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Cardiovascular disease is a serious health problem. Continuous

Electrocardiograph (ECG) monitoring plays a vital role in the early detection

of cardiovascular disease. As the Internet of Things technology continues

to mature, wearable ECG signal monitors have been widely used. However,

dynamic ECG signals are extremely susceptible to contamination. Therefore,

it is necessary to evaluate the quality of wearable dynamic ECG signals. The

topological data analysis method (TDA) with persistent homology, which can

effectively capture the topological information of high-dimensional data space,

has been widely studied. In this study, a brand-new quality assessment method of

wearable dynamic ECG signals was proposed based on the TDA with persistent

homology method. The point cloud of an ECG signal was constructed, and then

the complex sequence was generated and displayed as a persistent barcode.

Finally, GoogLeNet based on the transfer learning model with a 10-fold cross-

validation method was used to train the classification model. A total of 12-leads

ECGs Dataset and single-lead ECGs Dataset, established based on the 2011

PhysioNet/CinC challenge dataset, were both used to verify the performance

of this method. In the study, 773 “acceptable” and 225 “unacceptable” signals

were used as 12-leads ECGs Dataset. We relabeled 12,000 ECG signals in the

challenge dataset, and treated them as single-lead ECGs Dataset after empty

lead detection and balance datasets. Compared with the traditional ECG signal

quality assessment method mainly based on waveform characteristics and

time-frequency characteristics, the performance of the quality assessment

method proposed. In this study, the classification performance of the proposed

method are fairly great, mAcc = 98.04%, F1 = 98.40%, Se = 97.15%, Sp = 98.93%

for 12-leads ECGs Dataset and mAcc = 98.55%, F1 = 98.62%, Se = 98.37%,

Sp = 98.85% for single-lead ECGs Dataset.
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Introduction

Heart disease is a serious threat to human health. According
to the World Health Report 2021, by 2019, cancer, cardiovascular
disease (CVD), diabetes, and chronic respiratory disease will be the
main killers of human beings. Therefore, the prevention, diagnosis,
and treatment of CVD have become important issues worldwide.
With the rapid development of networks, big data, the Internet
of Things, and artificial intelligence, wearable ECG monitoring
equipment (Redmond et al., 2012; Viegas et al., 2016) has been
widely used. Realize real-time and long-term monitoring of human
ECG signals. However, ECG signal is a weak physiological signal
that is easy to be interfered, leading to obvious defects in recording
signal quality. Therefore, it is necessary to conduct effective signal
quality assessment when monitoring wearable ECG equipment.

There are the following research methods for ECG signal
quality evaluation, which are based on PhysioNet/CinC
competition data in 2011. Zaunseder et al. (2011) based on
the frequency domain characteristics of ECG signals, used
indicators related to the power spectrum combined with decision
trees to classify ECG signals. The classification accuracy was
90.4%; Kalkstein et al. (2011) used a combined machine learning
algorithm of K-nearest neighbor and random forest for ECG signal
quality assessment and obtained 91.2% classification accuracy on
the test set; Xia et al. (2011) studied the time domain, frequency
domain, autocorrelation, cross-correlation, and other indicators
of ECG time series, formed a matrix with the results of these
indicators, and used the spectral radius of the regular matrix to
classify ECG signals. With the rapid development of deep learning,
researchers began to apply deep learning to cardiovascular
disease classification. For example, Alqudah et al. (2022) sent the
extracted ECG spectrum features to different convolutional neural
network (CNN) architectures to classify the MIT-BIH arrhythmia
database. Al-Issa and Alqudah (2022) developed a heart diagnostic
system combining CNN and Long Short-Term Memory (LSTM)
components to distinguish five heart valve diseases. Obeidat and
Alqudah (2021) used a hybrid lightweight one-dimensional depth
learning model, which combines convolutional CNN and LSTM
methods for ECG classification.

Topological data analysis method is a data analysis framework
based on algebraic topology tools (Carlsson, 2009). The purpose
of adopting the TDA method is to apply data analysis, algebraic
topology, computational geometry, computer science, statistics,
etc., to find a shape like structure in the data to analyze the complex
topology and geometry of the data (Edelsbrunner and Harer, 2010).
These data are usually represented as a point cloud in Euclidean
space. Persistent homology (Zomorodian and Carlsson, 2005) is
the main concept that allows multiscale data analysis and is also a
basic mathematical tool of TDA. Persistent homology is calculated
by simple complex, and its output results usually include persistent
barcode and persistent diagram. In this study, Vietoris-Rips (VR)
complex and SubLevel-Set (SLS) complex are selected, and detailed
in Section “2. Basic terminology.”

