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Introduction: This article proposes a novel hybrid network that combines the

temporal signal of a spiking neural network (SNN) with the spatial signal of an

artificial neural network (ANN), namely the Spatio-Temporal Combined Network

(STNet).

Methods: Inspired by theway the visual cortex in the human brain processes visual

information, two versions of STNet are designed: a concatenated one (C-STNet)

and a parallel one (P-STNet). In the C-STNet, the ANN, simulating the primary

visual cortex, extracts the simple spatial information of objects first, and then the

obtained spatial information is encoded as spiking time signals for transmission to

the rear SNN which simulates the extrastriate visual cortex to process and classify

the spikes. With the view that information from the primary visual cortex reaches

the extrastriate visual cortex via ventral and dorsal streams, in P-STNet, the parallel

combination of the ANN and the SNN is employed to extract the original spatio-

temporal information from samples, and the extracted information is transferred

to a posterior SNN for classification.

Results: The experimental results of the two STNets obtained on six small and two

large benchmark datasets were comparedwith eight commonly used approaches,

demonstrating that the two STNets can achieve improved performance in terms

of accuracy, generalization, stability, and convergence.

Discussion: These prove that the idea of combining ANN and SNN is feasible and

can greatly improve the performance of SNN.

KEYWORDS

hybrid network, spiking neural network, artificial neural network, spatio-temporal

information, STNet

1. Introduction

At present, artificial neural networks (ANNs), especially deep neural networks, have

become the tool of choice for many machine learning tasks. They have been successfully

applied to many fields such as pattern recognition (Abiodun et al., 2019), automatic control

(Seo, 2013), biology (Kang et al., 2017), medicine (Huang et al., 2019), as well as economics

(Li and Ma, 2010), and achieved exciting results. The theoretical research of ANNs has also

achieved fruitful results, reflected in structural adjustment, selection of activation functions,

improvement of learning methods, etc. The applications of other techniques such as weight

initialization, batch normalization, regularization, and dropout also enable ANNs to achieve

advanced performance and strong generalization.

However, there is a fatal flaw in ANNs. The internal state is calculated and expressed

by continuous signals in the spatial domain (Xie et al., 2020). This makes ANNs not only

farther from real human brain activity (Cheng et al., 2020), but also increases energy

consumption and processing demands at an unsustainable speed for higher accuracy
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(Davidson and Furber, 2021), which further limits the potential of

neuromorphic hardware.

In contrast, a spiking neural network (SNN) uses discrete

spiking signals belonging to the time domain, instead of the

continuous values in an ANN, to process and transmit information

(Xie et al., 2020). Each dynamic spiking neuron fires a spike when

the internal state of the neuron (i.e., the membrane potential)

reaches a certain threshold. Evidence reveals that in the biological

neuron, actual film channels control the movements of particles

over the layer by opening and shutting in light of voltage changes

because of inborn current flows and remotely led to signals (Rafi,

2021). The human brain disposes of information between neurons

through electrical motivations (Taherkhani et al., 2020). Therefore,

due to its discrete spiking signals and dynamics, an SNN is more

biologically realistic and biologically interpretable than an ANN

(Fu and Dong, 2022). Meanwhile, because of its discrete and

efficient event-driven computing, an SNN consumes less energy

than an ANN in the implementation of neuromorphic hardware

(Kheradpisheh and Masquelier, 2020).

However, the performance of spiking neural networks is not yet

satisfactory (Muramatsu and Yu, 2021). There are several reasons

for this. First, the non-differentiable property of the spike activity

makes the excellent gradient descent algorithm inapplicable in SNN

(Hao et al., 2020). Second, due to the discrete nature of the spiking

mechanism, the continuous-value dataset is forced to be converted

into a spiking time series before being fed into the SNN, which

may lead to information loss and further adversely affect the SNN

experimental results (Muramatsu and Yu, 2021).

There are currently two ways to solve these problems. One is

to improve the SNN by fully mimicking biological realities. For

example, spike-timing dependent plasticity (STDP) observed in

mammalian visual cortex (Kheradpisheh et al., 2018) is usually used

to update synaptic weights locally based on pre- and post-spike

activities. It is then developed into a supervised learning rule, such

as dopamine-modulated STDP, which has been observed in several

different experiments on the hippocampus and prefrontal cortex

(Nobukawa et al., 2019). In order to simulate the random synaptic

connections of the biological network in the human brain, Zhao

et al. (2021) applies Dropout and DropConnect technologies in the

SNN. Nonetheless, it is still not possible to make an SNN reach

the performance of an ANN through only analogous biological

realities.

The other way of thinking is to improve SNN by drawing

on the advanced ANN. For instance, the ANN-SNN conversion

scheme, that is, copying the weights of a trained ANN to an

SNN with the same structure, is a common training method

(Rueckauer et al., 2017), but it requires a large number of time

steps and brings accuracy loss during the conversion process. The

surrogate gradient method (Stewart and Neftci, 2022) is a gradient

descent method that works for SNNs with some approximation

assumptions. However, finding differentiable alternatives to neuron

functions to match the performance of ANNs remains a challenge

(Nguyen et al., 2021). Zhang et al. (2021) proposed the Rectified

Linear Postsynaptic Potential function as a new spiking neuron

model by analogy with the Rectified Linear Unit (ReLU) function

in ANN and alleviates dead neuron problem.

In addition, the direct combination of SNNs and ANNs has

been verified as an effective choice to improve the performance

of SNNs, because it can give full play to the advantages of both.

