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Visual expertise reflects accumulated experience in reviewing domain-specific

images and has been shown tomodulate brain function in task-specific functional

magnetic resonance imaging studies. However, little is known about how visual

experience modulates resting-state brain network dynamics. To explore this, we

recruited 22 radiology interns and 22 matched healthy controls and used resting-

state functional magnetic resonance imaging (rs-fMRI) and the degree centrality

(DC) method to investigate changes in brain network dynamics. Our results

revealed significant di�erences in DC between the RI and control group in brain

regions associated with visual processing, decision making, memory, attention

control, and working memory. Using a recursive feature elimination-support

vector machine algorithm, we achieved a classification accuracy of 88.64%. Our

findings suggest that visual experience modulates resting-state brain network

dynamics in radiologists and provide new insights into the neural mechanisms of

visual expertise.

KEYWORDS

degree centrality, visual expertise, object recognition, support vectormachine, radiologist

Introduction

Visual expertise is a cognitive process that involves visual object recognition ability in a

specific domain, resulting in superior visual object recognition performance (Harel, 2016;

Wang et al., 2021). The development of visual expertise is thought to involve reciprocal

interactions between the visual system and multiple high-level areas across the brain (Harel,

2016). In particular, visual expertise is essential for the development of radiological expertise,

which enables radiologists to rapidly and accurately recognize abnormalities in medical

images (Haller and Radue, 2005; Harley et al., 2009; Hendee, 2010; Melo et al., 2011).

However, the neural mechanisms underlying visual expertise in radiology remain poorly

understood, particularly with regard to resting-state brain network dynamics. Resting-state

functional magnetic resonance imaging (rs-fMRI) can be used to investigate the intrinsic

activity of multiple neural networks simultaneously and may help uncover the neural basis

of visual expertise in radiology. In this study, we used rs-fMRI to investigate how visual

expertise induced by experience modulates the dynamics of brain networks in radiologists.
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Previous neuroimaging studies have investigated the neural

mechanisms underlying visual expertise using different expertise

models. Martens et al. (2018) found that bird expertise-related

neural changes involved both low-level and high-level visual

regions as well as frontal lobe areas, suggesting that expertise can

modulate neural correlates that are specific to the domain as well

as those that are more general. Similarly, research on London taxi

drivers by Spiers and Maguire (2006) revealed widespread patterns

of activation along visual pathways and other brain regions such

as the parahippocampal cortex, retrosplenial cortex, and prefrontal

structures, indicating their association with scene processing,

navigation, and spatial processing when participants inspected

landmark objects in city scenes. In the context of radiological

expertise, previous studies have reported selective activations in the

brain regions of radiologists such as the bilateral middle frontal

gyrus (MFG) and left superior frontal gyrus (SFG), which are

linked to visual attention and memory retrieval, when comparing

brain responses to radiological images between radiologists and

laypersons (Haller and Radue, 2005). Furthermore, it was found

that the fusiform face area (FFA) was more active when radiologists

viewed domain-related images and contributed to the recognition

of normal anatomical features based on subjective similarity rather

than physical similarity (Harley et al., 2009). This finding was

supported by Bilalic et al. (2016) who showed that FFA could help

radiologists discriminate X-ray stimuli from other stimuli and then

contribute to the evaluation of radiographic images. Lastly, Wang

et al. (2021) proposed that visual experience could modulate the

functional adaptation of the visual cortex and other cognitive areas

that are responsible for decision making, semantic knowledge, and

attention, as evidenced by widely altered functional connectivity

in the entire cortex including the SFG, MFG, orbitofrontal cortex

(OFC), and fusiform gyrus (FuG). Collectively, these studies

suggest that the activation of these circuits or brain areas constitutes

a cortical organizing principle of visual expertise in the brain,

such as visual processing, attention control, decision making, and

semantic memory.

