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Introduction: Compensatory movements usually occur in stroke survivors with

hemiplegia, which is detrimental to recovery. This paper proposes a compensatory

movement detection method based on near-infrared spectroscopy (NIRS)

technology and verifies its feasibility using a machine learning algorithm. We

present a di�erential-based signal improvement (DBSI) method to enhance NIRS

signal quality and discuss its e�ect on improving detection performance.

Method: Ten healthy subjects and six stroke survivors performed three common

rehabilitation training tasks while the activation of six trunk muscles was recorded

using NIRS sensors. After data preprocessing, DBSI was applied to the NIRS signals,

and two time-domain features (mean and variance) were extracted. An SVM

algorithmwas used to test the e�ect of the NIRS signal on compensatory behavior

detection.

Results: Classification results show that NIRS signals have good performance in

compensatory detection, with accuracy rates of 97.76% in healthy subjects and

97.95% in stroke survivors. After using the DBSI method, the accuracy improved to

98.52% and 99.47%, respectively.

Discussion: Compared with other compensatory motion detection methods,

our proposed method based on NIRS technology has better classification

performance. The study highlights the potential of NIRS technology for improving

stroke rehabilitation and warrants further investigation.

KEYWORDS

compensatory movement detection, near-infrared spectroscopy, support vector

machine, rehabilitation training, di�erential based signal improvement

1. Introduction

Stroke (Kuriakose and Xiao, 2020) is a leading cause of death and disability worldwide,

with over 80% of stroke survivors suffer from upper limb motor function impairment with

great pain (Hatem et al., 2016). Rehabilitation training is a proper way to recover, but it

can be a large burden for stroke survivors. They need to adapt their movement patterns

by recruiting trunk muscles and joints to compensate for the loss of motor function (Levin

et al., 2009). While compensatory movement can significantly improve patient function in

the short term, it hinders long-term recovery of motor function and reduces the effect of

rehabilitation training (Cirstea and Levin, 2000). Therefore, detecting methods are needed

to avoid compensatory movement.
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Currently, the three most popular compensatory movement

detection methods are body-worn technology, vision sensor

technology, and motion capture systems (Wang et al., 2022).

Inertial measurement units (IMUs) and accelerometers are

commonly used in body-worn technology (Wang et al., 2017).

They are placed on a patient’s trunk, joint, shoulder, or other

areas to monitor compensatory movements. But extra motions are

needed to calibrate sensors which is quite a challenge for patients

to perform these motions (Ranganathan et al., 2017). Vision sensor

technology can picture patient motions through a camera or other

vision sensor (Remoortel et al., 2012), and a motion capture system

can obtain more accurate posture information with markers placed

on key parts of the body (Bakhti et al., 2018). Both are non-contact

technologies that remove the constraints of attached sensors (Taati

et al., 2012; Subramanian et al., 2013). However, they both require

a well-illuminated environment to obtain reliable results, and

patients are more resistant because of privacy issues (Mündermann

et al., 2006). Moreover, there are other compensatory movement

detection technologies. A pressure distribution mattress is a simple

and low-cost method that can capture a patient’s sitting posture

since different compensatory movements lead to different sitting

postures (Cai et al., 2019b).

Nevertheless, the above methods all face the same problem.

They cannot provide appropriate guidance on how to avoid

compensatory movements. A better choice is to use physiological

signals, which can directly reflect muscle functions. Surface

electromyography (sEMG) signal (Vigotsky et al., 2018) and Near-

infrared spectroscopy (NIRS) signals (Ferrari and Quaresima, 2012;

Scholkmann et al., 2014) are two commonly used physiological

signals. They both can detect the degree of activity of muscles

so therapists can better understand the patterns in which

compensatory movement occurs and flexibly guide patients to

correct them (Yang et al., 2015). Specifically, the sEMG signal

is an electrical signal that reflects a bioelectrical change during

muscle activation (Kauppi et al., 2017), while the NIRS signal is

an optical signal that reflects the hemodynamic change during

muscle activation. Compared with sEMG, NIRS is cleaner with

better resistance to electromagnetic interference. And NIRS

signal contains two types of signals, oxyhemoglobin (Hb) and

deoxyhemoglobin (HbO2), so it can reflect more information on

muscle states. For patients, Optical signals are more receptive than

electrical signals. Moreover, the NIRS signal has higher spatial

resolution (Guo et al., 2016).