Xu et al. (2018) proposed a convolutional neural network (CNN)-

SNN model to improve the feature extraction ability of SNNs

by using CNN extracting image features for SNN. However, its

CNN and SNN parts are trained separately, which increases the

computational burden. Muramatsu and Yu (2021) built a versatile

hybrid neural network by combining an ANN and an SNN, and its

accuracy is verified to be close to that of ANN but it ignores the

combination of temporal and spatial information.

The human brain is a complex and comprehensive spatio-

temporal information processing machine (Kasabov, 2014). Spatio-

temporal information in biological neural systems enables the

human brain to work efficiently with high-density information

representations because not only space but also time carry

information (He et al., 2019). Therefore, in this article, we propose

a combined network, namely the Spatio-Temporal Combined

Network (STNet). Different from existing networks, the STNet pays

more attention to the combination of the spatial signal extracted

from the ANN and the spiking time signal from the SNN. This

makes up for the defect that an ANN or an SNN only have a single

signal to express information, thereby increasing the richness of

information to develop advantages from both. Moreover, the STNet

realizes simultaneous learning in the ANN and SNN layers via the

joint use of the gradient descent and SpikeProp method (Bohte

et al., 2002) instead of training the SNN part after completing the

ANN training.

The originality of this article is that we provide two types of

STNet, a concatenated version, C-STNet, and a parallel version, P-

STNet. The construction of these two architectures is motivated by

the simulation of the processing of visual information in the visual

cortex. Visual information is sent to the extrastriate visual cortex

for final visual processing by the primary visual cortex (Joukal,

2017). Inspired by this process, in the C-STNet, we use an ANN to

extract the simple spatial information of the datasets, and convert

its output to spike times as the inputs of an SNN. Then, the

SNN is regarded as the extrastriate visual cortex for classification.

Furthermore, in the view that information from the primary visual

cortex reaches the extrastriate visual cortex via the ventral and

dorsal streams (Joukal, 2017), for the P-STNet, we combine an

ANN and an SNN in parallel to jointly extract the spatio-temporal

information of objects, and transmit the processed spiking time to

an SNN for classification. Notice that the processed spiking time

is the combination of the initial SNN’s outputs and the converted

counterparts from the spatial signals extracted from the ANN.

The rest of the article is organized as follows. The preliminary

knowledge about the neuron model of an ANN and an SNN is

introduced in Section 2. The structures and learning algorithms

of the C-STNet and the P-STNet are given in Section 3. The

classification experiments to evaluate the C-STNet and the P-STNet

are presented in Section 4. Conclusions are provided in Section 5.

2. Preliminary knowledge

2.1. Neuron model of ANN

A fully connected ANN is made up of multiple layers of

neurons. The neurons in the previous layer transmit values
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FIGURE 1

Schematic diagram of SRM.

forward, while the posterior neuron adds all these weighted inputs

and uses the activation function to map this summation. Therefore,

the output of the posterior neuron can be written as

Rq = f (6n∈Ŵqwnqxn), (1)

Where Ŵq denotes the set of all previous neurons connected

to the posterior neuron q. wnq is the weight between the previous

neuron n and the posterior neuron q. xn denotes the output of the

previous neuron n. f (·) is the activation function, and we use the

sigmoid function in this article.

2.2. Neuron model of SNN

In a like manner, an SNN is composed of multiple-layer spiking

neurons. For the basic unit, the spike response model (SRM) is

one of the commonly used neuron models because it conforms to

biological reality and requires few calculations (Amin et al., 2017).

Although it looks similar to the neuron model of an ANN, each

connection between two neurons contains multiple synapses as

shown in Figure 1. For simplicity, it is assumed that each neuron

generates at most one spike during the simulation time window

interval T. The details of the specific calculation are described

as follows.

In an SRM, each presynaptic neuron transmits the spiking

time to the postsynaptic neuron through K synapses, where each

synapsis has a different time delay. The postsynaptic neuron j

receives a set of spikes from all its presynaptic neurons to enhance

its internal state variable, namelymembrane potential uj(t), andwill

fire a spike if uj(t) crosses a threshold θ . The moment when uj(t)

reaches θ is called the firing time. Therefore, the firing time tj is a

nonlinear function of uj:

tj = tj(uj). (2)

The membrane potential uj(t) of neuron j is defined as the sum

of all weighted post-synaptic potentials (PSPs) produced by the

received spiking time series.

uj(t) = 6q∈6j6
K
k=1v

k
qjy

k
q(t), (3)

Where Ŵj denotes the set of all presynaptic neurons connected

to the postsynaptic neuron j. vkqj represents the weight of the k-

th synapse between the neuron q in the previous layer and the

postsynaptic neuron j. ykq(t) denotes the PSP, given as

ykq(t) = ǫ(t − tq − dk), (4)

Where tq is the spiking time fired by the presynaptic neuron q,

and dk is the time delay associated with synaptic terminal k. ǫ(s) is

the spike response kernel employed to simulate the PSP defined as

ǫ(s) =

{

s
τ
exp(1− s

τ
), s > 0

0, s ≤ 0
, (5)

Where τ is a time constant to determine the shape of ǫ(s). If the

membrane potential of the postsynaptic neuron does not reach the

threshold within the time window limitation, the neuron will not

emit any spikes. For simplicity, it is stipulated that a neuron fires

one spike at most.

3. Methods

In this section, we introduce a novel kind of spiking

neural network, namely the Spatio-Temporal Combined Network

(STNet), which combines the spatial domain information delivered

by an ANN and the time domain information transmitted by an

SNN. Two versions are described separately below, a concatenated

version named C-STNet and a parallel version named P-STNet.

