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Enhanced motor imagery of digits 
within the same hand via 
vibrotactile stimulation
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Purpose: The aim of the present study is to evaluate the effect of vibrotactile 
stimulation prior to repeated complex motor imagery of finger movements using 
the non-dominant hand on motor imagery (MI) performance.

Methods: Ten healthy right-handed adults (4 females and 6 males) participated in 
the study. The subjects performed motor imagery tasks with and without a brief 
vibrotactile sensory stimulation prior to performing motor imagery using either 
their left-hand index, middle, or thumb digits. Mu- and beta-band event-related 
desynchronization (ERD) at the sensorimotor cortex and an artificial neural 
network-based digit classification was evaluated.

Results: The ERD and digit discrimination results from our study showed that ERD 
was significantly different between the vibration conditions for the index, middle, 
and thumb. It was also found that digit classification accuracy with-vibration 
(mean ± SD = 66.31 ± 3.79%) was significantly higher than without-vibration 
(mean ± SD = 62.68 ± 6.58%).

Conclusion: The results showed that a brief vibration was more effective at 
improving MI-based brain-computer interface classification of digits within 
a single limb through increased ERD compared to performing MI without 
vibrotactile stimulation.
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Introduction

Motor imagery (MI) refers to mental “rehearsal” of defined motor sequences without the 
concomitant movement of the actual muscles (Pfurtscheller and Neuper, 1997; Andrade et al., 
2017). Motor imagery activates many of the same cortical areas as motor execution (ME), such 
as primary motor cortex, premotor cortex, and somatosensory cortex (Ehrsson et al., 2003; 
Sauvage et al., 2013; Lorey et al., 2014). MI furthermore has been shown to induce cortical 
plasticity resulting in motor performance improvements in healthy subjects (Hashimoto and 
Rothwell, 1999; Jackson et al., 2003; Stinear et al., 2006; Lebon et al., 2012) as well as spinal-
cord injured patients (Mateo et al., 2015). Specifically, one of the commonly used markers of 
MI for MI-based brain computer interface (BCI) classification is the event-related 
desynchronization (ERD) in the mu (8–12 Hz) and beta (13–30 Hz) frequency band elicited 
during imagination of motor movements (Pfurtscheller and Neuper, 1997; McFarland et al., 
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2000; Jeon et al., 2011). MI-based BCI training is largely used for 
individuals seeking to improve their motor performance (Hong 
et al., 2017).

MI training largely employs imagining movements with the 
right and left hand or feet since they exhibit clear neurophysiological 
differences and consequently are easier to classify in BCI applications 
(Lotte et al., 2018). However, such simple MI have limited use for 
patients with reduced motor performance, since neurofeedback 
from the affected hand is more essential than using both hands in 
rehabilitation (Benzy et al., 2020; Dahms et al., 2020). Therefore, 
complex MI training employing tapping of fingers from a single limb 
has been employed to replace conventional simple MI in such cases 
(Ma et al., 2019).

The complex MI, however, has a few limitations. In stroke 
survivors, the affected hand has greatly reduced MI ability due to the 
motor deficit (de Vries et al., 2011) making the implementation of 
single limb complex MI difficult. Even healthy subjects exhibited 
handedness-based cortical differences (Tecchio et al., 2006). Studies 
have shown that MI abilities differ between dominant and 
non-dominant hands (Maruff et al., 1999), with the dominant hand 
showing better MI performance compared to the non-dominant 
hand (Guillot and Collet, 2010). Such asymmetrical cortical 
activations with handedness or motor deficits may reduce BCI 
classification accuracy. Furthermore, MI classification robustness 
within a single limb may be affected due to similar neurophysiological 
patterns between the various movements with the given limb.