TABLE 1 Details of the stroke survivors.

Subjects Sex Age BSa ASb Monthc

S1 M 56 III Left 4

S2 F 67 IV Left 1

S3 M 40 IV Left 3

S4 F 67 III Left 12

S5 M 56 IV Left 1

S6 M 37 IV Left 1

aBS, Brunnstrom scale. bAS, affected side. cMonths, time since first stroke.

The results of the sEMG signal in detecting compensatory

movement have proven its superior performance, demonstrating

that physiological signal is better than other signals (Ma et al.,

2019). NIRS signal has also been adapted to trunk and limb motion

detection, and the results showed its effectiveness (Guo et al., 2017;

Sheng et al., 2021; Stöggl and Born, 2021). However, no research has

evaluated the validity of NIRS signals in detecting compensatory

movement. Therefore, this study aims to validate the effectiveness

of the NIRS signals in detecting compensatory movements.

2. Methods

2.1. Participants

Ten healthy subjects (All Male, Age in 24 ± 2.3 years,

with no upper limb dysfunction) and six stroke survivors with

different degrees of upper limb function impairment were invited

to participate in this study. The details of the stroke survivors

were listed in Table 1. Stroke survivors were recruited during

their in-patient hospitalization at the Second Affiliated Hospital of

Nanchang University. Recruitment was done under the guidance

of an experienced rehabilitation therapist. This study was approved

by the Ethics Committee of the Second Hospital of Nanchang

University, with all the participants providing informed consent.

All the research was performed in accordance with the Declaration

of Helsinki.

The recruitment of participants follows the following criteria:

(1) Ages between 18 and 70 years; (2) within 1 year since the

first stroke. (3) the Brunnstrom Scale above level II, with upper

limb exercise ability. (4) have a good level of cognition and can

understand simple instructions. (5) the ability to maintain a sitting

position (6) with no obvious spasticity.

2.2. Experimental setup

In this experiment, participants were asked to perform three

basic rehabilitation training motions: reach-forward-to-back (FB),

reach-left-to-right (LR), and reach up-to-down (UD), as shown

in Figures 1A–C. These three motions can provide a good

exhibition of a participant’s upper limb function. Compensatory

movements will happen when participants try to accomplish these

movements. Specifically, the FB motion will compel the participant

to lean their trunk forward, which leads to lean forward (LF)

compensation, as shown in Figure 1D; the LR motion will compel

the participant to rotate their trunk, which leads to trunk rotation

(TR) compensation, as shown in Figure 1E; and the UD motion

will compel a participant to elevate their shoulder, which leads to

shoulder elevation (SE) compensation, as shown in Figure 1F.

2.2.1. NIRS acquisition system
Many muscles in the trunk are involved in movements,

and with the help of therapists, six muscles were selected to

detect compensatory movements, which are the left and right

obliquus externus abdominis (LOEA and ROEA), the left and right
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descending part of trapezius muscles (LDT and RDT), and the left

and right erector spinae (LES and RES), as shown in Figure 2A.

During rehabilitation training, the activated situation of the

six muscles was acquired through a wireless multichannel NIRS

system. The wireless NIRS system has three different wavelengths

of near-infrared light (750, 800, and 850 nm) and dual photodiodes

to offer a high precision of light intensity changes. An ambient

light cancellation circuit prevents ambient light interference to

guarantee the quality of the NIRS signal. Meanwhile, all the NIRS

data were transmitted to an upper computer through Bluetooth

and displayed in real-time, as shown in Figure 2B. The sampling

frequency of this NIRS system is 16 Hz. More detailed information

can be found in Xie et al. (2022).

2.2.2. Data collection
Since it is the first time that the NIRS signal has been used

in compensatory movement detection, before we performed the

experiments on stroke survivors, we first performed simulated

compensatory experiments on healthy subjects (Zhi et al., 2017). To

FIGURE 1

Three types of rehabilitation training motions and corresponding

compensatory movements. (A) Reach-forward-to back (FB); (B)

reach-left-to-right (LR); (C) reach-up-to-down (UD); (D) lean

forward (LF); (E) trunk rotation (TR); (F) shoulder elevation (SE).

simulate the compensatory movement of an actual stroke survivor,

an orthotic was used to restrict the range of motion of each subject’s

upper limbs, and all motions were completed under the guidance

of researchers.