Radiology is a particularly suitable domain for investigating

the impact of visual experience on expertise because it allows for

a comparison between experienced radiologists or medical interns

and lay persons who lack experience, enabling the identification

of distinguishing traits (Bilalic et al., 2016). Functional magnetic

resonance imaging (fMRI) is a promising method to uncover

functional adaptations in the entire brain cortex associated with

visual expertise. Resting-state brain activity refers to the intrinsic

response of the brain in the absence of thinking activity (Smitha

et al., 2017; Canario et al., 2021) and the observed brain activity is

regarded as being responsible for coding prior experience (Albert

et al., 2009; Dong et al., 2014). However, few studies have utilized

resting-state fMRI (rs-fMRI) to investigate the neural mechanisms

of visual expertise in radiologists. Degree centrality (DC) is a

graph-based measurement that can reveal the network dynamics

modified by prior experience and node centrality for visual

expertise (Reynolds et al., 2018; Liu and Lai, 2022). A support vector

machine (SVM) is a machine learning-based pattern classification

approach that has unique advantages in understanding small

sample learning problems and has been widely applied in biological

data processing (Cherkassky, 1997; Li et al., 2014; Liu et al., 2014).

Themost discriminatory parts of the brain based on SVM represent

the most striking feature between the two groups and reveal

underlying expertise-related neurobiology (Ding et al., 2015; Gao

et al., 2022). By utilizing rs-fMRI, DC, and SVM, we aim to gain a

deeper understanding of the neural mechanisms of visual expertise

in radiologists.

The main goal of this study was to explore how visual

experience modulates DC in resting-state activity and to

understand the neural correlates of visual expertise using a model

of radiologists (n = 22) and rs-fMRI. The DC method combined

with a novel but sensitive machine learning method, i.e., a recursive

feature elimination-support vector machine (RFE-SVM) (Ding

et al., 2015), was employed to look for the highest discriminative

power between the radiology intern (RI) group and the normal

control (NC) group. We expect that visual experience modulates

the expertise-related brain areas beyond the visual cortex and even

other cognitive areas, thus supporting working memory (WM),

memory, attention control, and decision making (Harel et al., 2013;

Harel, 2016; Wang et al., 2021).

Materials and methods

All study procedures were approved by the Subcommittee on

Human Studies of the First Affiliated Hospital ofMedical College in

Xi’an Jiaotong University and were conducted in accordance with

the Declaration of Helsinki.

Participants

Twenty-two radiology interns and 22 matched subjects were

recruited in our study. All of the subjects in the RI group were

undergraduates majoring in radiology who interned at the First

Affiliated Hospital of Xi’an Jiaotong University. Before rotation,

all of the participants received basic medical education at their

college. The RI group had X-ray department rotation experience,

mainly in interpreting X-ray images for 4 weeks, during which

time they practiced 6 days per week and read 25–35 cases per

day. The total length of training was 26 ± 2.4 (mean ± standard

deviation, SD) days. Scrutinizing the images displayed on the screen

and completing the X-ray reports were the main tasks of every

intern’s training. Each of the interns had a senior tutor providing

basic clinical support. After 4 weeks of rotation, at least 600

reports written by each RI were recorded in the Picture Archiving

and Communication System (PACS), which were modified by the

instructor to meet the “degree of agreement” requirements. The

subjects in the NC group were from other majors and had never

participated in any form of medical imaging training nor received

any related education. The average ages of the RI group and

NC group were 23 ± 0.7 years and 23 ± 0.5 years, respectively.

The sex distribution in the two groups was the same (11 males;

11 females). The recruitment criteria of all subjects included the

following: (1) the participants were physically healthy and right-

handed; (2) the subjects and their immediate family members had

no past or present neurological, psychiatric, or neuropsychological

disorders and had no history of head trauma or brain tumor by
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medical history, physical, and neurological examinations; and (3)

participants took no relevant drugs before or during the internship.

Written consent forms were obtained from all the participants.