Integrating tactile stimulation with MI has shown promise in 
improving MI performance. A study by Mikula et al. (2018) showed 
that during a reaching task, the proprioception of the hand showed 
improvement when provided with additional tactile information 
through vibrotactile stimulation. Furthermore, electrophysiological 
studies have found that MI combined with sensory stimulation 
greatly improved the motor imagery vividness (Mizuguchi et al., 
2015), and enhanced cortical response for the imagined hand 
(Mizuguchi et al., 2009, 2013) but not for the non-imagined hand 
(Mizuguchi et al., 2012). Furthermore, a recent study (Shu et al., 
2017) found that integrating MI tasks with unilateral tactile 
stimulation in the non-dominant hand and paretic hand of healthy 
individuals and stroke survivors, respectively, significantly increased 
the contralateral cortical activations for the stimulated hand during 
MI tasks, but had no effect on activation patterns during MI tasks of 
the non-stimulated hand. However, it is unknown if such 
improvement in MI performance via tactile stimulation can be seen 
for complex MI involving multiple digits from a single limb.

The purpose of this study is to determine the effect of 
vibrotactile stimulation during repeated complex motor imagery of 
multiple finger movements using the non-dominant hand on MI 
performance. To achieve this, we examined brain activities using 
electroencephalography (EEG) during MI with versus without 
vibrotactile stimulation. Machine learning techniques were applied 
to discriminate MI tasks performed by the index, middle, and 

thumb fingers of the non-dominant hand based on their 
sensorimotor responses. It was hypothesized that vibrotactile 
stimulation combined with MI would increase the ERD response 
and greater task discrimination during finger movement tasks 
within the non-dominant hand compared to without 
vibrotactile stimulation.

Methods

Subjects

Ten healthy right-handed adults (4 females and 6 males) with ages 
ranging between 19 and 38 years participated in the study. All subjects 
verbally disclosed that they had no history of upper limb injury or 
musculoskeletal or neurologic disorders. All subjects had no prior 
experience with motor imagery. The protocol was approved by the 
Vellore Institute of Technology Review Board. Subjects read and 
signed a written informed consent form before participating in 
the experiment.

Procedure

The mu- and beta-band ERD at the sensorimotor cortex was 
evaluated with and without vibrotactile stimulation applied on the 
index, middle, or thumb digit pads prior to when subjects performed 
motor imagery tasks using the index, middle, or thumb digits, 
respectively. Subjects performed the motor imagery sessions with and 
without sensory stimulation on two separate days with at least 2 weeks 
of washout period in between the sessions.

Sensory stimulation
The sensory stimulation was applied via vibration through a flat 

vibration micro motor (Sunrobotics, Gujarat, India). A sensory 
stimulation box (Figure 1) was constructed which contained three 
vibration motors for sensory stimulation of individual digits (index, 
middle, and thumb). Adjustable sliders were built-in to align the 
individual vibration motors with individual digit pads. The vibration 
motor was fed with a white-noise signal filtered between 0-500 Hz and 
so generated a white-noise vibration that varied randomly between 
0-500 Hz. The white-noise vibration was chosen to account for the 
difference in stimulating frequency between the subjects. During the 
sessions with the vibrotactile stimulation, the vibration was applied on 
the corresponding finger briefly for 150 ms at the start of each trial 
prior to MI performance.

EEG recording
The EEG signals were obtained using an Allengers’ Virgo EEG 

system (Allengers Medical Systems, Chandigarh, India). The system 
included an EEG cap with 20 electrodes (FP1, FPz, FP2, F7, F3, Fz, F4, 
F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2) following the 
international 10–20 system with FPz and Fz electrodes serving as 
ground and reference, respectively. The cap was placed on the scalp of 
each subject after each electrode site was cleaned and adequate 
application of conductive gel to keep the impedance under 5 kΩ and 
obtain high quality EEG signals.

Abbreviations: MI, Motor Imagery; ME, Motor Execution; EEG, 

Electroencephalography; BCI, Brain-Computer Interface; ERD, Event-related 

Desynchronization; ANN, Artificial Neural Network; ERSP, Event-related Spectral 

Perturbation; AO, Action Observation.
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Experimental design
A 3D left hand was modeled and animated in Blender software 

(Blender Foundation, Amsterdam, Netherlands). The non-dominant left 
hand was animated to perform finger movement tasks using the three 
digits, namely the index, middle, and thumb. Unity game engine (Unity 
Technologies, San Francisco, CA, United States) was used to gamify the 
hand and its animation inside a 3D virtual environment. The animation 
was displayed on a computer monitor for the subjects to observe while 
performing MI of the same task being shown on the monitor.