The NIRS sensors were placed on the participant’s body over

the muscles mentioned above and secured with tape to prevent

them from slipping. Wait a few minutes and let the sensors adjust

the body temperature to reduce the influence of temperature drift.

Afterward, each participant was required to sit in front of a table

on an adjustable chair with no back or arm, which might restrict

the trunk and limb movement. The chair was adjusted to let the

participant lay their legs on the ground. Under the guidance of a

therapist, the subjects performed the three training motions (FB,

LR, and UD) using their lateral hand to simulate compensation

motions with the assistance of a guideway and handle, as in

Figure 1. These motions correspond to the three different kinds

of compensation: LF, TR, and SE. Each participant was required

to perform the three motions 20 times each. They could rest

for 10 s after completing one motion and 2 min after finishing

10 motions to avoid muscle fatigue. In addition, subjects were

required to perform each motion ten times with no simulation, and

these data were marked as no compensatory (NC). As for stroke

survivors, they performed the three motions using their affected

hands, the data was regarded as compensatory movements, and the

no compensatory movement data was collected using the healthy

hands. The NIRS system recorded the muscle activation data of all

subjects, which were used for further data processing.

2.3. Data processing

After data acquisition, all the data were processed using

Python (version 3.8, Python Software Foundation, Hampton,

NH), including data preprocessing, signal improvement, feature

extraction, and classification. Moreover, a sliding window with a

window size of 500 ms (eight samples) and stride size of 250 ms

(four samples) was used to extract time-domain features.

2.3.1. Data preprocessing
In the process of wireless transmission, some values may be

missed due to various interferences. Therefore, the average of four

points before a missing point was chosen as a padding value. After

FIGURE 2

The experimental setup. (A) The placement of NIRS sensors on the trunk muscles. (B) NIRS acquisition system, including Bluetooth and upper

computer.
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that, a sixth-order Butterworth lowpass filter with a 0.5 Hz cutoff

frequency was used to eliminate the interference of high-frequency

noise and heart rate. EMD decomposition was used to eliminate the

baseline drift of the raw NIRS signal.

2.3.2. NIRS signal improvement
As mentioned, the NIRS data contain two signals: Hb and

HbO2. The contraction of muscles causes different changes in Hb

and HbO2. Cui et al. (2010) found that Hb is negatively correlated

with HbO2 and proposed a correlation-based signal improvement

(CBSI) method to improve the signal quality. The CBSI method

assumes that Hb should be perfectly negatively correlated to HbO2

and ignores the identical effects onHb andHbO2. The CBSImethod

is calculated as follow:































α =
std(HbO2)

std(Hb)

TNS =
1

2
(HbO2 + α ∗ Hb)

TFS =
1

2
(HbO2 − α ∗ Hb)

(1)

where α is a constant positive factor, the true noise signal (TNS)

refers to the identical effects on Hb and HbO2, and the true

functional signal (TFS) refers to the actual functional components

that correlate to the motions.

In fact, the standard CBSI method only focuses on the TFS,

and the TNS is considered as noise. The above function is used to

maintain consistency with the DBSI method mentioned later.

However, there are two factors that cause Hb and HbO2

concentration changes: blood flow and oxygen consumption. The

former leads to a positive correlation between Hb and HbO2, while

the latter causes a negative correlation (Xie et al., 2022). Therefore, a

differential-based signal improvement (DBSI) method is proposed.











CMS =
1

2
(HbO2 +Hb)

DMS =
1

2
(HbO2 −Hb)

(2)

where the common mode signal (CMS) refers to the common

component, which represents the blood flow. The differential mode

signal (DMS) refers to the differential component representing

oxygen consumption.

To analyze the effectiveness of the two signal conversionmodes,

both methods were used to convert the original NIRS signal, and

the results are shown in Figure 3.

2.3.3. Feature extraction
When a muscle is activated or deactivated, it will take a few

seconds for the hemoglobin concentration to increase or decrease

and reach a new plateau. Meanwhile, the concentration change rate

has been positively correlated with the degree of muscle activation.

The linear fitting slope (LFS) was used to estimate the muscle

activation segment.