Topological data analysis method methods have been applied
to wearable ECG signal analysis [see (Chung et al., 2021) for an
example] based on the persistence diagram obtained by VR filtering
and SLS filtering. This is used to construct persistence statistics for
heart rate variability analysis and its classification in sleep-wake.
Reference (Dindin et al., 2020) used the TDA method to detect

arrhythmias through a modular multichannel neural network for
binary classification. The classification accuracy obtained in the
test set was 90% on average, and the average test accuracy in
multiclassification was 80.5%. Reference (Ignacio et al., 2019)
demonstrated how to map ECGs onto high-dimensional point
clouds through delayed embedding to extract topological features
and finally apply random forests for classification. Study (Graff
et al., 2021) examined when persistence diagram was obtained by
SLS filtering, and a set of indicators was extracted to distinguish
the RR interval of healthy subjects and stroke patients. In addition
(Yan et al., 2019) applied TDA to reconstruct a signal point cloud to
extract persistent landscape features to classify heart rate variability.
The accuracy of a normal heartbeat was 100%, of ventricular
beating was 97.13%, of supraventricular beating was 94.27%, and
of fusion beating was 94.27%. Although the TDA method has been
applied to the processing and classification of ECG signals, to the
best of our knowledge, research on the quality assessment of ECG
signals using TDA is still lacking.

Traditional ECG signal quality evaluation methods mostly rely
on the setting of ECG signal feature extraction classifier. In recent
years, the deep learning method has been widely used in many fields
because of its powerful functions. More and more researchers apply
the deep learning method to the quality evaluation of ECG signals.
However, the deep learning method has poor interpretability
and cannot explore the high-dimensional spatial characteristics
of ECG signals. ECG is an electrical activity process that reflects
the excitation of the heart. It is not enough to extract features
from the basic function of the heart and its pathological research.
Topological data analysis method can solve this problem. In
this study, persistent homology can be used to construct point
clouds through folded signals, extract topological features, and
comprehensively reflect the damage of heart valves.

In this study, a brand-new quality assessment method of
wearable dynamic ECG signals was proposed based on the TDA
with persistent homology method, so as to reduce the workload
of medical staff and reduce the rate of miscarriage of justice. In
this study, the features captured by the topological data analysis
method is topological and spatial information of high-dimensional
data space. First, the point cloud of an ECG signal was constructed,
and then the complex sequence was generated and displayed as
a persistent barcode. Topological and spatial information was
converted into the persistent barcode.

In Section “2. Basic terminology,” we introduce VR filtration,
SLS filtration, and persistent homology related concepts. The
dataset adopted in this study and the constructed model are
accepted in detail in Section “3. Model.” In Section “4. Results,” we
present the results for different classifications. Model performance
based on ECG quality assessment and comparison with other
quality assessment methods is discussed in detail in Section “5.
Discussion.”

Basic terminology

Vietoris-Rips filtration

Common complexes include Alpha complex, Ĉech complex,
lazy witness complex, VR complex and so on. In this study, VR
complex is selected for the following reasons: (a) when using
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Alpha complex, the lack of monotonicity may introduce significant
computational costs and even make it unusable in some cases. (b)
In the calculation, VR complex is easier to calculate than Ĉech
complex. Because VR complex can be stored as a picture, that is,
only 0-dimensional and 1-dimensional complex need to be stored,
and all high-dimensional complex need not be stored like Ĉech
complex. (c) The lazy witness complex is to randomly select the
number of points in a group of point clouds. Compared with VR
complex, it has randomness and is suitable for the point cloud
structure with a large amount of data. Assume that VR filtering
represents the distance between two points in the metric space Z.
The VR complex sequence VR (Z, ∈) is defined as follows: (1) The
vertex set is Z. (2) For vertices a and b, if d (a, b) ≤ ∈, then the
edge (ab) is included in VR (Z, ∈). (3) If all edges of VR (Z, ∈)
are simplexes, then it contains simplexes of higher dimensions. The
filtering of the VR complex can be regarded as filtration of the (n-1)
dimensional simplex, as shown in Figure 1.

SubLevel-Set filtration

The definition of the SLS is as follows: We define a time series of
ECG signals as a continuous function, where T is the length of the
time series and is a real-valued function called the α-level subset.
For each α∈R,

fα :=f−1(−∞,α){t ∈ [0,T]|f (x) ≤ α} (1)

According to the formula α1 ≤ α2, fα1 ⊆ fα2 , therefore, for any
increasing sequence of a filter is formed. The filtering process is
shown in Figure 2 below.