The experiment was conducted in a quiet room with minimal 
environmental distractions. Subjects were positioned comfortably in 
a chair with their arms placed on the arm rests of the chair. To reduce 
motion artifacts during EEG recording, subjects were instructed to 
avoid any movement including eye blinking. The experiment 
consisted of two motor imagery conditions, namely the with and 
without sensory stimulation (with-vibration and without-vibration) 
with each condition consisting of three blocks corresponding to the 
three digits with which the MI was performed (Index, Middle, and 
Thumb). A single block had five sessions consisting of 10 trials of MI 
per session with adequate rest provided between sessions. In total, 
each subject performed 50 trials for each of the three digits per 
vibration condition making it a total of 300 trials per subject.

A single trial in the with-vibration condition had a text reminding 
the subject which of the three digits was being tested. A brief 
vibrotactile stimulation lasting 150 ms was then applied on the 
corresponding digit at the finger pad at the start of the trial. The 
stimulation was followed by 4 s waiting period instructing the 
participant to be ready and then at the 4-s mark from the start of the 
trial, the animation showed the digit being tested pressing down on 
a button, holding the position for 2 s, and then releasing the button 

to come back to the initial position. The animation was followed by 
a 3-s rest. Subjects were asked to observe the task animation and 
imagine kinesthetically the same movement by forming an 
impression with the same digit being tested performing the button 
pushing task shown in the animation. A trial run was performed to 
make the subjects comfortable with imagining the task at the pace it 
was performed by the 3D model. The without-vibration condition 
was similar to the with-vibration condition with the exception being 
no vibrotactile stimulation was applied at the beginning of the trial.

The two sensory stimulation conditions were performed on two 
separate days with at least 2 weeks in between the sessions to wash 
out any residual learning effects from the previous session. The order 
of the sensory stimulation conditions was counterbalanced, with five 
subjects randomly picked from the ten subjects to perform the 
without-vibration first and the remaining five performed the with-
vibration condition first. The order of the digits was randomized for 
each subject and each session. During the entire experiment, the EEG 
signals were recorded continuously at 250 Hz.

EEG analysis

Pre-processing
ERD and digit-discrimination analysis was performed using 

MATLAB (The MathWorks, Natick, MA) with ERD analysis 
performed using EEGLAB toolbox and discrimination analysis 
performed using an artificial neural network available in the Neural 
Network toolbox in MATLAB. The EEG signals were bandpass filtered 
between 0.5–50 Hz to remove line noise and re-referenced to a 
common average reference. Artifacts were removed by performing 

FIGURE 1

(A) Experimental setup (B) Timeline of the finger movement task. Subjects observed the action via the animation displayed in the computer monitor 
while performing motor imagery of the action displayed on the monitor. The red region on the timeline signifies the 150 ms period of vibration applied 
during the with-vibration condition.
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Independent component analysis (ICA) using the ADJUST algorithm 
(Mognon et al., 2011). The cleaned data was separated into epochs 
ranging from −1,000 ms to 8,000 ms relative to the start of each trial.

ERD analysis
The C4 electrode was chosen for ERD analysis because it 

corresponds to the contralateral right sensorimotor cortex activity for 
the MI performed with the left hand digits. Time-frequency analysis 
was performed to obtain event-related spectral perturbations (ERSP) 
that revealed a change in power in the mu- and beta-band during the 
performance of the motor imagery tasks. ERSP was calculated per 
trial epoch and baseline corrected relative to the pre-stimulus interval 
(−1,000 to 0 ms) for each trial. Individual ERSPs were then averaged 
across subjects to obtain an average ERSP. Mu- and beta-band power 
changes were calculated by averaging the amplitude values within the 
mu frequency band (8–12 Hz) and beta frequency range (13–30 Hz) 
respectively.

