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Sepsis-associated encephalopathy (SAE) refers to diffuse brain dysfunction 
secondary to systemic infection without central nervous system infection. The 
early diagnosis of SAE remains a major clinical problem, and its diagnosis is still 
exclusionary. Magnetic resonance imaging (MRI) related techniques, such as 
magnetic resonance spectroscopy (MRS), molecular MRI (mMRI), arterial spin-
labeling (ASL), fluid-attenuated inversion recovery (FLAIR), and diffusion-weighted 
imaging (DWI), currently provide new options for the early identification of SAE. 
This review collected clinical and basic research and case reports related to SAE 
and MRI-related techniques in recent years, summarized and analyzed the basic 
principles and applications of MRI technology in diagnosing SAE, and provided a 
basis for diagnosing SAE by MRI-related techniques.
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1. Introduction

Sepsis is one of the major diseases that seriously endanger human health. Of 48.9 million 
sepsis patients, about 11 million died in 2017 worldwide, accounting for 19.7% of the total global 
deaths in that year (Schuler, 2018). Therefore, sepsis is the focus of scholars’ attention. The brain 
is an important target organ of sepsis, and sepsis-associated encephalopathy (SAE) can lead to 
multiple neurological dysfunctions and increase the mortality rate in septic patients (Schuler, 
2018; Mazeraud et al., 2020). An international survey (Prescott and Angus, 2018) shows a 3-fold 
increase in prevalence of moderate to severe cognitive impairment (from 6.1% before 
hospitalization to 16.7% after hospitalization). Meanwhile, sepsis survivors have typical 
psychiatric disorders, manifesting as depression, anxiety, and post-traumatic stress disorder 
(PTSD), with incidences of 67%, 49%, and 46% within 24 h of intensive care unit (ICU) 
discharge, respectively (Calsavara et al., 2021). Cognitive function and mental impairment after 
sepsis seriously affect the health status and quality of life of sepsis survivors and cause great 
damage to society, families, and individual patients. Therefore, early interventions and 
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identification of SAE can effectively reduce the incidence of sepsis-
related neurological dysfunction and improve clinical prognosis.

Currently, the commonly used clinical examination methods, 
including computed tomography (CT), electroencephalography 
(EEG), and biomarkers, play a role in diagnosing SAE, but there 
are also some limitations. For example, most current neuroimaging 
studies involving SAE have shortcomings such as small sample 
size, poor research design, improper measurement methods, or 
failure to consider confounding variables, which need further 
investigation (Atterton et al., 2020). Global white matter changes 
on CT are detected in adult SAE, but CT cannot detect early 
microscopic lesions in the brain of SAE patients (Stubbs et al., 
2013). EEG has been used alone to evaluate the EEG activity in 
septic patients (Pantzaris et  al., 2021), but it is not suitable for 
screening because of the expertise required for its interpretation. 
Also, EEG cannot reliably assess fluctuations in the SAE course 
(Atterton et al., 2020). Studies have shown that biomarkers are of 
limited value in SAE because the development of SAE is not 
preceded by biomarker changes and cannot be used to predict the 
risk of SAE (Simons et  al., 2018). Thus far, reliable and easily 
identifiable biomarkers that are also cost-effective have not been 
identified (Toft et al., 2019). A growing number of studies have 
found that magnetic resonance imaging (MRI) related techniques 
play a major role in diagnosing SAE. Studies have found that up to 
70% of patients with clinically confirmed SAE may have abnormal 
MRI manifestations, including ischemia, leukoencephalopathy, 
angioedema, and cerebral atrophy. However, there is still a lack of 
systematic reports on the application and value of MRI-related 
techniques in diagnosing SAE.

Therefore, this review collected the clinical and basic research and 
case reports related to SAE and MRI-related techniques in recent years 
and summarized the current status and prospect of MRI-related 
techniques application in SAE diagnosis to provide more research 
basis for diagnosing SAE by MRI-related techniques.

2. Sepsis-associated encephalopathy

Sepsis-associated encephalopathy is one of the important 
encephalopathies demanding greater attention in the ICU. The 
incidence of SAE in septic patients is about 70%, and the related 

mortality rate is 56.1% compared with 35.1% mortality in septic 
patients without SAE (Zhao et al., 2021). SAE survivors exhibit long-
term or permanent neurological dysfunction after discharge, including 
abnormal emotional behavior and cognitive dysfunction, significantly 
reducing their quality of life, affecting their recovery, and even causing 
premature death (Feng et al., 2019).