3.1. Network structure of the C-STNet

C-STNet is the concatenated version to realize the serial

combination of spatio-temporal information by stacking an ANN

on the front and an SNN on the back, as shown in Figure 2. The

operating mechanism of the former module is a simple ANN, while

the latter module is an ordinary SNN. They are connected by a

coding operation that converts the spatial information extracted

from the ANN into temporal information.

The input layer of the ANN is responsible for receiving data and

feeding it into the C-STNet, where each neuron represents a feature

of the data, and an additional bias neuron is added. Then, several

ANN hidden layers follow and the neurons of which perform the

ANN neuron model operations described in Section 2.1. The bias

neuron of the input layer is connected in pairs with all neurons of

the adjacent ANN hidden layer like other feature neurons.

The coding layer is indispensable for realizing the serial

conversion of spatio-temporal information. Its neurons are in one-

to-one correspondence with the neurons in the last layer of the

ANN’s hidden layers. Considering that the higher the spatial feature

value extracted by the ANN corresponds to the earlier the spike in

the SNN is fired, the coding operation is defined as the reciprocal

form

tq =
β

Rq
, (6)

Where Rq is the output of the q-th neuron in the last layer

of the ANN hidden layers. β is a constant parameter and is not
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FIGURE 2

The topology structure of the C-STNet.

learnable. tq is the output of the coding neuron q. If tq exceeds the

time interval, i.e., tq > T, tq is forcibly set to T.

Next, the spiking time is transmitted in the manner of the SRM

neuron model as described in Section 2.2. When the membrane

potential of the output neuron crosses the threshold, it will emit

a spike. Finally, the C-STNet classifies the input sample into

the category corresponding to the output neuron of the first

triggered spike.

3.2. Network structure of the P-STNet

With the view that the human brain is a complex integrated

spatio-temporal system, it is thus essential for methodologies to

operate over both the space and time domains (Wang et al., 2018).

In order to extract the spatio-temporal information of the network,

we updated the C-STNet to a dual-path structure, namely the P-

STNet, as shown in Figure 3. Specifically, P-STNet first divides into

two paths, like the biological ventral and dorsal streams, using the

raw data for parallel calculations in an SNN and an ANN and then

combines the two paths in the form of serial splicing in the coding

layer. Finally, the P-STnet executes classification through the rear

SNN. The calculation details of the newly added upper path SNN

and the rear SNN are the same as the SNN part in the C-STNet,

except that the number of neurons contained in each layer may be

different. The operation scheme of its lower path is the same as the

corresponding part in the C-STNet.

It is worth mentioning that before the raw dataset is fed into

the upper path, it needs to be encoded into the spiking trains. A

popular population coding scheme that is usually used is given in

Figure 3, which is a good choice for promoting an SNN to higher

performance (Pan et al., 2019). Specifically, each feature of the

sample is converted to G spikes by G Gaussian fields. Therefore,

the number of input neurons in the upper path is equal to N × G,

where N is the number of the features.

In the cases where a dataset contains too many features,

adopting the population coding scheme will generate a large

number of input neurons, thus increasing the computational

burden. At this time, we adopted a simpler linear time delay coding

as follows:

xc =
xmax − x

xmax − xmin
× T, (7)

Where x ∈ R
N is any sample, and xc is its encoded counterpart.

xmax and xmin represent themaximum andminimum values of each

feature among all samples, respectively. The coding method follows

the rule that large values correspond to early spikes and vice versa.

3.3. Learning algorithms

In this section, we use SpikeProp and gradient descent methods

to derive the learning formulas of the weights in the two STNets

and give their learning algorithms. Let (x, y) be any sample of the

training dataset, where x = (x1, x2, · · · , xN) is an N-dimensional

normalized feature vector. y ∈ Z is the category label of the sample,

which is encoded as a series of expected trigger time {tdj }
J
j=1. J is

the number of neurons in the output layer of STNet. Assuming

{tj}
J
j=1 is the corresponding actual trigger time of the STNet, the

loss function of the network is

E(W) =
1

2
6

J
j=1(tj − tdj )

2, (8)

Where tdj and tj are the j-th expected and actual network

output spiking time, respectively. W is a combination of all weight

parameters used in STNet.

For convenience, we tested a four-layer C-STNet (including an

input layer, an ANN hidden layer, a coding layer, and an output

layer) and a four-layer P-STNet (including an input layer, a hidden

layer, a coding layer, and an output layer) as examples. For the C-

STNet, during backpropagation from the output layer to the coding

layer, the SpikeProp algorithm is executed to update the weights

between these two layers. Given the weight vkqj, denoting the weight

of the k-th synapse between the q-th neuron in the coding layer

and the j-th neuron in the output layer, it is updated according to

Equations (2)–(5) and (8) as

vkqj = vkqj + 1vkqj, (9)
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FIGURE 3

The topology structure of P-STNet.

and

1vkqj = −η
∂E(W)

∂vkqj
= −η

∂E(W)

∂tj

∂tj

∂uj(tj)

∂uj(tj)

∂vkqj

= −η(tj − tdj )
−1

∂uj(t)/∂t(tj)
ykq(tj)

= −η
tdj − tj

6
Q
q′=16

K
k=1

vkq′ (t)∂y
k
q′ (t)/∂t(tj)

ykq(tj)

, −ηδjy
k
q(tj),

(10)

where

∂ykq′ (t)

∂t
(tj) =

1

τ
e1−(tj−tq−dk)/τ −

1

τ
ykq′ (tj), (11)

and η ∈ (0, 1) is learning rate.