To examine the effect on MI performance, repeated measures 
ANOVAs were conducted on the task-related ERD. Specifically, the 
ERD obtained by averaging the ERSP across one-second (4,500 ms to 
5,500 ms) within the two-second MI period (4,000 ms to 6,000 ms) 
during which the subject imagined performing the finger movements. 
The ERD was obtained for the mu- and beta-bands separately. A 
two-way repeated-measures ANOVA was conducted for each 
frequency band with the independent variables being the vibration 
condition (with vs. without), and digit (Index, Middle, and Thumb). 
Post-hoc Bonferroni tests were used for all pairwise comparisons. The 
statistical analysis of the data was performed using SigmaStat 4.0 
(Systat Software Inc., San Jose, CA, United States). An α level of 0.05 
was considered for statistical significance.

Discriminant analysis
An artificial neural network (ANN) was constructed using the 

nrptool module, to evaluate the neural activity discrimination of the 
three digits. The accuracy rate obtained from the ANN would indicate 
the accuracy with which the neural network was able to classify the 
three digits for each sensory stimulation condition. The classes were 
Index, Middle, and Thumb and so a three-class classifier was used. The 
toolbox utilizes a two-layer feedforward network that has a learning 
procedure based on the scaled conjugate gradient backpropagation 
algorithm. Feature extraction was performed on the EEG data from 
the channels Fz, F4, Cz, C4, Pz, and P4 to extract discriminating 
features associated with the three digits while performing MI. The six 
electrodes were chosen to encompass the entire contralateral sensory 
and motor area. An one-second time period between 4,500 ms to 
5,500 ms in the epoch when MI was performed and ERD occurred was 
extracted from each trial from each of the six electrodes. The extracted 
ERSP data were then averaged across mu- and beta-band combined 
(8–30 Hz) for each electrode and concatenated. The concatenated 
features were then fed into the ANN which had an input layer with 
150 neurons (N) corresponding to the 50 trials per digit, a hidden 
layer with 22 neurons (H), and an output layer with 3 neurons (M) 
corresponding to three digit classes. The number of neurons assigned 
to the hidden layer was calculated using the following formula 
(Fadiyah and Djamal, 2019).

 N x M

A “training set” of 70% of the data was randomly selected. 15% of 
the remaining data was held back and used as “validation data” to 
validate the model. The remaining 15% was chosen as “testing data” 
and used to evaluate the model. The neural network training was 
repeated 20 times to minimize the influence of random fluctuations 
from the training set during each iteration. The accuracy rates from 
the 20 runs were then averaged to obtain the final accuracy rate. A 
paired t-test was then performed to compare the accuracy rates 
between sensory stimulation conditions (with-vibration vs. 
without-vibration).

Results

We conducted repeated-measures ANOVAs to study the 
differences between the vibration conditions. The ANOVA’s 
presumptions regarding the ERD results were initially confirmed. 
There were no clearly distinguishable outliers found. According to the 
Shapiro–Wilk normality test, the normality was not violated for any 
of the groups (p > 0.05), and the data had a normal distribution. When 
the variances of the variations between experiment conditions are 
equal, this is known as sphericity. This assumption was tested using 
the Brown-Forsythe test, and the outcomes showed equal variance 
(p > 0.05).

ERD during motor imagery was compared between the vibration 
conditions. In the mu-band, repeated measures ANOVA showed ERD 
significantly differing between the vibration conditions (p = 0.003) but 
not by digit (p = 0.767). No interactions were found to be significant 
(p = 0.977). Specifically, the ERD power was lower in with-vibration 
compared to without-vibration (mean ± SD = −2.90 ± 0.53 dB for with-
vibration, mean ± SD = −1.28 ± 1.11 dB for without-vibration). 
Post-hoc tests revealed that the ERD was significantly different 
between the vibration conditions (Figure 2A) for the index (p = 0.002), 
middle (p = 0.003), and thumb (p = 0.003).