LFS =

∑k
i=1(xi ∗ (xi − t̄))
∑k

i=1 x
2
i − t̄2

(3)

FIGURE 3

The results of NIRS signal conversion using two methods. (A) The

original NIRS signal, including Hb and HbO2. (B) Signal conversion

based on the DBSI method, including CMS and DMS. (C) Signal

conversion based on the CBSI method, including TNS and TFS.

where k is the window size, xi is the NIRS signal, and t̄ is the mean

time value at the analysis window.

The NIRS signal segments can be divided into n segments by

the sliding window, and the LFS value LFSnm can be calculated

from each small segment. Calculated the difference between

LFSnm for one window-sized segment and LFSm for the whole

signal. If the mean value of LFSnm is approximately equal

to LFSm and not approximately equal to zero, then it can

be considered an active segment. LFSm represents the muscle

activation degree. The deactivation segment detection is the

same process.

Since the power spectrum of the NIRS signal is mainly

concentrated in the low-frequency band and the sampling

frequency is not high (Pinti et al., 2019), it is better to

select time domain features rather than frequency domain

features. After comparing and analyzing different time domain

features and considering the characteristics of the NIRS signal,

two commonly used time domain features are selected: the

mean value (MEA) and standard deviation (STD) of the

NIRS sensors. The MEA can reflect the relative hemoglobin

concentration change, and the STD reflects the stationary
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FIGURE 4

Confusion matrix of the compensatory movement detection based on NIRS signal. (A) Healthy participants; (B) stroke survivors. NC, no

compensatory; LF, lean-forward; TR, trunk rotation; SE, shoulder elevation.

hemoglobin concentration.

{

MEA = 1
k

∑k
i=1 xi

STD = 1
k

∑k
i=1(xi −MEA)2

(4)

2.3.4. Classification
To comprehensively evaluate the performance of the NIRS

signal in compensatory movement detection, a support vector

machine (SVM) was used for classification (Cortes and Vapnik,

1995). SVM is a widely used classification algorithm that constructs

a hyperplane to maximize different labels. Since the hyperplane

is only related to the support vectors on the boundary, SVM has

a very small model size and high stability, which is suitable for

small sample detection. Moreover, the introduction of a kernel

function enables an SVM to address high-dimensional data. The

segmentation principle is to maximize the interval and finally

transform it into a convex quadratic programming problem (Noble,

2006), expressed as:







min
1

2
‖ω‖2

s.t.yi(ω
T
xi + b)− 1 ≥ 0, i = 1, 2, . . . ,N

(5)

where xi is the feature vector, yi is the sample label, and (ω, b) is the

hyperplane parameter.

Since SVM can only realize a two-label classification, a one-

versus-one strategy (Hsu and Lin, 2002) was used for this four-label

classification (LF, TR, SE, NC), which was achieved through the

LIBSVM package (Chang and Lin, 2011). The Gaussian radial basis

function (RBF) was used as the kernel function, and the penalty

factor C was set as 0.3.

At last, the dataset size of healthy subjects was 11,505, and

the dataset size of stroke survivors was 5,652. The experiment

has six NIRS sensors, each sensor can obtain two signals: Hb

and HbO2, and each signals can extract two features, so the

samples have 24 features. Tenfold cross-validation was used to

assess classifier performance. After normalization, all the data were

randomly and equally divided into ten parts. For each iteration,

one of the ten parts was selected with no repetition as the testing

dataset, and the rest were used as the training dataset. The final

result was the average accuracy of the ten times cross-validation.

Finally, a confusion matrix was used to evaluate the performance

of the model by intuitively showing the relationship between the

predicted and true values.

3. Results

The results of the SVM classification based on the NIRS

signal in detecting compensatory movement were evaluated using

a confusion matrix, as shown in Figure 4. The confusion matrix

represents the classification results for healthy subjects and stroke

survivors. For healthy subjects, the classification accuracy for this

validation was 97.74%, with the majority of misclassified samples

belonging to the NC and TR categories. Similarly, for stroke

survivors, the classification accuracy for this validation was 97.52%,

with only a small number of misclassified samples in each category.