Behavioral measurement

Both the RI group and NC group completed the same

behavioral tasks. We conducted the prescreening tasks using a

face-to-face questionnaire to exclude confounding factors, such as

visual expertise from other domains (e.g., cars, chess, birds, and

mushrooms). The subjects’ behavioral test of the visual expertise

level was restricted to X-ray films because of the high specialty for

required perceptual expertise (Nakashima et al., 2015). Participants

in the RI group were required to pass a practical examination about

radiological anatomy and interpretation of X-ray films to verify

that they had reached a required level of expertise. The Cambridge

Face Memory Test (CFMT) and Radiological Expertise Task (RET)

were employed to measure face expertise and radiological expertise

in our study. The RET consists of 100 standard X-ray images

of adults including 65 positive images and 35 negative images,

from the PACS of the X-ray image bank under the guidance of

three senior independent expert radiologists with more than 10

years of radiological experience and who were proficient in reading

X-ray images. The three senior experts not only scrutinized the

pathological appearance of the selected films and confirmed the

approval of the reports but also evaluated the level of difficulty

of the reports on a scale of 1–3. Sixty-five positive X-ray images

contained one nodule without any other conclusions in the

corresponding reports and 35 negative images were normal X-rays

without any lesions. The level of difficulty for grades 1–3 in all 100

images used in the RET accounted for 55%, 30%, and 15% of the

images, respectively. The detailed procedures of CFMT and RET

were introduced in our previous research (Zhang et al., 2022).

MRI data acquisition

fMRI data were collected from 8:30 a.m. to 12:30 a.m. to

eliminate the time-of-day effect (Hasler et al., 2014). Brain imaging

scans were performed on a 3T GE scanner (EXCITE; General

Electric; Milwaukee; Wisc.) at the imaging center of Xi’an Jiaotong

University First Affiliated Hospital. A standard birdcage head coil

and restraining foam pads were used to minimize head motion and

protect participants’ hearing. Resting-state functional images were

acquired by an echo-planar-imaging sequence, and the specific

parameters included 32 contiguous slices with a slice thickness =

4mm, layer interval = 0, TR = 2,000ms, TE = 30ms, FA = 90◦,

FOV = 240mm × 240mm, data matrix = 64 × 64, voxel size =

3.75mm × 3.75mm × 4mm, total volumes = 190, and scanning

time = 380s. During the entire resting process, the subjects had

to keep their eyes closed, stay awake, and try to keep their minds

blank without having any particular thoughts. Additionally, an

MPRAGE T1-magnetization high resolution anatomical image (1

× 1 × 1mm) was acquired for each participant with the following

parameters: TE = 2.26ms, TR = 1,900ms, flip angle = 9◦, FOV

= 256mm, slice thickness = 1mm, and matrix = 256 × 256. A

total of 176 slices in the sagittal orientation were acquired. Potential

clinical abnormalities of each participant were assessed by two

expert radiologists based on the structural images. No participants

were excluded at this level.

Resting-state fMRI preprocessing

Statistical Parametric Mapping (SPM12, http://www.fil.ion.ucl.

ac.uk/spm) and the Data Processing Assistant for Resting-State

fMRI (DPARSF 4.5, http://rfmri.org/DPARSF) were used for MRI

data preprocessing. The preprocessing steps were as follows: (1)

DICOM data were converted to NIFTI format; (2) the first 10 time

points were removed for stability of the magnetic field and to allow

the subjects to adapt to the experimental environment; (3) slice

time correction was conducted for the remaining time points; (4)

motion correction was carried out using rigid body transformation

to fix the brain at the same target position; (5) the functional

images were coregistered to the subject’s anatomical images, and

all the processed data were divided into gray matter, white matter,

and cerebrospinal fluid by the exponentiated lie algebra (DARTEL)

tool (Ashburner, 2007); (6) a higher-level Friston-24 model was

employed to regress out head motion; (7) the nuisances such

as global signal, white matter signal, and cerebrospinal fluid

signal were regressed; (8) all the resting functional images were

normalized to MNI space using the deformation field maps

obtained from structural image segmentation; (9) the normalized

fMRI data were resampled to 3mm isotropic voxels; (10) the

images were then spatially smoothed with a 6mm full width

at half maximum (FWHM) Gaussian kernel; and (11) linear

trend removal and temporal bandpass filtering (0.01–0.08Hz) were

performed to reduce the effect of low-frequency drifts and high-

frequency noise.