Then, the changes in the weights between the input layer and

the ANN hidden layer are defined as

1wnq = −η
∂E(W)

∂wnq
= −η

∂E(W)

∂tq

∂tq

∂wnq
, (12)

Where wnq represents the weight between the n-th neuron in

the input layer and the q-th neuron in the ANN hidden layer. ∂E(W)
∂tq

can be calculated as

∂E(W)

∂tq
= 6

J
j=1δj

∂uj(tj)

∂tq

= 6
J
j=1δj6

K
k=1v

k
qj∂y

k
q(tj)/∂tq

= 6
J
j=1δj6

K
k=1v

k
qj(−

1

τ
e1−(tj−tq−dk)/τ +

1

τ
ykq(tj))

(13)

According to Equations (1), (6),
∂tq

∂wnq
is computed by

∂tq

∂wnq
=

∂tq

∂Rq

∂Rq

∂wnq
=

−β

(Rq)2
Rq(1− Rq)xn. (14)

Therefore, by synthesizing (Equations 12–14), 1wnq is

expressed as

1wnq = −η(6J
j=1δj6

K
k=1v

k
qj

∂ykq(tj)

∂tq
)
−β

(Rq)2
Rq(1− Rq)xn

= ηβ(6J
j=1δj6

K
k=1v

k
qj

∂ykq(tj)

∂tq
)
Rq(1− Rq)xn

(Rq)2
.

(15)

The weight adaptation rule is

wnq = wnq + 1wnq. (16)

In summary, the pseudocode for training the C-STNet is given

in Algorithm 1.

For the P-STNet, the weight update rules between the output

layer to the coding layer are the same as Equations (9)–(11), and

the rules for the lower path are the same as Equations (12)–(16).

Whereas, the weights b between the input layer and the hidden

layer in the upper path are changed according to

bkmp = bkmp + 1bkmp, (17)

and

1bkmp = −η
∂E(W)

∂bkmp

=
η[6J

j=1δj(6
K
k=1

vkpj
∂ykp(tj)

∂tp
)]ykm(tp)

6M
m=16

K
k=1

bkmp∂y
k
m(t)/∂t(tm)

, (18)
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Input: A training dataset.

// Pretreatment:

Normalize the features of each sample to

(x1, x2, · · · , xN ) by the maximum-minimum

mechanism;

Obtain every network input (x1, x2, · · · , xN+1) by

adding the bias xN+1;

Encode the label of each sample to an expected

spiking time series (td1 , t
d
2 , · · · , t

d
J ).

// Initialization and settings:

Initialize all parameters: W;

Initialize the epoch: epoch = 1;

Set the time constant τ of the spike response

kernel and the spike interval limit T;

Set the learning rate η;

Set the number of hidden neurons and synapses,

respectively;

Set the number of stop epochs: Max_Epoch;

Set the desired minimum of MSE: Min_MSE.

// Training:

While epoch < Max_Epoch and MSE > Min_MSE do

For every sample do

// Forward propagation:

Obtain the network outputs from according to

(1), (6) and (2)-(5) in sequence.

// Backward propagation:

Update W using (9)-(16).

End

epoch = epoch+ 1.

End

Output: The optimal parameters W∗.

Here the mean squared error (MSE) is the average

of the sum of squared errors between the target

outputs and corresponding outputs of the network

for all samples.

Algorithm 1. C-STNet.

Where bkmp is the weight between the k-th synapse of the

presynaptic neuron m and the posterior neuron p. δj can be got

through Equation (10). Therefore, the learning algorithm of P-

STNet can be summarized in Algorithm 2, which is the same as

Algorithm 1, except that during backward propagation Algorithm

2 updates weights using Equations (9)–(18). For simplicity, the flow

scheme of Algorithm 2 is omitted here.

Notice that the learning rates in Algorithms 1, 2 are fixed.

In order to progressively explore the optimal parameters on a

finer scale as the training progresses, the learning rate can also be

attenuated at a decay rate in each epoch.

4. Results

To evaluate the performance of the C-STNet and the P-STNet,

we conducted experiments using six small datasets and two large

datasets. In this section, we compare the experimental results of

these two STNets with other eight existing approaches including

TABLE 1 Details of eight benchmark datasets.

Dataset No. of
features

No. of
categories

No. of
samples

Sonar 60 2 208

Liver 6 2 345

Breast cancer 9 2 683

PMIA 8 2 768

Iris 4 3 150

Wine 13 3 178

Statlog Landsat 36 6 6,435

MNIST 28×28 10 70,000

seven SNNs: SpikeProp (Bohte et al., 2002), SWAT (Wade et al.,

2010), SRESN (Dora et al., 2016), TMM-SNN (Dora et al.,

2018), GE-SNN (López-Vázquez et al., 2019), SPDO (SpikeProp

with Dropout) (Zhao et al., 2021), and SPDC (SpikeProp with

DropConnect) (Zhao et al., 2021) as well as one ANN. The results of

the seven SNNs can be found in Dora et al. (2018), López-Vázquez

et al. (2019), and Zhao et al. (2021), while the results for the

ANN were obtained by our own experiment using the open-source

software library, Keras. For comparison, the ANN we used in this

article is a three-layer fully-connected network with a sigmoid

activation function, cross-entropy loss, and Adam optimizer. The

two STNets used in the experiments were the pseudo-four-layer

structures as described in Section 3.3. Since the coding layer in

STNet only provides information conversion without performing

substantial calculations, the pseudo-four-layer STNet is actually

equivalent to a three-layer network in the operating mechanism.