The classification performance of the SVM classifier in

detecting compensatory movements by using different types of

signals on healthy subjects and stroke survivors was shown

in Figure 5. The results showed good performance, with the

classification accuracy for healthy subjects (97.76%) slightly lower

than that for stroke survivors (97.95%) based on the original

NIRS signal. After applying signal improvement methods, the

classification accuracy for both healthy and stroke subjects was

improved, with the accuracy for healthy subjects (98.52%) still

lower than that for stroke survivors (99.56%). Comparing the two

signal improvement methods, CBSI and DBSI, it can be found

that the effects of the two were similar. However, compared with

the standard CBSI method, namely the TFS signal, the DBSI

method (99.47%) was significantly better than TFS (95.88%). When

comparing the two components of the DBSI signal, the accuracy of

CMS (98.85%) was higher than that of DMS (96.14%).

Precision, recall, and F1-score are indicators used to measure

the classification performance of the SVM classifier on four types of
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FIGURE 5

The classification accuracy of the SVM classifier in detecting

compensatory movement by using di�erent types of signals on

healthy and stroke subjects.

TABLE 2 Classification performance of the SVM classifier in recognizing

four di�erent compensatory categories of healthy and stroke subjects

using the DBSI method.

NC LF TR SE

Healthy Precision 98.64 99.57 95.66 99.96

Recall 97.28 100 98.06 99.37

F1-score 97.95 99.79 96.83 99.66

Stroke Precision 99.72 99.25 99.64 99.17

Recall 99.88 99.77 99.48 98.58

F1-score 99.80 99.51 99.56 98.87

compensatory categories, including NC, LF, TR, and SE. Precision

refers to how many predicted samples are accurate; Recall refers

to how many true samples are predicted correctly; the F1 score is

a comprehensive index, which is the harmonic mean of precision

and recall. Table 2 listed the performance of the SVM classifier in

recognizing the four categories of healthy and stroke subjects using

DBSI signals. For healthy subjects, the best accuracy performance

was achieved on the LF label (F1-score = 99.79%), followed by

SE (F1-score = 99.66%), NC (F1-score = 97.95%), and TR (F1-

score = 96.83%). For stroke survivors, NC, LF, and TR labels

obtained excellent classification performance with F1-score higher

than 99.5%, and the F1-score of the SE label was 98.87%.

Based on the superior classification accuracy of the CMS signal

shown in Figure 5, the mean value of the CMS signal activation

segment in the six muscles for stroke survivors during three

reaching tasks using the healthy and affected hand was calculated

and depicted in the box diagram, as shown in Figure 6. The prefix

E and O in the abscissa indicate the executing and opposite sides

related to the executing hand. For the affected hand, the executing

side was the left hand, and the opposite was the right. For the

healthy side, the executive side was the right hand, and the opposite

side was the left hand. The size of the box in the activation signal

FIGURE 6

The mean value of CMS signal on six muscles, including two OEAs,

two ESs, and two DTs. (A) The forward and back (FB) motion. (B) The

left and right (LR) motion. (C) The up and down (UD) motion.

box plot represents the dispersion of the signal, and it was found

to be smaller when using the healthy hand for stroke survivors,

indicating that they were able to complete the tasks more easily

using their healthy hand. The distance of the box from the baseline

of 0 represents the intensity of the activation signal, with a greater

distance indicating a higher level of activation.

In the case of the FB motion, the primary compensatory

muscle was found to be E-OEA for both the affected and healthy

hands, while O-OEA and O-DT showed different performances,

as shown in Figure 6A. In the case of the LR motion, the primary

compensatory muscle was E-OEA, with E-DT showing different

performances, as shown in Figure 6B. For the UD motion, the

primary compensatory muscles were E-DT and E-ES, while O-ES

showed different performances, as shown in Figure 6C.

4. Discussion

In this paper, we propose a novel method for detecting

compensatory movements based on NIRS signals, using six trunk
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TABLE 3 The compensatory detection performance among di�erent

methods.

Method Model F1-score

Healthy (%) Stroke (%)

Accelerometer

(Ranganathan et al., 2017)

Byers 88.6 –

Vision (Lin et al., 2021) 1D-CNN – 97.5

Pressure (Cai et al.,

2019a,b)

SVM 90.5 98.1

sEMG (Ma et al., 2019;

Chen et al., 2021)

SVM 95.5 95

NIRS SVM 98.5 99.4

muscles to verify the type of compensatory pattern. The NIRS

signal contains two components, Hb and HbO2, which reflect

the changes in oxygen content during muscle contraction. Two

commonly used time-domain features: mean value and variance,

were extracted from the active segments of each channel and each

component. An SVM algorithm was used for a four-classification

model, including no compensatory (NC) movement and three

simulated compensatory movements (LF, TR, and SE). Ten healthy

subjects and six stroke survivors were recruited to train and test the

model separately, which achieved good classification performance.