Feature extraction

Generation of voxel wise and region wise DC
maps

The DC index has unique superiority (i.e., high sensitivity,

specificity, and reliability) in reflecting the dynamics of brain

networks (Zuo and Xing, 2014). In current study, the DC method

was employed to look for the neuroimaging features between

groups. The specific steps were as follows: first, the BOLD time

course of each voxel was extracted and its Pearson’s correlation

with all other voxels in the whole brain was analyzed. Every voxel

with positive correlation coefficients >0.2 was selected, which can

eliminate the weak correlation due to signal noise to ensure that

voxels have higher regional functional connectivity strength values.

Fisher’s r-to-z transformation was conducted to derive the Z score

matrix and improve normality for the resulting voxel for each

participant. Then, the DC value of each subject was divided by

the mean of the whole brain to achieve standardization, which

can eliminate individual differences. The DC map of the whole

brain based on the voxel-level data was obtained. After that, the

voxel wise DC map was averaged into a region wise DC map. The

Brainnetome atlas was employed to divide the DC map into 246

regions of interest (ROIs) (Fan et al., 2016). The DC values of all the

ROIs were averaged to obtain the average DC value of each region.
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FIGURE 1

The pipeline of the rs-MRI data analysis. (A–C) The resting-state MRI data were collected and preprocessed following procedures described in the

Methods. Then, the DC for each voxel was calculated and used for future feature selection. (D–F) Feature selection. Two-step feature selection was

performed and the first level used a two-sample approach to perform the regional average feature. Then, RFE-SVM modeling with LOOCV was

employed to search for the most remarkable features between groups. (G, H) SVM modeling. Reliable SVM classification results and the brain areas

with robust di�erences in DC values between groups were obtained to reflect the alteration of dynamics in the whole-brain network. rs-MRI,

resting-state MRI; fMRI, functional magnetic resonance imaging; DC, degree centrality; RFE-SVM, recursive feature elimination-support vector

machine; SVM, support vector machine; LOOCV, leave-one-out cross-validation.

Finally, the mean DC values from the 246 ROIs then served as the

input vector for the classification procedure.

Feature selection

Feature selection is a hotspot in bioinformatics and is critical in

medical studies. Its process is to extract informative features from

complex high-dimensional data (Du et al., 2017). We performed a

two-stage feature selection procedure in our study. Firstly, we used

a two-sample t test to identify the differences in the region wise DC

maps between the two groups in a leave-one-out fashion, with a

threshold of p < 0.05 considered significant. The resulting region

wise features were then used in the second-level elimination. In our

study, the recursive feature elimination-support vector machine

(RFE-SVM) Guyon et al. (2002) is employed for the purpose of

feature selection that combines recursive feature elimination with

SVM modeling. Basically, we used the RFE-SVM approach in a

leave-one-out cross-validation (LOOCV) framework to recursively

eliminate the least useful features until further elimination resulted

in reduced accuracy. The basic idea behind RFE-SVM is introduced

as follows: in each iteration, the contribution to classification

accuracy is determined by eliminating one feature at a time

using SVM-LOOCV. Then, the features with zero contribution

to classification accuracy is taken away from feature set which is

to be used as input for next round of iteration. These steps are

repeated until the number of features reaches zero. The feature set

with highest classification accuracy is used as the outcome of RFE-

SVM and sent to SVM for modeling. For this step, we used several

performance indicators, including accuracy, sensitivity, specificity,

receiver operating characteristic (ROC) curve, and area under the

ROC curve (AUC), to evaluate the efficiency of the RFE-SVM

classifier. LOOCV was also used to validate the model. Note that

a linear SVM classifier model with a soft interval separation and

hinge loss function, as it is commonly used in neuroimaging data

and produces interpretable results (Rasmussen et al., 2011). The

pipeline of rs-MRI data and feature selection processing in this

study is illustrated in Figure 1.

Correlation analysis

To evaluate the relationship between behavioral measurements

and the dynamics of the resting brain network in the two groups,
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voxel wise Pearson’s correlation analysis was conducted between

the averaged DC values and outcome of behavioral tasks (i.e., RET

scores and response times). The significance level was set at p< 0.05

after multiple comparison correction (false discovery rate, FDR).