The experimental results of the two STNets and the ANN reported

for the small datasets were the average of five independent five-

fold cross-validation experiments. The reported results on the large

datasets were the average of five independent experiments because

their training and testing sets have been defined in advance.

4.1. Datasets

Eight benchmark datasets including six small datasets, i.e.,

Sonar, Liver, Ionosphere, Breast cancer, PIMA, Iris, and Wine,

and two large datasets, i.e., Statlog Landsat and MNIST, were

employed in this article. The MNIST dataset comes from

http://yann.lecun.com/exdb/mnist/, and the other seven datasets

are from the UCI machine learning repository. Details including

the number of features, categories, and samples contained in each

dataset are shown in Table 1. It can be seen that there are two-

class and multi-class datasets, small and large sample datasets,

and few and many feature datasets, so these selected datasets

are representative.

During the data preprocessing step, all the datasets only do

the min-max normalization except for Breast cancer, MNIST, and

Statlog Landsat. As for the Breast cancer dataset, on account of it

containing some missing values, we filled them with the average of

all existing values in the corresponding feature. For the MNIST
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FIGURE 4

C-STNet accuracy changes with the di�erent values of (A): The number of hidden neurons, (B): The number of synapses, and (C): The constant β in

the coding operation.

dataset, each two-dimensional digital image needs to be pulled into

one-dimensional form before being passed into our fully connected

networks. The Statlog Landsat dataset contains 36 features, which

are composed of four-spectral values of 3 × 3 neighborhood pixels

in a satellite image. Since the classification is associated with the

central pixel of each neighborhood, we averaged the nine pixels in

each band as a new feature as in Zhao et al. (2021). Thus, the Statlog

Landsat dataset is reduced from 36 features to four features.

Using dimensionality reduction on a large dataset such as

Statlog Landsat can shorten the running time. Therefore, in our

experiments, except for the C-STNet which used the original

Statlog Landsat with 36 features, all other approaches employ the

reduced dimensionality Statlog Landsat with four features. Since

the C-STNet does not use the population coding scheme that can

ensure the full extraction of enough information from the reduced

dimensionality Statlog Landsat through re-upgrading the dataset

like other SNNs, it can only operate using the original Statlog

Landsat to obtain satisfactory results.

4.2. Parameter settings

As is well-known, neural network performance depends not

only on weight learning but also on the choice of other key

parameters. Therefore, in this subsection, we discuss the selection

of some pivotal parameters, including the number of neurons Q

in the ANN hidden layer, the number of synapses K, and the

constant β in Equation (6) in the C-STNet, as well as the number

of Gaussian fields G, the number of SNN neurons P and ANN

neurons Q in the hidden layer in the P-STNet. Here we took the

Sonar dataset as an example, and the parameter selection for the

other datasets was similar.

Figure 4 shows the accuracy changes with the different values of

the three key parameters in C-STNet. First, it can be observed from

Figure 4A that as Q increased from 10 to 50, the training accuracy

increases constantly, while the test accuracy goes up first and then

goes down. This indicates that more hidden neurons in a certain

range can help improve the network performance. Whereas once

Q is greater than 40, the network is too complex to classify the test

dataset well. Therefore, we set Q to 40 on the Sonar dataset, and

to 200 on the MNIST dataset. The exact values of Q used on other

datasets can be viewed in Table 3.

Then, Figure 4A, shows that when neurons were connected

with six synapses, the C-STNet performed the best. This analysis is

the same as that in Figure 4A. Hence, we set K to 6 on all the small

datasets and 10 on the large Statlog Landsat and MNIST datasets.

Figure 4C exhibits the change of the corresponding accuracy

with the constant β in (6) varying from 0.25 to 2. When β is 1,

the network accuracy is the highest. If the value of β is too large or

too small, it will damage the network performance. Therefore, we

set β to 1 for all the datasets.

For the P-STNet, the accuracy changes with the number of

hidden neurons (P + Q), and the relationship between P and Q

is shown in Figure 5. Because the Sonar dataset contains more

features, linear time delay coding is used here. From Figure 5A, it

can be seen that the best result was obtained when the total number

of hidden neurons was set to 30. This is because the test accuracy

was the highest at this time, and fewer or more hidden neurons

will make the network underfit or overfit. Notably, the relationship

between P and Q was not considered here as we had set P equal to

Q. For example, if the number of neurons in the hidden layer H

was 30, then both P and Q were 15. Therefore, we set the number

of hidden neurons to 30 for the Sonar dataset.

Here we will discuss the influence of the relationship between P

and Q on networkperformance. Assuming that the total number

of hidden neurons was a constant of 30, the results of P to Q

ratios set to 1:5, 1:2, 1:1, 2:1 and 5:1 are plotted in Figure 5B. It

can be observed that as the ratio decreased from 5 to 0.2, the

training accuracy curve showed an upward trend. This indicates

that the higher the proportion of the ANN in the P-STNet, the

more it helps the network learn better. For the test accuracy, it was

the highest when the ratio is 1:1. But once the balance between

P and Q was broken, it was impaired. This manifests that the

high proportion of the ANN in the P-STNet can only unilaterally

improve the training performance, but damages the generalization

ability of the network. On the contrary, a larger proportion of the

SNN causes a decrease in classification accuracy, but it guarantees

a certain generalization ability. According to the above discussion,

the balance between P and Q can cause the P-STNet to exhibit both

good classification ability and generalization ability. Therefore, we

set P equal to Q for the Sonar dataset and set the ratios of P to Q
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FIGURE 5

P-STNet accuracy changes with the di�erent values of (A): The number of hidden neurons and (B): The ratio of P and Q in the hidden layer.

