/research/hd/mxn-33

neuromodulation protocols (Chung et al., 2015; Li et al., 2022a,b). 
In this study, we  proposed a personalized neuromodulation 
protocol, which can be  easily implemented into different brain 
stimulation devices like deep brain stimulation and direct electrical 
stimulation to treat various diseases such as depression, anxiety 
disorder, stroke, Alzheimer’s disease, Parkinson’s disease, 
and others.

5. Conclusion

Our study demonstrated the test–retest reliability of our proposed 
neuromodulation protocol in reliably modulating brain states. The 
stimulation targets and parameters were personalized for specific 
subjects using the brain controllability analysis and the optimal 
control analysis. The test–retest reliability of the optimal stimulation 
targets and parameters were evaluated by the ICC measurement. Our 
results showed that the optimal neuromodulation targets and 
parameters exhibited excellent reliability, and the model fitting 
accuracies between the actual final state and the simulated final state 
displayed good reliability. In conclusion, our work offers empirical 
support for assessing the test–retest reliability of a currently proposed 
optimal neuromodulation protocol, providing evidence for future 
clinical application to reliably locate the optimal stimulation targets 
and compute the optimal stimulation parameters.
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