Persistence homology

Persistent homology is a method to compute spatial topological
features at different spatial resolutions. More persistent features are
detected across a wide range of spatial scales. The space must first be
represented as a simplicial complex, and a distance function on the
underlying space corresponds to a filtering of a simplicial complex,
which is a nested sequence of increasing subsets.

When 0 ≤ i ≤ j ≤ n, the inclusio Ki → Kj induces a
homomorphism f i,j

p : Hp(Ki)→ Hp(Kj) on the simplicial
homology groups for each dimension p. The pth persistent
homology groups are the images of these homomorphisms, and the
pth persistent Betti numbers p = 0 are the ranks of those groups.
Persistent Betti numbers for coincide with the size function, which
is a predecessor of persistent homology.

Topological data analysis method methods extract information
from the topological and geometric properties of the data
point cloud. In this study, we first construct a data point
cloud for each time series using the sliding window method to
construct a complex sequence for a point cloud dataset and filter
the complex sequence φ=K0 ⊂ K1 ⊂ ... ⊂ Kn = K. Topological
features will appear and disappear during the construction
of complex filtering. The persistence diagram proposed by
Edelsbrunner et al. (2000) and the persistence barcode proposed
by Carlsson et al. (2005) are tools for visualizing topological
features that can visually display persistent homology. There is an

equivalence relationship between them. The persistence diagram
was encoded from the k-dimensional homology α information
in all scales. A homology α was a point, which represent the
birth and death time of the corresponding topological features.
A barcode is a finite set of intervals that are bounded below.
Intuitively, the intervals denote the life-times of a non-trivial
loop in a growing complex. The left endpoint signifies the
birth of a new topological attribute, and the right endpoint
signals its death. The longer the interval, the more important
the topological attribute, as it insists on being a feature of the
complex.

Model

Based on 2011 PhysioNet/CinC challenge data, we constructed
12-leads ECGs Database and single-lead ECGs Database. For the
two databases, we use VR filtration method to obtain persistent
barcodes and SLS filtration method to obtain persistent diagrams.
When using VR filtration method, this study uses the sliding
window method to construct the point cloud of the ECG signal.
Finally, the GoogLeNet based on the transfer learning method is
applied for classification. The flow diagram of this study is shown
in Figure 3.

The data

Data were drawn from the PhysioNet Challenge 2011
dataset where binary labels were available, on 1,000 12-lead
ECGs indicating whether the entire recording was acceptable
or unacceptable. These data supporting the development and
evaluation of challenge entries were collected by the Sana
Project (Celi et al., 2009) and are freely available through
PhysioNet (Goldberger et al., 2000). Patient age, sex, weight,
and possibly other relevant information were included in the
challenge data. The full diagnostic bandwidth is 0.05–100 Hz.
Leads were recorded simultaneously for 10 s, sampled at
500 Hz at 16-bit resolution. Among the 1,000 signals, 773 were
marked as “acceptable” and 225 were “unacceptable,” and 2 were
“indeterminate.”

A total of 12-leads ECGs dataset
In this study, 773 “acceptable” and 225 “unacceptable” signals

were used as 12-leads ECGs Dataset. Whereas the “acceptable,”
“indeterminate,” and “unacceptable” classification criteria for the
entire 12 channels. For example, many “acceptable” ECGs have
a channel with complete noise or even a flat line. Therefore, we
constructed single-lead ECGs Dataset.

Single-lead ECGs quality assessment dataset
construction

According to Silva et al. (2011), study (Liu et al., 2018) adopts
the scoring criteria of five signal quality levels of 10-s ECG
segments. A total of 9,941 “acceptable” and 2,059 “unacceptable”
10-s ECG segments were found. With empty lead detection, 1,071
10-s ECG segments were detected from the disqualified group.
Hence, only 988 “unacceptable” fragments were found. It can be
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FIGURE 1

(A) The filtering process of the VR complex. (B) The 0-dimensional and 1-dimensional persistence barcode of VR filtration. As ∈ continues to
increase, an increasing number of simplicial complexes are formed. In (B), blue is a 0-dimensional persistence barcode, and red is a 1-dimensional
persistence barcode. The abscissa of the persistence barcode picture represents 2∈. When ∈ = 0, there are 10 connected components; when ∈ = 1,
there are seven connected components; when ∈ = 2, there are two connected branches; and when ∈ = 2.05 to ∈ = 2.1, there is a hole.