TABLE 2 Empirical settings of some parameters in all experiments.

Parameter Description Value

τ Time constant of the spike response

kernel

7

T Spiking time window limit 10

dk Every time delay k

θ Potential threshold 1

to approximately 1 for the other datasets. The specific values of P

and Q can be referred to in Table 3, which are set to 150 on the

MNIST dataset.

In addition, the number of Gaussian fields G in the population

coding and the learning rate are also very important parameters.

Their selection schemes are the same as the above and only

the results of parameter selection are given. For the number of

Gaussian fields used in the P-STNet, it was finally set to 5 for

the Liver dataset, and to 6 for the other datasets except for

Sonar and MNIST. For the learning rates of the two STNets, the

down-regulated learning rate with a decay rate of 0.99 and 0.95 as

well as an initial value of 0.1 was used for the Statlog Landsat and

PIMA datasets, respectively, and a fixed learning rate of 0.03 was

employed for other datasets. The empirical settings of some extra

parameters are shown in Table 2.

4.3. Experimental results

In order to evaluate the performance of C-STNet and P-STNet,

the experimental results for six small datasets (i.e., Sonar, Liver,

Breast cancer, PIMA, Iris, and Wine) are compared with other five

SNNs, i.e., SpikeProp, SWAT, SRESN, TMM-SNN, and GE-SNN as

well as an ANN. Table 3 summarizes the detailed results involving

the network architecture, the number of epochs, training accuracy,

and testing accuracy, where the architecture column exhibits the

number of neurons in each layer of the corresponding approaches.

For the C-STNet and P-STNet, they are in the form of (N+1) :Q : J

and (N × G + (N + 1)) :(P + Q) : J or (N + (N + 1)) :(P + Q) : J,

respectively. The bold numbers in the table indicate the best results

of the corresponding evaluation indicators among all approaches.

From a rough comparison in Table 3, it can be seen that the

number of epochs required by the two STNets is relatively small.

For the Sonar dataset with many features, it can be seen that

the training accuracy and test accuracy of two STNets and ANN

were significantly higher than those of SpikeProp. This indicates

that the addition of ANN operations helps the neural network

to classify multi-feature datasets. Although the test accuracy of

the C-STNet was lower than the ANN, both the training and test

accuracies of the P-STNet are higher than the ANN. This suggests

that the structure that processes continuous spatial information

and discrete temporal information in parallel is better than the

serial structure or the ANN for multi-feature classification tasks.

On the other five datasets with fewer features, although the training

accuracies of the two STNets were generally lower than some other

approaches, the best results of the testing accuracy were always

from one of these two STNets. This implies that the two STNets

have good generalization performance. To visually compare the test

accuracies of all approaches, we ranked the test results for each

dataset, as listed in the last column of Table 3. Due to incomplete

approaches for comparison for the Sonar dataset, we averaged this

ranking from the other five datasets, and the results are displayed

in Table 4. It can be clearly observed that the P-STNet ranked the

highest, followed by the C-STNet. This demonstrates that the test

accuracies of the two STNets were generally better than the other

SNNs and even the ANN.

The results of test accuracy were also supported by the

Friedman test (Wang et al., 2020) with a confidence level of

0.05. The p-value of 3.1275e-05 indicates that there was a

statistically significant difference between all approaches. The

Nemenyi post hoc test (Wang et al., 2020) was executed in pairs

for any two approaches. Only the Nemenyi post hoc test p-value

for the pairwise comparison between the P-STNet and SWAT
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TABLE 3 Experimental results of eight approaches on the six little datasets.

Dataset Approach Architecture # epochs Training
accuracy (%)

Testing
accuracy (%)