Furthermore, a differential-based signal improvement (DBSI)

method was proposed to enhance the performance of this model.

Table 3 presents the detection performance of different

compensatory movement detection methods. Although several

factors can affect the detection result, such as the differences in

subjects and models used, the NIRS method proposed in this

study achieved the highest detection performance in both healthy

subjects and stroke survivors, with F1-scores of 98.5 and 99.4%,

respectively. This indicates the effectiveness of the NIRS technique

in compensatory movement detection. In addition, in the pressure

and NIRS method, the detection precision in stroke survivors was

higher than in healthy subjects, while it was the opposite in the

sEMG method. This may be due to the different BS level among

stroke survivors. Subjects with a higher BS level could perform

the reaching tasks. As for the subjects with lower BS level, they

would produce a more complex compensatory behavior, which

reduced the detection performance in stroke survivors. Conversely,

for healthy subjects, the detection accuracy was related to the

quality of their simulation compensatory movement, which cannot

perfectly mimic real stroke survivors, leading to reduced detection

performance in healthy subjects.

During muscle activation, the NIRS signal was primarily

influenced by the changes of blood flow and oxygen consumption.

The signal improvement method proposed in this paper, DBSI,

could separate these two factors from the original NIRS signal,

leading to improved signal quality and a 1.5% increase in detection

performance. Further analysis revealed that blood flow were more

sensitive than oxygen consumption in compensatory detection,

as shown in Figure 5. On the other hand, the CBSI method is

commonly used in fNIRS signal analysis, which mainly focuses

on oxygen consumption and treats blood flow changes as noise.

Therefore, the DBSI method is more suitable for muscle NIRS

signal detection, providing a more comprehensive understanding

of muscle state changes.

As a direct detectionmethod, theNIRS technique could provide

a specific understanding of which muscles were involved in the

compensatory movement and clear guidance to therapists and

patients on how to avoid compensatory. As shown in Figure 6,

E-OEA was mainly activated in FB and LF motions; E-DT and

E-ES were mainly activated during UD action. The three opposite

side muscles, O-OEA, O-DT, and O-ES, were slightly activated

during the arrival motions, indicating that the opposite side

muscles also played a certain auxiliary role in compensatory

movement detection.

This study also has some limitations. The number of subjects

recruited in this study was insufficient, and their BS level was

relatively good, which might be the factor that resulted in the high

measurement accuracy. The arrival tasks and compensation mode

in this paper were also relatively simple. In the actual scenario,

the compensatory pattern of stroke survivors could be more

complex, which puts higher requirements on detection techniques

and methods. In order to better adapt to compensatory detection

in real scenarios, more stroke survivors with different BS levels

will be recruited in future work. What’s more, a compensatory

detection model with a better detection effect and higher accuracy

will be built. At the same time, a multi-source data fusion

approach, such as combining NIRS with sEMG, can also be tried

to combine the advantages of different types of signals to improve

classification performance.

5. Conclusion

The main purpose of this study was to develop a simple,

effective, and accurate compensatory movement detection method.

NIRS technology can detect changes in near-infrared light

attenuation to determine the state of muscles. An accurate

and effective compensatory movement detection method can be

achieved by monitoring specific muscles in real time, which can

help subjects realize better guidance on how to avoid compensatory

movements. A differential-based signal improvement method was

applied to improve the signal quality. An SVM algorithm was used

to classify and predict the no compensatory (NC) movement and

three commonly used compensatory movements, including lean-

forward (LF), trunk rotation (TR), and shoulder elevation (SE),

of healthy subjects and stroke survivors. The experimental results

showed that the NIRS signal was superior to other methods in

compensation movement detection, and its classification accuracy

reached 98.52% in healthy subjects and 99.47% in stroke survivors.

In future studies, we will continue to explore the effects of

NIRS techniques on compensatory movement detection in stroke

survivors suffering from hemiplegia and optimize the methods to

accommodate more complex true compensatory behavior.
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