FIGURE 2

(A) The SLS filtering process of randomly generated time series. When α scans a node that it considers to be a local minimum, it saves the value of
that node as the birth point of the slot, and the trough of death is determined by the lowest. Since the global minimum will not disappear, its death
time is infinite. (B) The persistence diagram of this time series.

seen that the “acceptable” and “unacceptable” signals are seriously
unbalanced, and this study generates additional noisy records to
balance the problem of uneven data.

We used the Physical Network Noise Stress Test Database
(Moody et al., 1984) (NSTDB) noise samples, which contain
samples for three types of noise: bw, em, and ma. Bw contains
baseline drift noise; em contains electrode motion artifacts, as well

as substantial baseline drift and muscle noise; and ma contains
mostly muscle noise. These three noise samples have two leads.
This study adds gaussian noise with only one lead data, and the
signal-to-noise ratio of the noise is−10 dB. We added four different
noises to the 7,882 “acceptable” ECG signals: 2,252 noise data with
bw, em, and ma noise and 1,126 with gaussian noise. There is
no possibility of adding two different noises to one signal. There
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FIGURE 3

Flow diagram of this study.

FIGURE 4

Construction process of single-lead ECGs Dataset.

are 9,941 “acceptable” signals and 8,870 “unacceptable” signals. As
shown in the Figure 4.

Electrocardiograph signal processing
The ECG signals of “acceptable” and “unacceptable” were

normalized by Mapminmax function. Mapminmax is a function of
MATLAB, which is mainly used to normalize data. It converts all

data into numbers between (−1, 1), so as to eliminate the difference
in the number of data in each dimension. The algorithm is as
follows:

It is assumed that x has only finite real values and that the
elements of each row are not all equal. ymin is the minimum value
we expect after normalization. ymax is the maximum value we
expect after normalization, and the normalized matrix is marked
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as y.

y =
(ymax− ymin)(x− xmin)

(xmax− xmin)
+ ymin (2)

Filtration of ECG signal

Topological data analysis method studies shapes constructed
from invariant datasets under continuous deformation (such as
tension and torsion). We use VR filtration and SLS filtration
methods to analyze ECG signals, and use persistence barcode and
persistence diagram to display the topological characteristics of
ECG signals. In VR filtration method, a point cloud was structure
by the sliding window method. In the process of ∈ becoming
larger, points are connected with each other, and “hole” and “void”
may appear and disappear, which means that the topological
characteristics will appear and disappear. SLS filtration method
directly looks for birth value and death value on the waveform
of ECG signal. In order to see the difference between persistent
barcodes more intuitively and clearly, we take a 3-s ECG signal
segment in Figure 5 as an example. Figure 5 shows the three-
dimensional scatter (A), persistence barcode (B), and persistence
diagram (C) of 3-s “acceptable” and “unacceptable” ECG segments.

In this study, for 12-leads ECGs Dataset, the point cloud
structure of sliding windows with five lengths of 1, 2, 3, 4, and 5 s
and dimensions of 120, 60, 36, 24, and 24 are established. For single-
lead ECGs Dataset, the point cloud structure of sliding windows
with five lengths of 0.1, 0.2, 0.3, 0.4, and 0.5 s and dimensions of 100,
50, 33, 25, and 20 are established. When a signal cannot meet the
length of a sliding window, we discard it. For the 12-leads dataset,
when the sliding window length is 0.1 s, the point cloud dimension
of one signal is 120, and the point cloud dimension of 12-leads
signals is 1,200. For a single-lead dataset, if the sliding window
length is 1 s, the point cloud dimension is 10. According to the
experimental results, we know that the larger the dimension of the
point cloud, the better the result. However, when the point cloud
dimension is too large, it will cause a certain amount of calculation
and time loss. Therefore, in this study, we control the size of the
sliding window to control the dimension of the two data sets within
120, which can not only maintain the accuracy of the results, but
also reduce unnecessary waste of time.

Sliding window method to construct point cloud
and VR filtration of ECG signal

At present, the application of ECG signal quality assessment
based on persistent homology is lacking. In this study, the sliding
window method is used to establish the point cloud dataset. Given
a set of time series x(x1, x2, ..., xn), construct a matrix,

x1, ..., xt

xt+1, ..., x2t

...

x(d−1)t+1, ..., xdt

 , dt ≤ n, d > 0, t > 0, n > 0
(3)

Where d is the dimension, t is the size of the sliding window, and
n is the length of the time series. At that time, a point that does not
meet the size of a window is discarded. Through experiments, the

window size is continuously adjusted to find an optimal window
size so that the classification accuracy is the best.