Rank

Sonar SpikeProp 60:30:02 88 84.7 (1.6) 80.1 (3.9) 4

ANN 60:40:02 100 95.8 (0.5) 84.6 (2.4) 2

C-STNet 61:40:02 40 97.8 (1.6) 84.3 (1.3) 3

P-STNet (60+ 61):(15+ 15):2 52 96.3 (1.3) 84.9 (1.4) 1

Liver SpikeProp 37:15:02 3000 71.5 (5.2) 65.1 (4.7) 6

SWAT 36:468:2 500 74.8 (2.1) 60.9 (3.2) 7

SRESN 36:(6–9) 715 60.4 (1.7) 59.7 (1.7) 8

TMM-SNN 35:(5–8):2 442 74.2 (3.5) 70.4 (2.0) 3

GE-SNN - - 76.4 (2.0) 67.2 (3.0) 5

ANN 6:15:02 100 74.6 (1.5) 71.8 (0.7) 2

C-STNet 7:15:02 68 69.4 (2.8) 69.0 (1.2) 4

P-STNet (30+ 7): (7+ 7):2 57 72.3 (1.3) 72.0 (0.9) 1

Breast

cancer

SpikeProp 55:15:02 1000 97.3 (0.6) 97.2 (0.6) 2

SWAT 54:702:2 500 96.5 (0.5) 95.8 (1.0) 8

SRESN 54: (8–12) 306 97.7 (0.6) 97.2 (0.7) 2

TMM-SNN 54: (2–8):2 70 97.4 (0.3) 97.2 (0.5) 2

GE-SNN - - 97.8 (0.7) 95.9 (0.8) 7

ANN 9:15:02 100 97.5 (0.1) 97.1 (0.2) 5

C-STNet 10:14:02 53 97.4 (0.5) 97.1 (0.2) 5

P-STNet (54+ 10): (8+ 7):2 39 97.4 (0.1) 97.3 (0.1) 1

PIMA SpikeProp 49:20:02 3000 78.6 (2.5) 76.2 (1.8) 5

SWAT 54:702:2 500 77.0 (2.1) 72.1 (1.8) 7

SRESN 48: (9–14) 254 70.5 (2.4) 69.9 (2.1) 8

TMM-SNN 48: (5–14):2 160 79.7 (2.3) 78.1 (1.7) 2

GE-SNN - - 79.0 (1.3) 74.8 (1.3) 6

ANN 8:15:02 100 78.4 (0.2) 77.4 (0.2) 3

C-STNet 9:15:02 50 78.2 (0.2) 78.2 (0.5) 1

P-STNet (48+ 9): (8+ 7):2 59 78.5 (0.3) 77.4 (0.4) 3

Iris SpikeProp 25:10:03 1000 97.2 (1.9) 96.7 (1.6) 6

SWAT 204–312–3 500 96.7 (1.4) 92.4 (1.7) 8

SRESN 24: (6–10) 102 96.9 (1.0) 97.3 (1.3) 3

TMM-SNN 24: (4–7):3 94 97.5 (0.8) 97.2 (1.0) 4

GE-SNN - - 99.2 (0.7) 93.9 (2.1) 7

ANN 4:10:03 100 97.7 (0.3) 97.1 (0.3) 5

C-STNet 5:10:03 42 97.7 (0.2) 97.7 (0.5) 1

P-STNet (24+ 5): (5+ 5):3 37 98.0 (0.3) 97.6 (0.5) 2

Wine SpikeProp 79:10:03 1000 99.2 (1.2) 96.8 (1.6) 5

SWAT 78:1014:3 500 98.6 (1.1) 92.3 (2.4) 6

SRESN 78: (5–10) 128 96.9 (1.6) 91.0 (1.2) 7

TMM-SNN 78:03:03 80 100 (0) 97.5 (0.8) 4

GE-SNN - - 96.4 (1.6) 86.8 (4.6) 8

ANN 13:08:03 100 99.9 (0.1) 99.1 (0.3) 1

C-STNet 14:08:03 41 99.9 (0.2) 98.8 (0.4) 3

P-STNet (78+ 14): (4+ 4):3 57 99.9 (0.2) 99.1 (0.6) 1

The bold numbers indicate the best results of the corresponding evaluation indicators among all approaches.
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TABLE 4 Average rankings of the test accuracies for the eight approaches on the six small datasets.

SpikeProp SWAT SRESN TMM-SNN GE-SNN ANN C-STNet P-STNet

4.8 7.2 5.6 3.0 6.6 3.2 2.8 1.6

The bold values indicate the top two best results among all comparing approaches.

TABLE 5 Nemenyi post hoc test p-values for pairwise comparison between SWAT and other seven approaches.

SpikeProp SRESN TMM-SNN GE-SNN ANN C-STNet P-STNet

SWAT 0.8304 0.9000 0.1624 0.9000 0.2467 0.1011 0.0115

The bold values indicate the top two best results among all comparing approaches.

FIGURE 6

Boxplots of the generalization gaps on the five small datasets for the eight approaches.

of 0.0115 was lower than 0.05, which demonstrated that the P-

STNet outperformed SWAT with a statistical significance at the

95% confidence level. Judging from the p-values between SWAT

and other approaches given in Table 5, the P-STNet also obtained

the best testing accuracy in terms of statistical significance among

all approaches, followed by the C-STNet.

Regarding the evaluation of the generalization of the C-STNet

and P-STNet, Figure 6 exhibits the boxplots of the generalization

gaps for the eight approaches for the five small datasets excluding

Sonar. The generalization gap was defined as the difference between

training and testing accuracy (Hoffer et al., 2017), which can

be easily calculated from Table 3. The boxplot corresponding

to each approach was drawn according to the minimum, first

quartile, median, third quartile, and maximum values obtained

by the generalization gaps for the five small datasets. It can be

seen that although there was an outlier (caused by the large

generalization gap for the Wine dataset) existing in the C-STNet

boxplot, the distances between the maximum and minimum of

the two-STNet boxplots were much shorter than those of other

approaches, indicating that the generalization gap values of the two

STNets for the five datasets were more concentrated. Moreover,

the minimum, first quartile, median, third quartile, and maximum

values of the boxplots for the two STNets were all lower than or

equal to the corresponding parts of the other approach boxplots,

which showed that the C-STNet and the P-STNet have better

generalization abilities.

In order to evaluate the stabilities of C-STNet and P-STNet,

the boxplots of the test-accuracy standard deviations for the eight

approaches on the five small datasets except for Sonar are plotted

in Figure 7. It can be observed that the minimum, first quartile,

median, third quartile, and maximum values as well as outliers of

the boxplots of the ANN and the two STNets were much lower

than those of other approaches. Besides, the range of lines from

the maximum outlier to the minimum value of the ANN and the

ranges of lines from the maximum outlier to the minimum outlier

of the two STNets were relatively short. These illustrate that the

test-accuracy standard deviations of the ANN and the two STNets

were usually lower than other approaches, and did not rely on the

datasets. This further demonstrated that the stabilities of multiple

independent experimental results of the ANN and the two STNets

were better than the others.

In order to evaluate the convergence of C-STNet and P-STNet,

we took a two-category PIMA dataset and a multi-category Iris

dataset as examples, and plotted the accuracy curves of four

approaches (SpikeProp, ANN, C-STNet, and P-STNet) as the

number of epochs on these two datasets, as shown in Figure 8.