Sepsis-associated encephalopathy pathogenesis is complex. It is 
currently believed that various pathophysiological mechanisms, such 
as blood–brain barrier (BBB) dysfunction, oxidative stress, 
mitochondrial dysfunction, neuroinflammation, and apoptosis, 
contribute to SAE development, which severely affects the survival 
and long-term prognosis of patients with sepsis (Zhao et al., 2021).

In sepsis, cerebrovascular endothelial cells, activated by 
endotoxins and cytokines, synthesize and release reactive oxygen 
species (ROS), nitric oxide (NO), and pro-inflammatory factors, 
resulting in increased BBB permeability and vasogenic brain 
edema. Inflammatory mediators in the peripheral blood enter the 
brain and promote neuronal injury and brain edema (Yang et al., 
2022). Neuro-oxidative stress plays an important role in sepsis. 
The imbalance between ROS and antioxidant enzymes in sepsis 
stimulates a series of lipid peroxidation reactions that inhibit the 
antioxidant cycle in cells. Oxidative stress leads to mitochondrial 
dysfunction by altering mitochondrial potentials or electron 
transport chain activity, causing neuronal apoptosis and organ 
failure (Gu et al., 2021). Whether it involves BBB destruction or 
oxidative stress, it ultimately leads to a neuroinflammatory 
response. The neuroinflammatory response is also one of the 
pathophysiological mechanisms of SAE that plays a key role in 
neuronal apoptosis and cognitive impairment. Systemic 
inflammation produces pro-inflammatory cytokines in the brain 
and promotes microglia activation, leading to neuroinflammation 
and, ultimately, neuronal apoptosis in vulnerable brain regions 
(Catarina et al., 2021).

Although scholars have conducted a series of studies on SAE 
pathogenesis and acquired some findings, the early diagnosis of 
SAE is still a major clinical problem, which remains an 
exclusionary diagnosis (Dumbuya et  al., 2023). The clinical 
manifestations of SAE range from mild consciousness disorders 
to delirium, deep coma, or seizures and cognitive and emotional 
dysfunction (Stubbs et  al., 2013; Gao and Hernandes, 2021). 
However, the above-mentioned clinical features are not specific. 
Commonly used diagnostic techniques include EEG, biomarkers, 
and cranial CT, which have a limited role in SAE patients with 
certain presentations. Therefore, it is often necessary to 
comprehensively analyze clinical symptoms, abnormal 
manifestations of neuroimaging, and biomarkers. Then, 
excluding other neurological diseases before diagnosing SAE is 
required. Currently, there is no specific treatment for SAE, and 
the latest Surviving Sepsis Campaign guideline has recommended 
early source control, administration of appropriate antimicrobial 
drugs, and maintenance of end-organ perfusion. The 
recommended treatment for SAE includes strengthening sleep 
management, reducing sound and light stimulation, early activity 
and exercise, strengthening communication between patients and 
families, medical staff, and the outside world, and avoiding using 
benzodiazepine sedatives (Atterton et  al., 2020). Therefore, 
we urgently need to find more effective ways to diagnose and 
treat SAE early to solve the current diagnostic dilemma.

Abbreviations: SAE, sepsis-associated encephalopathy; MRI, magnetic resonance 

imaging; MRS, magnetic resonance spectroscopy; mMRI, molecular magnetic 

resonance imaging; ASL, arterial spin-labeling; FLAIR, fluid-attenuated inversion 
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change percentage; CBF, cerebral blood flow; CSF, cerebral spinal fluid; WMH, 

white matter hyperintensity; ADC, apparent diffusion coefficient; fMRI, functional 

MRI; rs-fMRI, resting-state fMRI; DTI, diffusion tensor imaging; FC, functional 

connectivity; DMN, default-mode network; BOLD, blood oxygenation level-

dependent; T1WI, T1 weighted image; ALFF, amplitude of low frequency 

fluctuations.

https://doi.org/10.3389/fnins.2023.1152630
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wu et al. 10.3389/fnins.2023.1152630

Frontiers in Neuroscience 03 frontiersin.org

3. Principles and applications of 
MRI-related techniques in SAE 
diagnosis

3.1. Magnetic resonance spectroscopy

Magnetic resonance spectroscopy uses MR principles to 
noninvasively quantify metabolite levels in interested tissues. The 
signal in MRS is generated by applying a specific resonant 
radiofrequency to atomic nuclei (e.g., 1H) in a static magnetic field. 
The unique chemical property and environment result in unique 
proton resonance frequency and peak shape for each metabolite 
(Pasanta et al., 2021).