The process of constructing VR complex is reconstruct the
point cloud from the time series of ECG signals. Each point is
surrounded by a ball with a diameter of 2∈. During the change
of radius ∈, holes will appear and disappear. The following is an
example of intercepting a 3-s ECG signal to reconstruct the three-
dimensional scatter of the point cloud dataset to better visualize the
spatial structure of the point cloud. As shown in Figures 5A, B, the
length of the sliding window is 1 s, and the dimension is three.

SubLevel-Set filtration of ECG signal
SubLevel-Set filtering method maps time series data to its peak

and trough pairs to express information about data smoothness and
volatility. First, we model the time series of ECG signals as a graph
with multiple nodes, each connected to two neighbors (except the
ends). Then selecting α, α value is swept from −∞ to +∞, to
identify troughs and match them to peaks as it increases. When
α is swept passed a node that it identifies as a local minimum, it
saves the value of that node as the birth of that trough. The death
of a trough is given by the lowest α value. Finally, the algorithm
terminates when all node values are smaller than α. We select two
acceptable ECG signals and two unacceptable ECG signals and use
the SLS filtration method to generate persistence diagram, as shown
in Figure 5C below.

Evaluation method

We select the following evaluation indicators to obtain the
classification accuracy: sensitivity (Se), specificity (Sp), F1, accuracy
(Acc) and correction accuracy (mAcc), which are defined as follows:

Se: The number predicted to be positive and correct, the
proportion of the total number of actual positives.

Se =
TP

(TP+ FN)
× 100% (4)

Sp: The number predicted to be negative and correct, the
proportion of the total number of actual negatives.

Sp =
TN

(TN+ FP)
× 100% (5)

F1: The harmonic values of the precision rate and recall rate.

F1 =
TP

TP+ 0.5(FR+ FN)
× 100% (6)

Acc: Number of correct predictions, accounting for the total
number.

Acc=
TP+ TN

TP+ TN+ FR+ FN
× 100% (7)

mAcc
mAcc =

(Se+ Sp)
2

× 100% (8)

Among them, TP: “acceptable” signal is correctly predicted as an
“acceptable” signal by the model; TN: “unacceptable” signal is
correctly predicted as an “unacceptable” signal by the model; FP:
“unacceptable” signal is incorrectly predicted as an “acceptable”
signal by the model; FN: “acceptable” signal is predicted as an
“unacceptable” signal by the model’s signal.
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FIGURE 5

Two clean and two noisy ECG signals and its corresponding use of the sliding window method to establish three-dimensional scatter (A) and
persistence barcode (B). Persistence diagram obtained by the SLS-filtration method (C).

Results

In this study, a quality assessment method of wearable
dynamic ECG signals was proposed based on the persistent
homology method and GoogLeNet (Assari et al., 2022) method.
The performances of VR and SLS filtration were considered.
We put the 224 × 224 × 3 persistent barcode pictures or
persistent diagram pictures obtained by the persistent homology
method into GoogLeNet for classification. For VR filtration, the
influences of the sliding windows length for the point cloud
structure was also explored. Tenfold cross-validation is applied to
test classification performance. All the segments were randomly
divided into 10 groups.

Results of 12-leads ECGs dataset

Table 1 and Figure 6 displayed the results of 12-leads ECGs
Dataset. For VR filtration, the length of sliding windows was set to

1, 2, 3, 4, and 5 s, respectively. As shown inTable 1, the classification
result of SLS filtration method is the best, mAcc = 98.04%. The result
of VR filtration method with sliding window of 1 s is the relatively
high, mAcc = 95.16%. As the length of sliding windows increasing,
the classifying performances decrease. In the Figure 6, the Box-
plot and normal distribution curve of all results were given. The
boxplot shows the mean and variance of 10-fold cross-validation
results, while the normal distribution curve shows how the results
distribute.

Results of single-lead ECGs dataset

Table 2 and Figure 7 displayed the results of single-lead ECGs
Dataset. For VR filtration, the point cloud structure of sliding
windows with five lengths of 0.1, 0.2, 0.3, 0.4, and 0.5 s were
established, respectively. In the Figure 7, the Box-plot and normal
distribution curve of all results were also given. As shown in
Table 2, the experimental results for the VR filtration show that
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TABLE 1 Classification results of VR and SLS filtration methods in 12-leads ECGs Dataset.

SW = 1 s SW = 2 s SW = 3 s SW = 4 s SW = 5 s SLS

mAcc (%) 95.16± 0.20 93.11± 0.19 91.75± 0.21 90.22± 0.29 89.78± 0.26 98.04± 0.11

F1 (%) 95.60± 0.09 93.88± 0.08 92.06± 0.08 91.58± 0.18 90.85± 0.17 98.40± 0.06

Se (%) 92.02± 0.14 89.25± 0.35 85.90± 0.11 85.78± 0.23 84.41± 0.24 97.15± 0.11

Sp (%) 98.31± 0.41 96.98± 0.42 97.51± 0.43 94.67± 0.42 95.16± 0.33 98.93± 0.23

Bold values represent the data with the best results.