From the results for these two datasets, we can see that all accuracy

curves as the epoch first increased quickly, then increased slowly,

and finally stabilized. However, it is clear that the convergence

speeds of the three SNNs were faster than that of the ANN.

The accuracy results of the ANN and the two STNets that could

be converged were higher than those of SpikeProp. In brief, the
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FIGURE 7

Boxplots of the test-accuracy standard deviations on the five small datasets for the eight approaches.

FIGURE 8

Accuracy curves change as the number of epochs for four approaches on (A): The two-classified PIMA dataset and (B): The multi-classified Iris

dataset.

C-STNet and the P-STNet performed well in terms of convergence

speed and accuracy.

In order to access the classification ability of the C-STNet

and the P-STNet on larger datasets, we conducted experiments

using the Statlog Landsat dataset to compare the two STNets

with four other approaches (i.e., SpikeProp, SPDO, SPDC, and

an ANN). From the experimental results as shown in Table 6,

it can be seen that the two STNets acquired the best testing

accuracies. The accuracy curves of the four approaches varying

with the number of epochs in Figure 9, shows that the two

STNets achieved the best testing accuracies. In addition, the

training accuracy of C-STNet was significantly higher than

other approaches. This may be because, unlike the other

methods, the C-STNet used the original Statlog Landsat dataset

with 36 features, which may have enabled the C-STNet to

obtain richer information from the dataset to produce a high

training accuracy.

We further conducted experiments on a larger-scale image

dataset, MNIST. Here the STNet structure used was a three-layer

fully connected perceptron. Since the MNIST dataset contains

many features, linear time delay coding was used for the P-STNet.

The experimental results of the two STNets are given in Figure 10.

The testing accuracies compared with SpikeProp, SPDO, and SPDC

are plotted in Figure 10A, where the result of SpikeProp is from

Arora et al. (2019) and the results of both the STNets are the average

from three experimental runs. It can be clearly seen that our two

STNets performed much better than the other three SNN-only

approaches due to the addition of the ANN components, suggesting

that the combination of an ANN and an SNN can indeed improve

the performance of an SNN alone.

Although the classification results of the two STNets on the

MNIST dataset were worse than convolutional neural networks,

they were better than networks that used SpikeProp alone. Thismay

be due to the fact that both the SNN and the ANN in STNet are not
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TABLE 6 Results of six approaches on the Statlog Landsat dataset.

Approach Architecture # epochs Training accuracy (%) Testing accuracy (%)

SpikeProp 101:70:6 500 85.8 (0.16) 80.3 (0.18)

SPDO 101:70:6 500 88.4 (0.08) 85.3 (0.06)

SPDC 101:70:6 500 88.9 (0.08) 85.9 (0.07)

ANN 4:25:6 500 86.7 (0.47) 86.1 (0.35)

C-STNet 37:25:6 303 91.5 (0.75) 86.4 (0.49)

P-STNet (24 + 5):(12 + 12):6 220 87.6 (0.44) 86.4 (0.79)

The bold values indicate the best result of the corresponding evaluation indicators among all comparing approaches.

FIGURE 9

Accuracy curves of the four approaches varying with the number of

epochs.

good at processing image datasets. Nonetheless, the experimental

results were enough to prove that the idea of combining an

ANN and an SNN is feasible and can greatly improve the SNN

performance, which motivates us to combine more advanced SNN

components with an ANN in the future.

Figure 10B shows theMSE curves of two STNets on the number

of epochs. It can be seen that starting from the 3rd epoch, the

gaps between the training and testing MSE curves of the two

STNets became very small, and remained small as the epoch

increased. This indicates that experiments on large datasets can

indeed avoid overfitting, and further shows that our approaches

can enhance the generalization ability by extracting two kinds

of information.

In summary, the P-STNet was better than C-STNet for the

Sonar, Liver, Breast cancer, Wine, and MNIST datasets in terms

of test accuracy, while it was not as good as the C-STNet for

the PIMA and Iris datasets. Their results were the same on the

Statlog Landsat dataset. According to the comprehensive ranking

and statistical comparison discussed above, the P-STNet was a

little better than the C-STNet on the whole. The reason for

these results may be that the parallel mechanism of the P-STNet

can extract both temporal and spatial information of datasets

from shallow layers to deep layers, which focuses on mining the

breadth of information, while the serial mechanism of the C-

STNet focuses on mining the depth of information. However, the

FIGURE 10

Experimental results on the MNIST dataset. (A): Testing accuracies of

the five approaches. (B): MSE curves of the two STNets.

series and parallel combinations may produce different results

in different application scenarios. The specific choice of either

the C-STNet or the P-STNet should depend on the specific tasks

and datasets.

5. Conclusion

In view of the cognitive manner that the visual cortex

processes visual information, this article proposes two types of

Spatio-Temporal Combined Network (STNet): a concatenated

version, C-STNet, and a parallel version, P-STNet. The C-STNet

is a front and back splicing form of an ANN and an SNN,

which is completed by converting continuous signals into discrete

spiking time series. The P-STNet is composed of ANN and

SNN calculations in parallel followed by an SNN, which realizes

the simultaneous extraction and processing of spatio-temporal

information. Finally, to evaluate the performance of the C-STNet
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and the P-STNet, experiments were conducted on six small and

two large classification datasets. The comparison results among

the two STNets and eight other popular approaches showed that

the two STNets performed better in terms of testing accuracy,

generalization, stability, and convergence. Furthermore, the P-

STNet had higher testing accuracy than the C-STNet on the whole.

These promising results warrant future investigations which may

continue to simulate neurobiological research findings to design a

more brain-like SNN to further improve its performance.
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