Magnetic resonance spectroscopy can be used to identify changes 
in more than 20 metabolic compounds in brain injury areas (Bartnik-
Olson et al., 2021). The relative levels of N-acetyl aspartate (NAA), 
creatine (Cr), and choline (CHO) are particularly associated with 
SAE. NAA is a sign of complete metabolic function in neuronal 
mitochondria. High NAA concentrations in healthy neurons reflect 
neuronal density. A decrease in NAA level indicates neuronal loss or 
dysfunction and predicts the onset of neuronal injury (Bartnik-Olson 
et al., 2021). Cr is composed of phosphocreatine and its free precursor, 
which is related to brain energy metabolism (Bartnik-Olson et al., 
2021). Due to mitochondrial dysfunction in sepsis patients 
(Manfredini et  al., 2019), abnormal brain energy metabolism can 
affect Cr levels. Increased CHO is associated with membrane 
synthesis, increased cell numbers, and repair of neuronal damage 
(Wen et  al., 2017). Conversely, the decrease in CHO levels can 
indirectly predict cell death. Thus, all three metabolic compounds are 
markers of neuronal apoptosis, which is an important 
pathophysiological mechanism leading to SAE. After neuronal 
apoptosis due to mitochondrial dysfunction, insufficient production 
of adenosine triphosphate (ATP), impaired brain metabolism, cell 
membrane cleavage, and other pathological processes, the levels of 
NAA, Cr, and CHO and their mutual ratio are changed. Apart from 
that, Myo-inositol (mI) indicated microglial-induced 
neuroinflammation in the brain (El-Abtah et al., 2022). As mentioned 
previously, systemic inflammation produces pro-inflammatory 
cytokines in the brain and promotes microglia activation, leading to 
neuroinflammation and, ultimately, neuronal apoptosis in vulnerable 
brain regions (Catarina et al., 2021).

Wen et  al. (2017) have found that the NAA/Cr ratio was 
significantly decreased in the SAE group by MRS, and the NAA/Cr 
ratio correlated well with the apoptosis rate in brain tissue with a 
absolute value of r-value as high as 0.925. Bozza et al. (2010) have 
reported an approximately 40% reduction in the NAA/CHO ratio in 
SAE animals 6 h after cecum ligation and puncture (CLP) compared 
with the control group. Towner et al. (2018) have found that the ratio 
of NAA/CHO, and Cr/CHO in the brain of SAE rats significantly 
decreased at different periods. However, in SAE animal models, the 
metabolite ratio did not significantly decrease at 24 h after 
lipopolysaccharide (LPS) injection. This apparent difference might 
be the result of different experimental models. Li et al. (2022) have 
found that NAA/Cho ratio in SAE animals decreased at both 7 and 
14 days after CLP surgery, which is consistent with previous findings. 
In addition to this, mI/Cr and Glx/Crb ratios were significantly 
increased on days 7 and 14 after CLP. It has been shown that mI can 
cause neuroglial cell differentiation and the elevation of mI/Cr ratio is 

often interpreted as a reflection of neuroglial cell activation (Schnider 
et al., 2020); the elevation of Glx/Crb can be interpreted as hippocampal 
osmotic dysregulation and astrocyte swelling (Karczewska-Kupczewska 
et al., 2018). This suggests that mI/Cr and Glx/Cr ratios are important 
biomarkers in the CLP-induced SAE rat model (Li et al., 2022) and that 
MRS can be used for early diagnosis of SAE.

Therefore, MRS can timely respond to the status of neuronal 
damage by monitoring level changes of metabolites in the brain tissues 
of sepsis patients. Thus, we can diagnose SAE at an early stage. At 
present, MRS is more frequently used in basic research but has not 
been applied in clinical diagnosis on a large scale. However, in terms 
of the high correlation between the NAA/Cr ratio and neuronal 
apoptosis obtained from animal studies, MRS is a powerful tool for 
future diagnosis of SAE.