FIGURE 6

Boxplots of the normal distribution curves of the 10-fold cross-validation of VR and SLS filtration methods in 12-leads ECGs Dataset. For the VR
method, when the length of sliding window increases gradually, the average value of mAcc decreases gradually. The 10-fold cross-validation results
of mAcc, F1, Se, Sp are relatively concentrated. For the SLS method, the results of 10-fold cross-validation of mAcc, F1, Se, Sp are relatively scattered.
But the average value of mAcc is higher than that of VR method.

the mAcc of the point cloud dataset with a sliding window length of
0.1 s is 98.55%, and the standard deviation is 0.13%. As the length of
sliding windows increasing, the classifying performances decrease.
The mAcc of the persistence diagram obtained by SLS filtration is
97.25%, and the standard deviation is 0.39%.

Discussion

This study proposed a new signals quality assessment method
of wearable dynamic ECGs based on persistent homology method
and GoogLeNet method. This method has strong robustness
in quality assessing, which can be used for both 12-leads and
single-lead ECG signals. VR and SLS two filtration methods were
employed for persistent homology feature extraction. For the 12-
leads ECGs Dataset, SLS filtration method has the best classification
performance, mAcc = 98.04%, while for the single-lead ECGs

Dataset, the classification result of VR filtration method with sliding
window of 0.1 s is the highest, mAcc = 98.55%.

Comparison between VR filtation and
SLS filtation

In this study, VR filtration method needs to reconstruct the
time series of ECG signal, while sliding window method is used
to construct the point cloud structure of ECG signal. For 12-
leads ECGs Dataset, the sliding window lengths are 1, 2, 3, 4,
and 5 s, respectively, and the dimensions are 120, 60, 36, 24,
and 24, respectively. The results show that the sliding window
is 1 s, and the classification result is the highest. For the single-
lead ECGs Dataset, the sliding window lengths are 0.1, 0.2, 0.3,
0.4, and 0.5 s, respectively, and the dimensions are 100, 50, 33,
25, and 20, respectively. It can be seen that the classification

Frontiers in Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1153386
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1153386 March 2, 2023 Time: 15:7 # 9

Ren et al. 10.3389/fnins.2023.1153386

TABLE 2 Classification results of VR and SLS filtration methods in single-lead ECGs Dataset.

SW = 0.1 s SW = 0.2 s SW = 0.3 s SW = 0.4 s SW = 0.5 s SLS

mAcc (%) 98.55± 0.13 94.98± 0.55 94.06± 0.96 92.17± 0.76 89.76± 0.56 97.25± 0.39

F1 (%) 98.62± 0.12 95.32± 0.56 93.75± 1.73 92.51± 0.79 89.71± 1.11 97.39± 0.39

Se (%) 98.37± 0.18 95.81± 1.41 93.73± 3.13 91.93± 2.16 87.93± 2.63 97.77± 0.89

Sp (%) 98.85± 0.20 94.15± 1.14 94.24± 1.40 92.50± 1.87 91.59± 2.22 96.74± 1.13

Bold values represent the data with the best results.

FIGURE 7

Boxplots of the normal distribution curves of the 10-fold cross-validation of VR and SLS filtration methods in single-lead ECGs Dataset. For the VR
method, when the length of sliding window increases gradually, the average value of mAcc decreases gradually. The 10-fold cross-validation results
of mAcc with different sliding windows are relatively concentrated, and the results of F1, Se, Sp are relatively scattered. For the SLS method, the
10-fold cross-validation results of mAcc is relatively concentrated, while the results of F1, Se, Sp are relatively scattered. But the average value of
mAcc is slightly lower than that of VR method.

accuracy with a sliding window length of 0.1 s is the highest, the
average mAcc of the 10-fold cross-validation is as high as 98.55%.
We found that for the two datasets, the classification accuracy
decreases with the increase of window length. In this study, the
sliding window length will not continue to decrease in the two
datasets. In the 12-leads ECGs Dataset, for 12 leads signals, the
further decrease of sliding window will cause the data dimension
to be too large, which will increase the calculation cost. In the
single-lead ECGs Dataset, the sliding window length does not
continue to shrink because the classification accuracy achieves good
results when the window length is 0.1 s. Taking the single-lead
ECGs Dataset as an example, the “acceptable” and “unacceptable”
ECG signal waveforms and persistence barcode of the five sliding
window lengths are shown in Figure 8. It can be seen from the
figure that the persistent barcodes of ECG signals with different
window sizes are obviously different. As the window increases,

the persistent barcodes gradually become sparse. There are also
differences between “acceptable” and “unacceptable” ECG signals
corresponding to persistent barcode.