Results

There were no significant differences in age or sex between the

groups (p > 0.05). The mean practice level duration and cases in

the total RI group are shown in Table 1.

Results of behavioral tests

The behavioral performance of the RI and NC groups is

summarized in Figure 2 and Table 1. Compared with the NC group,

TABLE 1 Demographic data of the radiological intern group and normal

control group.

Labels Radiologists
(n = 22)

Mean ± SD

Controls
(n = 22)

Mean ± SD

p-values

Length of training 26± 2.4 N/A –

Cases in total 767.4± 82.6 N/A –

RET∗∧ 0.80± 0.04 0.53± 0.04 <0.001

Response time of

RET (s)∗
2.6± 0.4 3.7± 0.7 s <0.001

Face expertise 56.95± 5.23 58.68± 5.31 0.28

∗Denotes significant difference between groups (p < 0.001).
∧Denotes that the Mann–Whitney test was used.

SD, standard deviation; s, seconds; RET, radiological expertise task; CFMT, Cambridge face

memory test.

the RI group had significantly higher RET scores, indicating that

the visual experience enabled the RI group to have better nodule

recognition ability than the NC group (p < 0.001, Mann–Whitney

U-test). The response time of RET in the RI group was much

shorter than that in the NC group, suggesting that the RI group

can recognize nodules much faster than the NC group (p < 0.001,

Mann–Whitney U-test). There was no significant difference in

CMFT scores between the two groups, which demonstrated that

the two groups had similar face recognition abilities (p > 0.05,

Mann–Whitney U-Test).

SVM classification results

The iteration procedure of feature selection based on RFE-

SVM is presented in Figure 3A. The highest classification accuracy

was observed in the seventh subset. The brain regions with

discriminative power included the bilateral SFG, left MFG, right

orbital gyrus (OrG), left FuG, and bilateral parahippocampal gyrus

(PhG). The details of the brain regions are shown in Table 2 and

Figure 4. The SVM classification accuracy was 88.64%, sensitivity

was 81.82%, specificity was 95.45%, and AUC was 0.9008. The

ROC curve of classification accuracy for RFE-SVM is presented in

Figure 3B.

Results of correlation analysis

A significant positive correlation between the average voxel

wise DC of the left FuG and the level of radiological expertise (i.e.,

RET scores) was found in the RI group after multiple comparisons

(r = 0.51, p < 0.05, Figure 5). No significant correlations were

found between other indicators of the behavioral tests and DC in

the RI or the NC groups.

FIGURE 2

The performance of the behavioral test in the RI group and NC group. (A) The scores of lung nodule identification for the two groups. (B) The

di�erent values in the CFMT for each group. (C) The response time of recognizing the lung nodule for each group. RET, radiological expertise task;

CFMT, Cambridge face memory test; RT, response time; RI, radiology intern; NC, normal control. *Indicates significant group di�erences (p<0.05).
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FIGURE 3

The performance of the RFE-SVM classifier. (A) The iteration procedure of feature selection based on RFE-SVM. (B) The receiver operating

characteristic curve of the RFE-SVM classifier. ROC, receiver operator characteristic; DC, degree centrality; AUC, area under the curve; RFE-SVM,

recursive feature elimination support vector machine.

TABLE 2 The di�erence in DC values between the RI and NC groups.

Cognitive component Brain region Subregions Brodmann’s areas Side Weight

Attention control MFG MFG_L_7_7 BA10 (lateral) L −0.59

Decision making OrG OrG_R_6_4 BA11(medial) R −0.60

Visual processing FuG FuG_L_3_3 BA37 (ventral and lateral) L 0.56

Memory PhG PhG_L_6_1 BA35/36 L −0.63

PhG_R_6_4 A28/34 R −0.99

Working memory SFG SFG_R_7_6 BA9 (medial) R −0.66

SFG_L_7_7 BA10 (medial) L 0.64

BA, brodmann area; FuG, fusiform gyrus; MFG, middle frontal gyrus; OrG, orbital gyrus; PhG, parahippocampal gyrus; SFG, superior frontal gyrus; L, left; R, right.