3.2. Molecular magnetic resonance 
imaging

Free radicals in SAE patients may be detected by combining the 
immuno-spin trapping (IST) technique with mMRI (Towner et al., 
2018). A spin-trapping compound, 5,5-dimethyl-pyrroline-N-oxide 
(DMPO), is used to trap and stabilize free radicals generated during 
oxidative stress. An anti-DMPO probe, is also used. The anti-DMPO 
probe normally does not permeate BBB and cannot be visualized in 
the brain tissue. In SAE, the intravenously injected anti-DMPO probe 
can permeate the brain tissue for visualization due to BBB disruption. 
Anti-DMPO probes can bind antibodies against DMPO radical 
adducts and MRI contrast agents, and a contrast agent (Gd-DTPA), 
as a component of MRI signal transduction, can increase the signal 
intensity of MRI (Mason, 2016; Towner et  al., 2018), which can 
ultimately target free radicals in brain tissue (Towner and Smith, 2018).

Oxidative stress is one of the important pathophysiological 
mechanisms of SAE, and free radicals are important products of the 
oxidative stress response in sepsis. In animal models of SAE, oxidative 
stress response exists in different brain regions, and excessive ROS are 
detected in different brain tissue, inducing ultrastructural damage to 
the mitochondria, mitochondrial dysfunction and brain injury 
(Catalao et al., 2017; Wu et al., 2019). Therefore, the detection of free 
radical concentration in the brain using free radical-targeted mMRI 
has contributed to the early inference of oxidative stress response and 
mitochondrial dysfunction. Meanwhile, the diffusion and distribution 
of free radicals in the brain can be clearly and intuitively observed by 
detecting the anti-DMPO probe, which helps clarify the disturbance 
of BBB in the brain. In summary, mMRI is an important technique for 
the early diagnosis of SAE.

Towner et al. (2013) have shown that the levels of free radicals 
were increased in the brain, liver, and lungs of sepsis rats by mMRI. A 
follow-up study has demonstrated that mMRI revealed a significant 
increase in the level of free radicals trapped in SAE rats’ brains at 24 h 
and 1 week after LPS injection compared to the control group (Towner 
et al., 2018). All these results emphasize that the levels of free radicals 
and ROS are altered in SAE patients. On the other hand, Towner has 
found that in the control group, intact BBB in normal mice did not 
allow probes to enter brain tissue, but in the brain of SAE mice, the 
anti-DMPO probes were distributed diffusely. It is inferred that the 
areas of increased mMRI signal can localize the site of brain injury and 
determine its severity.
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To sum up, free radical-targeted mMRI is a non-invasive way to 
detect free radical levels in the patient’s brain through MRI signal 
intensity percentage (SI%) and T1 change percentage (%T1). It can 
determine impaired mitochondrial function, as well as assist in 
judging increased BBB permeability and localizing areas of brain 
damage, as a way to diagnose the onset of SAE. Although the above-
mentioned studies only involved animal experiments, with the gradual 
maturity of mMRI technology, clinical applications are also in further 
development. Besides, mMRI can also play a significant role in drug 
and post-intervention curative effect research, providing a 
breakthrough to understanding SAE pathogenesis, early diagnosis of 
SAE, and post-intervention efficacy assessment through 
imaging technology.

3.3. Arterial spin-labeling

Arterial spin-labeling is an MRI technique that uses arterial blood 
as an endogenous tracer to noninvasively visualize blood flow (Muir, 
2018). The most common use of ASL is brain perfusion imaging. The 
blood is labeled before entering the brain through the carotid and 
vertebral arteries, reducing blood magnetization intensity in the brain. 
As a result, the images collected downstream of the marker positions 
appear slightly darker. The difference obtained by subtracting the 
labeled image from the control is approximately proportional to the 
perfusion rate and volume of blood entering the brain since the marker 
can be calculated (Hernandez-Garcia et al., 2019). Since the signal of 
magnetically labeled blood decays relatively quickly, physicians can 
perform multiple blood flow measurements using ASL, allowing 
dynamic measurements or averaging multiple results to improve the 
signal-to-noise ratio (Muir, 2018).

