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Editorial on the Research Topic

Current advances inmultimodal human brain imaging and analysis across

the lifespan: From mapping to state prediction

In preclinical animal models, researchers can, within the same thin slice of tissue, probe
activity within neurons [e.g., immediate early gene protein products (Mcreynolds et al.,
2018; Aparicio et al., 2022)], examine neurons’ projections and/or synaptic innervations
[e.g., tract or viral tracing (Card and Enquist, 1999; Saleeba et al., 2019)] and determine
neurochemical phenotypes [e.g., immunohistochemistry (Magaki et al., 2019)]. Great
mechanistic specificity can be achieved with preclinical approaches. In understanding the
human brain, neuroimaging affords researchers the opportunity to noninvasively probe
brain structure, function and connectivity, but is not without limitations. For example, the
blood oxygen level-dependent (BOLD) signal in functional magnetic resonance imaging
(fMRI) is a proxy for neural activation based on the displacement of deoxygenated by
oxygenated hemoglobin and is not, itself, neural activity (Huettel et al., 2009). Further,
diffusion-weighted imaging (DWI) and derived tractography provide inferences of white
matter structure based on the diffusion of water molecules restricted by neural components
and do not represent specific neuronal targets or synaptic innervations. Thus, interpretation
of neuroimaging findings is greatly enhanced by known neuroanatomical and functional
literature from preclinical models, and efforts to find convergence across these approaches
are highly important (e.g., Folloni et al., 2019; Haber et al., 2021). Similarly, a consensus
between anatomical techniques in preclinical models or post-mortem human brain (e.g.,
blunt and/or fiber dissection) and neuroimaging (e.g., tractography) is also significant (Wu
et al., 2016; Oler et al., 2017; Pascalau et al., 2018).

Despite limitations of neuroimaging, there is great potential to leverage the advantages
of, and integrate distinct neuroimaging modalities to achieve a broader picture of neural
dynamics and a greater mechanistic understanding of myriad developmental, affective,
cognitive and clinical issues. Distinct neuroimaging modalities may reveal relationships
with different dimensions of early experience providing insights into neurodevelopment.
For example, diffusion spectrum imaging revealed opposing relationships of childhood
threat (i.e., abuse and traumatic events) and deprivation (i.e., socioeconomic) on stria
terminalis white matter (Banihashemi et al., 2021b). Further, resting-state functional
connectivity revealed relationships between traumatic events and central visceral network
connectivity (Banihashemi et al., 2022), while stressor-evoked activity revealed relationships
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primarily with childhood socioeconomic deprivation (Banihashemi
et al., 2021a). Clinically, multimodal neuroimaging can perhaps
provide earlier or more accurate detection of psychopathology (Lei
et al., 2020; Vai et al., 2020).

Brain structure (e.g., white matter microstructure) and function
(e.g., resting-state functional connectivity) have a reciprocal
relationship that facilitates global and integrative brain processes
(Sporns et al., 2000, 2004; Honey et al., 2007; Zhu et al., 2014;
Lv et al., 2023). Thus, multimodal neuroimaging research can
better capture integrated neural mechanisms underlying complex
processes. New resources, tools and methods have been developed
to examine multimodal neuroimaging data (Paquola et al., 2021;
Cruces et al., 2022; Fortel et al., 2022). For instance, Nozais
et al. examined the joint contribution of white and gray matter
to large-scale resting-state networks elucidating the structural
interconnections and pathways of communication that yield
functional connectivity at rest (Nozais et al., 2022).

In this current Research Topic, authors demonstrated the
breadth of how multimodal neuroimaging can surpass unimodal
neuroimaging across developmental, clinical and methodological
domains. Zhang et al. addressed neurodevelopment as it relates
to the preterm infant brain by using a novel fusion framework
combining functional and structural data. They integrated
canonical correlation analysis and locality preserving projection to
examine relationships between multimodal connections (fMRI and
DWI) and found connection features that distinguish preterm and
term-born infants. Their approach revealed novel insights into the
global manner in which preterm birth impacts neurodevelopment,
identifying local intra-network functional connections and long-
range inter-network structural connections that differentiate
between pre-term and term-born infant brains.

Zhu et al. presented new methodology featuring brain
network construction under a unified framework of joint
fMRI and DWI (i.e., functional and structural connectivity).
Their method considered relationships between multiple brain
regions and a PageRank algorithm that extracts significant node
information from the unified network. Zhu et al. applied their
method to a clinical problem—classifying epilepsy diagnoses,
comparing normal controls (NC), frontal lobe epilepsy (FLE)
and temporal lobe epilepsy (TLE). Their methods achieved the
highest classification accuracy compared to unimodal methods
when classifying against NC and achieved among the highest
accuracies when classifying FLE v. TLE.

Tang et al. developed a new interpretable hierarchical graph
representation learning framework for brain network regression
analysis using multimodal MRI data. They used this approach to
predict a variety of affective, somatic, cognitive and behavioral
measures and found that the proposed framework achieved the best
performance compared to baseline methods; this was attributed
to extraction of graph local structures as low-level features and
preservation of these into high-level space hierarchically.

Sun et al. developed new methods that capitalize on
synergies between PET and DWI data, using DWI-derived
structural connectivity and PET intensity to denoise PET
images. Their CONNectome-based Non-Local Means (CONN-
NLM) filter provides more informative denoising by weighting
similar-intensity PET voxels and highly connected voxels more
heavily. This yielded greater PET image quality and lesion contrasts

and produced superior denoising effects compared to filters not
utilizing DWI data.

Finally, Babaeeghazvini et al. reviewed the convergence of
structure and function with associations between white matter
microstructure and electro-encephalography (EEG). They note
that white matter microstructure may influence the velocity of
communication between brain regions and across hemispheres,
and that amplitudes and latencies of event-related potential
components may reflect pathological differences in structure;
yet, the diversity of findings calls for more standardization of
EEG analysis.

To conclude, the field would benefit significantly from effective
use of multimodal approaches in the methods development space
and in basic, clinical and translational research. This requires open
science and enhanced accessibility of tools that process and analyze
multimodal neuroimaging data. Future directions can include
enhanced integration of “neurochemical” imaging modalities (e.g.,
MR-spectroscopy) with structural and functional modalities. The
reports highlighted in this topic are an excellent demonstration
of how multimodal approaches can improve methodologies,
predictive power and clinical classification abilities to ultimately
identify neural markers of psychopathology risk and guide more
targeted treatments.
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