Discussion

Visual expertise is a complex skill that requires learning from

a vast amount of domain-specific visual information (Dong et al.,

2022). Several studies have examined the neural mechanisms

underlying radiologists’ expertise, identifying high-order cognitive

and low-order visual factors such as visual processing, WM,

attention control, and decision making as crucial components

(Donovan and Litchfield, 2013; Harel, 2016; Annis and Palmeri,

2019). However, the extent to which visual experience modulates

resting-state brain activity in radiologists remains unclear. This

study aimed to address this gap by investigating how real-

world visual experience affects the DC values of resting-state

brain activity in radiologists. Our behavioral results showed

that the RI group performed better after training than the NC

group (Figure 2), and the imaging data analysis demonstrated

that seven brain subregions in the visual cortex, prefrontal

lobe, and limbic system had the highest discriminative power

in between-group comparisons (Figure 4 and Table 2). These

results were obtained using RFE-SVM, which demonstrated

excellent classification efficiency with high accuracy, sensitivity,

and specificity (Figures 3A, B). Additionally, we found a significant

positive correlation between RET scores and the DC values of the

left FuG, indicating that the functional connectivity of this region

is related to visual expertise (Figure 5). To our knowledge, this

study is the first to investigate DC level changes in radiologists’

resting brains in response to real-world visual experience. The

results provide new insights into the neural mechanisms underlying

visual expertise, and the findingsmay have practical applications for

radiologist training. Overall, our study highlights the importance of

considering resting-state brain activity in understanding how visual

expertise develops andmay help inform future research in this area.

The increased DC level of the left FuG in
radiologists

Compared with the NC group, the RI group had increased

DC values in the left FuG which controls visual processing

(Figure 4 and Table 2). Additionally, we found a significant positive

correlation between the DC value of the left FuG and RET scores in

the RI group (Figure 5). The acquisition of visual experience may

be accompanied by functional enhancement of visual processing

supporting radiologists’ superior performance (Haller and Radue,

2005; Wang et al., 2021). The FuG, located in the human ventral

temporal cortex (VTC), is a pivotal functional brain module
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FIGURE 4

Brain areas with the most discriminative ability between groups. The constitutional diagram is categorized by visual and cognitive components. The

color bar shows the size of the weight. Note that the positive direction represents the increased DC values and vice versa. MFG, middle frontal gyrus;

OrG, orbital gyrus; FuG, fusiform gyrus; PhG, parahippocampal gyrus; SFG, superior frontal gyrus; DC, degree centrality.

FIGURE 5

Correlation analysis between RET scores and DC values of the left

FuG. Pearson correlation was used to assess significance (p < 0.05,

multiple comparison corrected). RET, radiological expertise task;

FuG, fusiform gyrus; DC, degree centrality.

within the high-level visual cortex (Weiner and Zilles, 2016)

which is a key-structure in high-level visual processing for object

recognition (Grill-Spector et al., 2001). The FuG contains several

category-selective regions for the recognition of different visual

stimuli, including the FFA (Kanwisher et al., 1997), fusiform body

area (Peelen and Downing, 2005), and visual word-form area

(Cohen et al., 2000). Several neuroimaging studies using visual

expertise models, such as cars (McGugin et al., 2015), chess (Bilalić,

2016), faces (Goold and Meng, 2017), and radiology (Haller and

Radue, 2005) reported activation of the FuG in task fMRI studies.