Arterial spin-labeling can be used to monitor changes in cerebral 
blood perfusion in real time, which is a key mechanism in SAE 
development. In sepsis, the decrease in cerebral perfusion may 
be  induced by neuroinflammatory responses, hypocapnia, and 
endothelial dysfunction. Abnormal cerebrovascular self-regulation 
mechanism leads to secondary ischemia and hypoxia injury, 
subsequently causing brain cell dysfunction and poor neural recovery. 
Additionally, sedatives can also alter cerebrovascular reactivity and 
significantly reduce cerebral blood flow (CBF; Fabio Silvio Taccone 
SSFF, 2013). Therefore, ASL helps physicians monitor the CBF of 
septic patients in real time, detect the decrease in perfusion, cerebral 
ischemia, and hypoxia injury in the early stage, and judge the integrity 
of cerebrovascular self-regulation mechanisms for early 
diagnosis of SAE.

A study has found that the ASL results showed that the CBF in the 
cerebral cortex of rats in the SAE group increased and then 
significantly decreased over time compared to the control group, but 
the CBF in the thalamus significantly increased, while the CBF in the 
hippocampus significantly decreased 6 weeks after LPS exposure 
(Towner et al., 2018). The ASL results of another study have shown 
that the blood flow distribution in the cerebral cortex was significantly 
reduced in the SAE group compared with the sham surgery group, but 
there was no change in other regions (Griton et al., 2020). Another 
study has confirmed that ASL results showed that the CBF of 
vasopressor-dependent patients with sepsis was 62% higher than that 
of the control group when mean arterial pressure (MAP) reached the 
target of 65 mm Hg, and the results were consistent across all interested 

regions (Masse et  al., 2018). The above-mentioned studies had 
opposite conclusions, which can be attributed to the following points. 
First, the onset time and severity of hypotension and image acquisition 
time were different. Septic shock initially reduces CBF, followed by 
reactive hyperperfusion after resuscitation and stabilization. Second, 
these controversial conclusions may be related to different models and 
research species. Finally, the different choices of vasopressors and 
sedation may contribute to the differentials. On the other hand, the 
above-presented studies have shown that most SAE patients would 
have significant changes in CBF. Therefore, ASL can monitor the 
changes in CBF in septic patients in real-time, capturing the changes 
in CBF and making it possible for early diagnosis of SAE. However, 
there is no unified conclusion on the early changes of CBF in SAE 
patients. Moreover, more systematic experiments are needed.

Cerebral blood flow impact factors are MAP, intracranial pressure, 
and autonomic regulation of cerebral vessels. Therefore, monitoring 
CBF by ASL during sepsis can timely grasp information on the level 
of CBF in septic patients, dynamically evaluate whether CBF can adapt 
to the current pathophysiological state, and speculate the severity of 
illness and brain function. Besides, medical staff can speculate the 
integrity of cerebrovascular self-regulation mechanism in combination 
with their MAP and intracranial pressure and adjust the dose and 
timing of sedatives and vasopressin. It is vital to avoid SAE and 
secondary cerebral ischemic events in patients.

3.4. Fluid attenuated inversion recovery

Fluid attenuated inversion recovery is a special inversion recovery 
pulse sequence that can effectively display the area of T2 extension and 
suppress the cerebral spinal fluid (CSF) signal (Ahn et  al., 2022). 
Additionally, contrast-enhanced FLAIR may provide information that 
is not available in T1-weighted contrast-enhanced MRI for detecting 
brain diseases, and its imaging principle is closely related to the 
disruption of central nervous system barrier structures (Ahn et al., 
2022). In SAE, disrupted BBB may cause contrast agents to leak from 
the blood and be diluted by the surrounding liquid (Figure 1). Due to 
the local shortening of the T1 relaxation time caused by the leakage of 
the contrast agent into the CSF, the CSF is no longer fully suppressed 
by the inversion pulse and presents as a high signal (Freeze et al., 
2020). The enhanced CSF signal on contrast-enhanced FLAIR can 
be used to determine that the extravasation of the contrast medium is 
caused by BBB disruption. Therefore, white matter hyperintensity 
(WMH) in the contrast-enhanced FLAIR imaging may suggest 
BBB disruption.

Blood–brain barrier destruction plays an important role in SAE 
development, leading to neural cell damage, brain edema, and 
accumulation of blood-derived inflammatory mediators in the brain, 
resulting in brain dysfunction in patients with sepsis (Zhao et al., 
2021). Therefore, FLAIR imaging can provide a new perspective on 
detecting BBB destruction in SAE patients. It can determine the 
integrity of BBB by FLAIR and contrast-enhanced FLAIR visualization 
of brain tissue and the area and extent of contrast agent leakage by a 
high signal of brain parenchyma to improve the early diagnosis 
rate of SAE.