In this study, in the 12-leads ECGs Dataset, the classification
accuracy using the SLS filtration method is higher than the
highest accuracy using the VR filtration method; in the single-lead
ECGs Dataset, the classification accuracy using the SLS filtration
method is lower than the highest accuracy using the VR filtration
method. SLS filtration method finds the birth and death points
on the waveform of the ECG signal. The VR filtration method
uses a simple complex to reconstruct geometry to analyze the
spatial characteristics of the ECG signal time series. However, VR
filtration method depends on the construction of point cloud.
SLS filtration method is more stable. In the 12-leads ECGs
Dataset, mAcc = 98.04% and in the single-lead ECGs Dataset,
mAcc = 97.25%. From the classification results, we can see that the
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FIGURE 8

Persistence barcode pictures of “acceptable” and “unacceptable” ECG signals with five sliding window lengths of single-lead ECGs Dataset.

classification results of the two datasets based on this method are
relatively good.

Comparison with other methods

In this study, SLS method is compared with some ECG signal
quality evaluation methods in recent years, and the results are
shown in Table 3. For example, Zhao and Zhang (2018) proposed
a simple heuristic fusion and fuzzy comprehensive evaluation
method based on SQI for ECG quality evaluation, with an accuracy
rate of 94.67% on the test set. Jin et al. (2022) proposed a novel dual
attention convolution long short-term memory neural network for
ECG quality assessment, and the final classification accuracy was
94%. Shahriari et al. (2017) developed an image based ECG quality
assessment technique with an accuracy of 82.50%; Zhang et al.
(2019) conducted performance testing in ECG quality assessment
by comparing seven feature schemes composed of random forest,
SVM and its variants combined with nonlinear features, among
which least squares SVM had the highest Acc of 92.20% in test data.
Because the dataset is unbalanced, according to formula (8), we
choose the mAcc to calculate the classification results. In order to
unify the evaluation standard with other studies, we also calculate
the Acc according to formula (7).

As can be seen from Table 3, the classification result of SLS
filtration method is still the highest in the 12-leads ECGs Dataset.
However, the labeling for “acceptable” or “unacceptable” for the
whole 12 channels was not clear. In a 12-leads ECG signal, some
single-lead signals are “acceptable” and some single-lead signals
are “unacceptable.” As shown in the Figure 9. We selected an

“acceptable” and an unaccep2-leads ECG signal. From (A), we can
see that there is also obvious noise in the “acceptable” 12-leads
ECGs. From (B), We can see that in the “unacceptable” 12-leads
ECG signal, the single-lead ECG signal may be bad, but part of the
heart rate information could be calculate. Therefore, we considered
the quality evaluation of single-lead ECG signals.

For single-lead ECGs Dataset, Table 4 shows the comparison
between VR filtration method and the other four methods. The
references are as follows: reference (Liu et al., 2020) selected
26 signal quality indicators (SQI) to evaluate the quality of
ECG signals, including time domain characteristics, frequency
domain characteristics, and SQI based on QRS wave and
nonlinear characteristics. Experiments were conducted to test the
performance of a single classifier based on SQI features and
multiple classifiers based on SQI features. The total classification

TABLE 3 Performance of the presented algorithm and methods
participating in the PhysioNet/CinC Challenge.

mAcc (%) Acc (%) Se (%) Sp (%)

Kalkstein et al. (2011) 86.30 93.00 74.10 98.50

Xia et al. (2011) 89.11 85.90 95.11 83.10

Zhao and Zhang (2018) 91.67 94.67 90.33 93.00

Jin et al. (2022) 87.03 94.00 97.59 76.47

Shahriari et al. (2017) 80.80 82.50 83.90 77.70

Zhang et al. (2019) 88.02 92.20 77.94 98.09

Proposed SLS method 98.04 97.70 97.15 98.93

Se, Sp, Acc and mAcc for the 12-leads ECGs Dataset. Bold values represent the data with the
best results.
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FIGURE 9

(A) The “acceptable” 12-leads ECG signal, (B) The “unacceptable” 12-leads ECG signal.