Specifically, the right FuG was engaged in the processing of non-

face expertise visual stimuli (Xu, 2005; Harley et al., 2009; Engel

et al., 2009) and mediated the formation of category-specific

representations (van der Linden et al., 2008). Moreover, the right

FFA plays an important role in visual discrimination that can be

fine-tuned by experience with other domain categories (Engel et al.,

2009). Furthermore, previous studies have consistently reported

that the left FuG plays a more prominent role than the right FuG

in processing non-face related information (Devlin et al., 2006;

Bi et al., 2014; Bilalic et al., 2016). In details, the left FuG was

engaged in visual word recognition as a connector between the

abstract visual information and higher order properties of the

stimulus (Devlin et al., 2006) and not only participated in visual

categorization learning but also its activity could be modulated

by visual learning (Goold and Meng, 2017). In radiological

expertise, left FuG activation made the radiologists more sensitive

to radiological images and reliably distinguished between upright
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and inverted X-rays (Bilalic et al., 2016). Additionally, a prior study

found that the activity of the left FuG was positively correlated with

participants’ perceptual performance (Bi et al., 2014) supporting the

pivotal role of the FuG in supporting recognition efficiency (Zhang

et al., 2022).

In the current study, we speculated that the left FuG plays a vital

role in recognizing the stimuli of radiological images, Furthermore,

the short-term extraordinarily high load and repetitive usage of the

visual system by the RI group can modify the visual processing of

radiological stimuli. The fine-tuned behavioral performance and

functional adaptationmanifest in the superior ability of recognizing

the nodule stimulus and stronger neural reflections in the resting

state to make the brain much more efficient in detecting nodule-

specific features.

The decreased DC level of the right OrG in
radiologists

Decreased DC values of the right OrG were found in the

RI group compared with those of the NC group (Figure 4 and

Table 2). The OrG, as an OFC subregion (Rudebeck and Rich,

2018), is responsible for decision-making by primarily adjusting

the utilities associated with different sensory stimuli (Lee et al.,

2007) and plays a critical role in flexible, outcome-guided behavior

(Liu et al., 2020). Decision-making is the process of choosing a

particular response and further flexibly modifying cognitive and

sensorimotor operations based on an evaluation of potential costs

(Lee et al., 2007), which is necessary for expert visual processing.

Decision making is part of the object recognition process during

image interpretation (Wang et al., 2021). Of note, decision-

making ability changes dynamically and continually as experience

increases (Lee et al., 2007). Hence, the OFC was activated when

the participants faced low-cost situations, such as either passively

viewing information or selecting among options (Volz et al., 2006).

A previous study on baseball batter expertise also verified that the

OFC was responsible for expertise-driven rapid visual decisions

(Muraskin et al., 2015). In Kirk’s study on aesthetic expertise, the

recruitment of the OFC between experts and non-experts suggested

that this region was involved in expertise-related reward processing

(Kirk et al., 2009). A study based on a chess model reported that

the OFC appeared to be activated in this comparison between

experts and novices (Krawczyk et al., 2011). In the current study,

we propose that visual experience modulates radiologists’ decision-

making processes. Specifically, when radiologists face domain-

specific options, they need to make decisions by employing many

brain resources to recognize radiological stimuli.

The changed DC level of bilateral SFG in
radiologists

Compared with those of the NC group, changed DC values

of the bilateral SFG were found in the RI group (Figure 4 and

Table 2). Multiple previous studies have shown that the SFG

plays important roles in WM (Klingberg et al., 1997; Su et al.,

2022). WM is a central mental capacity; it provides the platform

for holding and manipulating thoughts and for organizing goal-

directed behavior (Miller et al., 2018). WM capacity, which refers

to the ability to retain the maximum amount of information, is a

vital factor for problem solving and reasoning ability (Westerberg

and Klingberg, 2007). The acquisition of visual expertise might

improve WM performance (Moore et al., 2006). The neuroimaging

study of Haller and Radue (2005) found that the enhanced neuronal

activations of the SFG manifested in better WM capability in

the process of radiological expertise. Kesler et al. (2011) found

significantly increased activation of the SFG in visual tasks, which

participated in online monitoring and manipulation of task-related

information. Ouellette et al found lower activation of the lateral

SFG in trained radiologists while they viewed medical images,

suggesting that WM is a crucial component of radiology expertise

and more efficient in radiologists (Ouellette et al., 2020). In our

current study, different trends in the bilateral SFG showed that

the increased DC values in the left SFG and decreased DC values

in the right SFG were closely associated with WM when utilizing

radiological expertise. Taking the weight of the brain area into

consideration, the overall trend of DC values tended to be negative

in the right SFG. Therefore, the decreased DC values of the right

SFG may demonstrate increased neural efficiency of the WM

process, thus enabling the RI group to spend less energy making

a judgment and obtaining a good result compared with that of

the NC group. Furthermore, we propose that the altered dynamics

of the brain network when acquiring radiological expertise might

support remodeling of the WM process reflecting more automated

encoding and maintenance WM capacity, indicating a more

efficient mechanism subserving visual expertise.