Currently, there are few systematic studies of SAE using 
FLAIR. We summarized 19 cases of SAE diagnosed by FLAIR (Finelli, 
2004; Kondo et al., 2009; Piazza et al., 2009; Ehler et al., 2017; Shindo 
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et al., 2018). Among them, the positive rate of FALIR examination in 
SAE patients was up to 78.9%, and most of them could identify WMH 
manifestations, in which the signal distribution could be punctate, 
patchy, fused, and diffuse (Table 1). In an MRI study of infectious 
shock, a high percentage of patients with infectious shock had early 
brain imaging abnormalities, accounting for about 75%. 
Approximately 56% of patients had lesions characterized by high 
intensity on FLAIR, showing varying degrees of white matter lesions, 
mainly distributed within the Virchow-Robin space, ranging from 
multiple small areas to diffuse lesions, and the white matter lesions 
worsened with increasing shock duration (Figure 2). FLAIR findings 
were also associated with patient prognosis. Patients with normal 
manifestations survived without neurological sequelae, while 
non-survivors had severe brain lesions on MRI (Sharshar et al., 2007).

The high positive rate of FLAIR indicates that FLAIR is an 
effective tool to improve the early diagnosis of SAE and is closely 
related to prognosis, which can be  used to assess the effect of 
interventions and infer the long-term prognosis. When FLAIR shows 
typical abnormalities, such as WMH, it can be presumed that patients 
with sepsis have an accumulation of inflammatory mediators in the 
brain. Thus, we  can consider the possibility of developing brain 
dysfunction. However, WMH is also a typical manifestation of aging 
and cerebrovascular diseases (Dounavi et  al., 2022), which may 
be caused by many different pathologies, and is not specific enough to 
be used alone to diagnose SAE. When diagnosing SAE, combining it 
with other imaging diagnostic techniques is necessary.

3.5. Diffusion-weighted imaging

Diffusion-weighted imaging is a non-invasive MR technique for 
measuring the dispersion of water in the brain (Messina et al., 2020). 

The Apparent Diffusion Coefficient (ADC) is a quantitative index 
calculated from DWI to quantify the diffusing capacity of water in 
tissues (Beig Zali et al., 2021). DWI reflects whether the activity of water 
is restricted, showing a high or low signal if water activity is restricted 
or not, respectively. ADC reacts to the degree of water dispersion, and 
the larger the ADC value, the greater the degree of dispersion.

When angiogenic edema occurs, plasma leaks into the extracellular 
space. The diffusion movement of extracellular water is relatively free, the 
DWI shows low signal intensity, and the ADC value is higher compared 
to normal brain tissue. When cytotoxic edema occurs, extracellular water 
enters the cell, and intracellular water is restricted by the membrane 
structure, with their diffusion movement becoming limited. Meanwhile, 
the extracellular gap is narrowed due to cell swelling, water diffusion is 
bounded, and DWI shows a high signal while the ADC value decreases. 
Vasogenic edema and cytotoxic edema are important processes in SAE 
development, which can reflect the BBB disruption and cell dysfunction 
in SAE. Therefore, according to the signal level of DWI and ADC, we can 
detect water movement and diffusion, indirectly identify vasogenic 
edema and cytotoxic edema in brain tissue, and further infer the 
destruction of the BBB; hence, SAE can be diagnosed at an early stage.

A study has shown that brain tissue ADC was diffusely decreased in 
SAE animals compared to the control group. Furthermore, the decline 
in ADC was more pronounced in the animals who died after CLP. At 
the same time, ADC diffusion is enhanced in areas of high T2-weighted 
intensity at the base of the brain (Bozza et al., 2010). This suggests that 
there was not only neuronal edema in SAE animals’ brains but also 
intense fluid accumulation in the area around the circle of Willis. 
Moreover, intracerebral fluid accumulation was closely related to the 
survival of mice, which is a reliable indicator of SAE severity. Another 
study has also confirmed that axial water dispersion was increased in the 
corpus callosum, while ADC in the cortex and striatum did not change 
in mice after CLP compared to controls (Griton et  al., 2020). T2 

FIGURE 1

The contrast agents pass through the blood–brain barrier and penetrate the capillaries into the extravascular cellular space. The direction of infiltration 
is shown by the arrow. (By Figdraw, http://www.figdraw.com).
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hyperintensities in the cortex, striatum, and brain base are considered 
to be vascular-derived edema rather than cellular edema (AVJB, 1997). 
This implies that SAE is associated with fluid accumulation in the base 
of the brain, as indicated by T2-weighted signal enhancement (Griton 
et al., 2020). Another study has demonstrated that in the early stage 
(3.5 h) of LPS-induced SAE, there was little change in ADC (Rosengarten 
et al., 2008). The lack of white matter change could be attributed to short 
stimulation time or lack of polymicrobial stimulation.