Repeated measures ANOVA analysis in the beta-band 
demonstrated that there was a significant difference in ERD 
between vibration conditions (p < 0.001), while no significant 
difference was observed between digits (p = 0.451). A significant 
interaction between the vibration condition and digits were found 
(p = 0.032). Specifically, the ERD power was lower with-vibration 
compared to without-vibration (mean ± SD = −2.72 ± 0.36 dB for 
with-vibration, mean ± SD = −1.89 ± 0.45 dB for without-vibration). 
Further post-hoc tests revealed that there was a significant 
difference in ERD between the vibration conditions (Figure 2B) for 
the index (p < 0.001), middle (p = 0.002), and thumb (p < 0.001). 
The MI-induced cortical activations in the time-frequency domain 
and the spatial distribution of the ERD for the three finger 
movement tasks with-vibration and without-vibration are shown 
in Figure 3.

The classification accuracy percentage for with-vibration and 
without-vibration are shown in Figure 4 and the confusion matrices 
are shown in Figure 5. A paired t-test was performed to evaluate the 
statistical difference between the classification accuracies from the 
vibration conditions. The results showed that digit classification 
accuracy with-vibration (mean ± SD = 66.31 ± 3.79%) were 
significantly higher (p = 0.02) than without-vibration 
(mean ± SD = 62.68 ± 6.58%).
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Discussion

In this study, we investigated whether tactile stimulation at the 
digit pad before motor imagery involving the same digit would 
improve BCI performance, and in particular whether this would lead 
to a higher ERD. The ERD power during motor imagery in the mu- 
and beta-bands and the artificial neural-network based digit 
discrimination results from our study provides evidence that a brief 
vibrotactile stimulation at the index, middle, and thumb digit pads 
right before performing motor imagery involving the respective digits 
does influence the EEG power in the sensorimotor area via ERD 
response in both the mu and beta frequency bands and MI-BCI 
classification of the digits compared to without stimulation. 
Specifically, subjects in our study displayed a higher ERD response in 
both the mu- and beta-bands and higher digit classification percentage 
with vibrotactile stimulation compared to no stimulation. Based on 
the ERD and digit discrimination results from our study, it has been 
confirmed that sensory stimulation via a brief vibration is more 
effective at improving MI-BCI classification of digits within the same 
limb through increased ERD compared to performing MI 
without stimulation.

The spatial distribution of the ERD activity in the mu and beta 
frequency bands (8–30 Hz) showed a predominantly contralateral 
activation for all the digits in both vibration conditions (Figure 3). 
With mu-band activity reflecting stimulus-related neuronal response 
(Forschack et al., 2017) and beta-band activity reflecting motor tasks 
(Khanna and Carmena, 2015), the enhancement of ERD in the both 
the mu- and beta-bands in the contralateral sensorimotor area during 
MI following a vibrotactile stimulation could possibly be through the 
influence of the sensory stimulation on the sensorimotor cortex.

The increase in contralateral sensorimotor region cortical activity 
with tactile stimulation seen in the current study are similar to 
previous studies (Yao et al., 2013; Shu et al., 2017; Liburkina et al., 
2018). Although the above mentioned studies had a constant 
vibrotactile stimulation applied to the subjects’ limb while they 
performed MI, in the current study the stimulation was short (150 ms) 
and was applied prior to the MI performance. Such an improvement 
in MI performance and BCI classification with a short stimulation has 
advantages over constant stimulation where subjects might develop 
numbness to the stimulation and that might affect the MI performance.

Tactile stimulation has been reported to improve proprioception of 
the hand (Rizzolatti et al., 1998; Mikula et al., 2018), while proprioception 

FIGURE 2

The grand average ERD (mean ± SD) of all subjects for with-vibration and without-vibration in (A) Mu-band and (B) Beta-Band. A significant difference 
between the vibration conditions was found for the index, middle, and thumb digits for both bands (* denotes p < 0.05).
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has been shown to enhance corticospinal excitability during MI (Vargas 
et al., 2004). With proprioception and tactile sensation sharing the same 
population of posterior parietal neurons during high-level spatial 
representations (Rizzolatti et al., 1998), it is possible for the sensory 
stimulation to enhance the ERD response by reaching the sensorimotor 
cortex and influencing the discharge of the corticospinal cells as 
documented by previous studies (Lemon, 1981; Cheney and Fetz, 1984). 
It is acknowledged that the brain combines several sensory information 
to build an internal representation of its surroundings (Ernst and 