The decreased DC level of left MFG in
radiologists

Decreased DC values of the left MFG in the RI group were

found compared with values of the NC group in our study (Figure 4

and Table 2). A previous neuroimaging study found that the MFG

participated in visual attention based on the model of radiologists

(Haller and Radue, 2005). Selective attention can optimize the

processing of information, make radiologists rapidly search for a

particular “target” in radiographic images and adjust their response

to information collected and compared to previously learned

reference images (Haller and Radue, 2005; Harley et al., 2009).

Attention has an important impact on visual expertise, even in

the earliest step of visual processing (Harel, 2016). The left MFG

has a crucial role in the dorsal attention network (DAN) and

ventral attention network (VAN) to facilitate interactions between

the two networks during attentional processing (Briggs et al.,

2021). It has been found that the MFG is an important center

facilitating attentional processes (Japee et al., 2015). Haller and

Radue (2005) found enhanced neuronal activation of the MFG

in radiologists compared with that in non-radiologists, suggesting

that the MFG participated in the process of radiological expertise

and played an important role in attention control. In contrast, the

study of Melo et al. (2011) reported lower activation of the MFG

in radiologists than non-radiologists when they were observing

medical images. The evidence summarized above suggested that
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short-term experience could adjust the process of attention control

to make it more efficient and enable trainees to have more

flexibility in manipulating limited attentional resources so that

residual resources could be allocated validly to other brain regions

supporting more demanding tasks.

The decreased DC level of bilateral PhG in
radiologists

The comparison between groups revealed decreased DC values

of the bilateral PhG in the RI group compared with those of

the NC group (Figure 4 and Table 2). The PhG is an important

center for memory processing (Lin et al., 2021). The acquisition

of visual expertise might be accompanied by the alteration of

memory representations (Annis and Palmeri, 2019). Existing

neuroimaging studies have reported that chess experts and expert

archers recruited more activation of the PhG when responding to

domain-specific stimuli (Bilalić et al., 2010; Kim et al., 2011). In our

study, the deceased DC values of the bilateral PhG may reflect the

highly efficient process of memory encoding and extraction. Short-

term experience may contribute to radiology interns spending

less energy on employing memory resources when radiologists

interpret the radiological images.

Limitation

It is important to note the limitations of our study.

Firstly, the sample size was relatively small, which could limit

the generalizability of the results. Future studies with larger

sample sizes are needed to confirm the current findings.

Secondly, the training duration for radiology interns was

relatively short. Although the number of training cases for

each participant was sufficient to acquire expertise, a longer

training duration could potentially lead to different results.

Therefore, future studies should consider longer training periods.

Finally, a cross-sectional design was used in this study, which

may limit the interpretation of the findings. Longitudinal

studies are needed to better understand how visual experience

affects brain dynamics in radiologists. Additionally, confounding

factors such as long-term experience or congenital factors could

have influenced the results. Therefore, future studies should

consider controlling for these factors or using a longitudinal

design to better understand the effects of visual experience on

brain dynamics.

Conclusions

In conclusion, our findings suggest that visual experience

can modulate the dynamics of the resting-state brain network,

as reflected in multidimensional neurobehavioral components

based on the expertise model of radiologists. These components

are strongly interlinked with high-order cognitive and low-order

visual factors, including attention control, memory, WM, decision

making, and visual processing. These results provide a novel insight

into the neural mechanism underlying visual expertise. Despite the

limitations of our study, we believe that our findings contribute

to the current understanding of how real-world visual experience

affects brain activity and may have implications for radiologist

training and clinical practice. Further research is needed to confirm

and extend our findings.
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