Diffusion-weighted imaging provides subjective description 
through images, and ADC value is an objective quantitative index to 
reflect water dispersion. The combination of DWI image and ADC 
value can infer the existence of brain injury early by showing brain cell 
edema and intracranial fluid accumulation and further provide 
information for the diagnosis of SAE. According to the difference in 
the magnitude of ADC changes, we can determine the long-term 
prognosis of SAE patients and ultimately improve the early diagnosis 
rate of SAE and the accuracy of the severity assessment.

3.6. Functional MRI

Functional MRI (fMRI) is a neuroimaging tool utilizing MRI to 
image dynamic changes in brain tissue caused by neurometabolic 

changes. Resting-state fMRI (rs-fMRI) detects blood oxygenation level-
dependent (BOLD) signals and provides information on regional 
spontaneous neuronal activity in terms of amplitude of low frequency 
fluctuations (ALFF), which is the most commonly used analysis method 
for fMRI (Zou et  al., 2008; Huang et  al., 2021). Changes in neural 
activities may appear when subjects perform specific cognitive tasks or 
spontaneously when subjects are unconscious (“resting state”; Chen and 
Glover, 2015). Currently, fMRI has become a powerful tool for the 
non-invasive assessment of human brain activity and function, allowing 
accurate localization of activated functional brain areas. fMRI plays an 
important role in the diagnosis of encephalopathies, and the rs-fMRI 
can also evaluate the functional connectivity in different brain regions. 
A study on the changes in hippocampal functional connectivity (FC) in 
rats with SAE by rs-fMRI has shown that FC in the hippocampus of SAE 
rats was enhanced and positively correlated with affective impairment. 
The FC between the hippocampus and other brain regions might be a 
potential neuroimaging marker for cognitive or psychiatric impairment 
triggered by SAE (Yao et al., 2022). Another study of the default-mode 
network (DMN) about different cognitive and affective disorders has 
found that SAE rats’ functional connectivity between the retrosplenial 
cortex and medial prefrontal cortex is increased. The conclusion is 
consistent with the above-mentioned experiment. Moreover, FC within 
the DMN in rats with other psychiatric disorders, for example, PTSD, 

TABLE 1 Nineteen cases of sepsis-associated encephalopathy (SAE) diagnosed by fluid-attenuated inversion recovery (FLAIR).

Author (Year) Research summary Age/sex MRI-FLAIR lesion Outcome

Kondo et al. (2009) Case report: two children with 

SAE, seizures and prolonged 

coma serial neuroimaging 

performed

2y9m/F Blurred corticomedullary junction and 

narrowed cortical sulci

Brain death on day 73

17 m/M Extended WMH Severe disability after 1.5 years

Shindo et al. (2018) Case report: A 66-year-old man 

with SAE characterized by 

prolonged fever and diarrhea.

66y/M WMH Severe Disability on Day 60

Piazza et al. (2009) Prospective study of 4 ICU 

patients with sepsis Outcome 

measures: MRI and S100B 

levels

51y/M FLAIR and T2-hyperintense foci in the 

frontal regions

Recovery on day 90

61y/M FLAIR and T2-hyperintense foci in the 

periventricular regions

Died 4 days later

Finelli (2004) Case report: SAE post renal 

transplantation MRI imaging.

48y/F FLAIR signals increased in the bilateral 

basal ganglia, cerebellum, brainstem, and 

temporal lobe

Death on Day 13

Ehler et al. (2017) Prospective study of 13 patients 

with sepsis who had clinical 

features of SAE for two distinct 

patterns of neuroaxonal injury 

in sepsis

63y/F Diffuse WMH Dead

82y/F Diffuse WMH Survival on day 100

73y/M None Survival on day 100

57y/M None Survival on day 100

55y/M Patchy/confluent WMH Survival on day 100

80y/F Punctiform WMH Dead

44y/M None Survival on day 100

76y/F Punctiform WMH Dead

74y/F Patchy/confluent WMH Survival on day 100

75y/M Diffuse WMH Survival on day 100

54y/F None Survival on day 100

60y/F Punctiform WMH Survival on day 100

81y/M Patchy/confluent WMH Survival on day 100
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was significantly different from the SAE rats (Ji et  al., 2018). This 
suggests that the changes in FC revealed by rs-fMRI might be helpful in 
the early diagnosis of SAE.