Bülthoff, 2004; Knill and Pouget, 2004). Motor imagery is believed to rely 
on this internal representation to predict the future sensory and motor 
states of the body during motion imagination (Gentili and Papaxanthis, 
2015; Nicholson et al., 2018). Such sensory and motor predictions can 
be enhanced by previous real sensory stimulation (Rulleau et al., 2018). 
In our study, the vibrotactile stimulation of the digits might provide the 
required source of sensory information to enhance the internal 
representation of the digit via proprioception thereby improving the 
ERD response from the digit while performing MI.

FIGURE 3

The grand-average ERSP in the time-frequency domain during motor imagery of the left-hand digits and the spatial distribution of the grand-average 
ERD within the mu and beta band (8–30 Hz) between 4,500 ms to 5,500 ms during the MI task period. The MI start at 4000 ms indicates the start of the 
animation cue of button-pushing which lasts for two seconds.

FIGURE 4

BCI-classification accuracy percentage for each subject and the average of all subjects. Error bars represent the standard deviation (SD). * denotes 
p < 0.05 using paired t-test.
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The vibrotactile stimulation not only affected EEG power, but also 
aided in improving the classification of digits within a given limb using 
a neural network. Using vibrotactile stimulation during MI to decode 
brain signals classified the envisioned movement better than using MI 
without vibration, indicating that the stimulation improved the MI 
process. Our results show that vibrotactile stimulation enhanced the 
oscillatory rhythm associated with imagined movement in the same 
manner as skilled practice did. A high classification accuracy for digits 
within a single limb has implications in brain computer interface and 
controlling prosthetic arms. Although repeating motor imagery in both 
vibration conditions elicited ERD and digit discriminability, the present 
study showed that when a vibrotactile stimulation is provided to the 
digit-pad prior to motor imagery with the same digit, this approach can 
lead to even better performance in MI-BCI.

The experimental design of the current study employed both 
action observation (AO) and MI. AO + MI has been shown to elicit a 
larger desynchronization (Berends et al., 2013). To ensure that subjects 
performed both AO and MI concurrently, clear instructions were 
given to the subjects to imagine the observed movement 
kinesthetically. Based on several studies that were reviewed by Vogt 
et  al. (2013) it has been recommended that AO and MI training 
should be combined and used simultaneously and should not be seen 
as mutually exclusive means of treatment.

The current study has a few limitations. First, the sample size was 
small, and subjects displayed some variation between performances 
of each other that may have affected the statistical power. Thus, the 
results from this study should be interpreted carefully. Second, neural 
networks require memory heavy computations and far larger samples 
for training. Obtaining a large BCI database for finger movements is 
challenging owing to differences in experimental conditions across 
various other related studies. Future studies will focus on developing 
a deep learning framework through advanced data reconstruction 
methods. We  aim to achieve high performance BCI in real-
world environments.

Conclusion

In summary, the current study showed that a brief vibrotactile 
stimulation applied to the fingertip prior to motor imagery led to an 
increase in finger movement related ERD activity, indicating activity 
of the sensorimotor cortex, and a greater digit discrimination within 
a single given limb.
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FIGURE 5

Confusion matrix for the classification of the three digits under the 
with- and without-vibration conditions for each subject. The rows 
correspond to the output classes while the columns correspond to 
the target classes (Index, Middle, and Thumb for both classes). The 
percentage of correctly classified inputs are shown in the diagonal 
green boxes while the incorrectly classified entries are in the off-
diagonal red boxes. The green and red boxes contain the 
percentage of the total number of observations that were correctly 
classified and misclassified, respectively. The column in the far right 
of the plot displays the precision or positive predictive value for all 
the correctly classified examples in each class. Similarly, the row at 
the bottom of the plot shows the percentages of correctly 
classified examples for each class, referred to as the recall or true 
positive rate. The grey box in the right end corner shows the overall 
classification percentage which is the sum of the diagonal entries.
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