performance of a single classifier based on GbSQI features and
the total classification performance of multiple classifiers based
on GbSQI features are obtained. For the overall classification
performance of a single GbSQI-based classifier, the QRS wave-
based SQIs had the best performance; for example, the mAcc
of bSQI_2 was (93.84 ± 1.47)% and bSQI_4 mAcc was
(93.70 ± 1.49)%. For the overall classification performance of
multiple classifiers based on GbSQI features, the effect of the
classification model was best when 14 SQIs were selected, and
the mAcc was 95.2%. Reference (Liu et al., 2018) redefined the
bSQI with any two combined QRS detectors and then extended the
redefined bSQI to the bSQI of multiple QRS detectors, represented
by GbSQI. The experimental results showed that the mAcc of the
classifier with the best combination of six QRS detectors and a
single GbSQI feature was 94.03%. The best combination of four
QRS detectors was the GbSQI feature, and the mAcc of multiple
classifiers was 94.76%. Study (Falk and Maier, 2014) proposed a
quality index of ECG signals based on modulation spectrum signal
representation, and a quality index MS-QI based on modulation
spectrum was proposed. The experimental results of the above
comparison methods are based on the original challenge data. In
order to compare the performance of the methods proposed in
this study, we selected several commonly used indicators from the
reference literature to test based on the single-lead ECG datasets
built in this study. A comparison of the results is shown in
Table 4. According to the table, the classification accuracy of the
VR filtration method is still the highest.

TABLE 4 Comparison of classification accuracy results of single-lead
ECGs Dataset four methods.

Methods mAcc (%) F1 (%) Se (%) Sp (%)

MS-QI Falk and Maier
(2014)

85.61± 1.05 85.58± 0.48 81.57± 0.73 89.66± 1.77

bSQI_2 Liu et al. (2018) 84.08± 0.75 84.85± 0.33 83.79± 0.71 84.37± 1.90

bSQI_4 Liu et al. (2018) 89.28± 0.55 89.33± 1.07 86.21± 1.49 92.36± 1.20

picaSQI Liu et al. (2020) 93.11± 0.73 93.03± 0.58 89.33± 1.11 96.90± 0.58

Proposed VR method 98.55± 0.13 98.62± 0.12 98.37± 0.18 98.85± 0.20

Bold values represent the data with the best results.

In this study, the wearable ECG signals were graded into two
groups: “acceptable” vs. “unacceptable.” However, part of wearable
ECG signals only R wave could be detected, other waves like P or ST
were drowned out by the noise, as shown in Figure 9. These signals
cannot be used for some CVDs detection, but they also cannot be
abandoned as heart rate information can be obtained. Therefore, it
is not appropriate to simply divide ECG signals into acceptable and
unacceptable. A more detailed quality evaluation grades need to be
considered in the future.

Conclusion

Cardiovascular disease poses a threat to human health, with
tens of millions of deaths worldwide every year. Its prevention and
monitoring are urgent issues. This study proposed a new signals
quality assessment method of wearable dynamic ECGs based on
persistent homology method and GoogLeNet method. This method
has strong robustness in quality assessing, which can be used
for both 12-leads and single-lead ECG signals. VR and SLS two
filtration methods were employed for persistent homology feature
extraction. The VR filtation method selected persistence barcode
to quantify the topological features, and the SLS filtation method
selected persistence diagram to quantify the topological features.
When using VR filtation method, it is necessary to reconstruct
the time series. The focus of this method is to use the sliding
window method to construct the point cloud dataset. For 12-leads
ECGs Dataset, the sliding window sizes are 0, 1, 2, 3, 4, and 5 s,
respectively, and 120, 60, 36, 24, and 24 dimensions are established,
respectively. When use the SLS filtation method, the classification
result of 12-leads ECGs Dataset is the highest, mAcc = 98.04%.
For single-lead ECGs Dataset, the sliding window sizes are 0.1,
0.2, 0.3, 0.4, and 0.5 s, respectively, and 100, 50, 33, 25, and 20
dimensions are established, respectively. The classification results
show that when the window length of VR filtration method is
0.1 s, the classification result is the highest, mAcc = 98.55%. The
results show that persistence homology method performed well
in the quality evaluation of wearable ambulatory ECG. This study
verified the feasibility of applying the persistence homology method
to wearable ECG signal quality assessment. In this study, the
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persistent homology method is still insufficient. We need the sliding
window method to find the optimal point cloud matrix. In the next
experiment, we integrate the experiment and the method to find an
optimal point cloud construction method. This study is to classify
acceptable and unacceptable ECG signals. In the next work, we will
continue to refine the classification criteria to make Wearable ECG
instruments more widely used.
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