Li et al. (2022) measured the ALFF value changes in the rrats’ 
hippocampus at 7 and 14 days post CLP surgery. They found that the 
ALFF values in the right CA-1 area of the hippocampus was higher at 
day 7 post CLP surgery than controls, and lower at 14 days post CLP 
surgery. Furthermore, ALFF value of right CA-1, was negatively 
related to cognitive function, suggesting brain ALFF values and 
metabolite alterations can be used to evaluate cognitive deficits in SAE 
rats. The ALFF values of the right CA-1 area are an excellent biomarker 
to evaluate the cognitive function in SAE rats.

Therefore, fMRI might be  an important tool for the early 
identification and prediction of encephalopathy, as well as neuronal 
functionality changes induced by drugs and rehabilitation strategies.

3.7. T1 weighted image, diffusion-tensor 
imaging

The T1-weighted phase and the T2-weighted phase are the most 
frequently used sequences in MRI. Usually, they can detect many 
lesions in brain, showing different gray levels in the image, but it is 
indeed difficult to distinguish them from tumors, small-vessel 
ischemia, microhemorrhages, epilepsy lesions, cerebral infarction, 
white matter injury and other lesions. The normal structural MRI 
technique cannot diagnose SAE independently.

Diffusion-tensor imaging (DTI) is a noninvasive MRI 
technique that has mostly been used to evaluate microstructural 

changes in the brain by measuring the motility of water molecules 
in tissue (Tae et al., 2018) and use the characteristics of anisotropy 
to track the white matter fiber tracts. Currently, DTI has been used 
in the resection of peripheral nerve tumors, Parkinson’s disease, 
Alzheimer’s dementia, epilepsy, multiple sclerosis, amyotrophic 
lateral sclerosis and ischemic stroke. Studies on its use in SAE 
patients are still limited. The relationship between 
Neuroinflammation and DTI imaging of the brain in SAE patients 
remains to be further elucidated.

In conclusion, although MRI-related techniques have a long 
history and are gaining growing popularity in the clinical evaluation 
of cognitive impairment such as Alzheimer’s disease, post-traumatic 
stress disorder, and post-operative cognitive dysfunction (Herringa, 
2017; Zhang et al., 2019), only a few studies have applied these 
techniques for early diagnosis of SAE.

In the long term, with the continuous development of fMRI 
technology, all these methods may play a significant role in the early 
diagnosis of SAE, and further research is needed to promote it.

4. Conclusion

In this study, we summarized the main principles of multiple 
MRI related techniques and the experimental and clinical results 
regarding the MRI-related techniques performance of patients with 
SAE (Figure  3). MRI-related techniques show high potential in 
diagnosing SAE. However, the pathogenesis of SAE is multifactorial. 
Imaging changes mentioned above can also be  seen in other 
encephalopathies, and no single diagnostic technique can cover 
every aspect of the disease. Therefore, other supplementary imaging 
methods, such as EEG and head CT, must be used to diagnose SAE 
accurately. Additionally, we need to keep track of innovative new 
technologies. The new generation of fMRI technology is still 
evolving continuously, and its accuracy has greatly improved. These 
new technologies may play an important role and be applied to the 
early diagnosis of SAE.
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FIGURE 2

Brain magnetic resonance imaging of two patients during Sepsis-
associated encephalopathy (SAE). (A,B): An 75-year-old male patient 
with serious pneumonia was diagnosed with SAE because of 
respiratory infection. MRI on day 9 showed high signal on T2-FLAIR 
sequence, with speckled and patchy WMH in bilateral periventricular 
cerebral white matter (grade 2 leukoencephalopathy). DWI showed 
small patchy slightly high signal in the left thalamus region. (C,D): An 
79-year-old male patient with urosepsis and cystostomy was 
diagnosed with SAE. T2-FLAIR sequence showed increased signals in 
the pontocerebrum, bilateral basal ganglia, radial crown, centrum 
semiovale, and bilateral frontotemporal parietal lobes.
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