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Background: Children with benign childhood epilepsy with centro-

temporal spikes (BECT) have spikes, sharps, and composite waves on their

electroencephalogram (EEG). It is necessary to detect spikes to diagnose BECT

clinically. The template matching method can identify spikes e�ectively. However,

due to the individual specificity, finding representative templates to detect spikes

in actual applications is often challenging.

Purpose: This paper proposes a spike detection method using functional brain

networks based on phase locking value (FBN-PLV) and deep learning.

Methods: To obtain high detection e�ect, this method uses a specific template

matching method and the ‘peak-to-peak’ phenomenon of montages to obtain a

set of candidate spikes. With the set of candidate spikes, functional brain networks

(FBN) are constructed based on phase locking value (PLV) to extract the features of

the network structure during spike discharge with phase synchronization. Finally,

the time domain features of the candidate spikes and the structural features of the

FBN-PLV are input into the artificial neural network (ANN) to identify the spikes.

Results: Based on FBN-PLV and ANN, the EEG data sets of four BECT cases from

the Children’s Hospital, Zhejiang University School of Medicine are tested with the

AC of 97.6%, SE of 98.3%, and SP 96.8%.

KEYWORDS

spike detection, functional brain networks, phase locking value, network structure

features, ANN

1. Introduction

Epilepsy is a common neurological disease caused by temporary brain dysfunction
resulting from the abnormal discharge of brain cells. Benign childhood epilepsy with centro-
temporal spikes (BECT) is one of the most common epilepsy syndromes in children,
accounting for about 23% of childhood epilepsy (Shi et al., 2020). The onset age of BECT
patients is usually about 3–14 years, and the disease will slowly subside in their teens. Usually,
the seizures of BECT patients are considered benign. However, according to recent studies,
compared with healthy children of the same age and gender, the problems of attention
deficit and hyperactivity disorder in BECT patients are more significant (Tovia et al., 2011).
The common characteristics of the patients are seizures in the focal sensorimotor function
area in childhood, and a large number of spike discharges near the central and centro-
temporal regions during the attack period (Kirby et al., 2017). The diagnosis of epileptic
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diseases is mainly through clinical history and
electroencephalogram (EEG) examination. Through further
data analysis and clinical practice, it has been found that the
location and duration ratio of Rolandic region epileptiform
discharges in the entire EEG monitoring have gradually become
the main indicators for diagnosing patients with BECT syndrome
and determining the need for medication (Xu et al., 2021). This
indicator has become an important criterion for determining
whether BECT patients require drug therapy. Therefore, detecting
spikes can help doctors make more accurate diagnoses and
treatments for BECT patients. In hospitals, EEG technicians
usually read pictures and identify spikes by manual recognition.
However, the detection results are often different due to the
subjective factors of the inspectors. With the increased number
of EEG records, there will inevitably be misjudgments caused by
visual fatigue and other factors. Therefore, design and apply the
automatic detection algorithm of epileptic spikes can effectively
improve the accuracy and efficiency of diagnosis (Benbadis et al.,
2020).

In recent years, with the rapid development of signal analysis
and computer-aided intelligent diagnosis technology, research in
the direction of spikes detection has also made progress. Gloor
(1975) morphologically defined spikes in EEG as : (a) A triangular
transient with an amplitude at least twice the background signal
of the first 5 s of any channel in the EEG signal. (b) At least 200
ms duration. (c) Including the presence of a field defined by the
participation of the second adjacent electrode. Tzallas et al. (2006)
used the Kalman filter to estimate the autoregressive parameters
according to the non-stationarity of EEG signals, established a spike
detection model, and set the detection sensitivity threshold. The
filter output signal higher than the threshold is regarded as the
spike position, so this method is difficult to avoid the problem of
false positive spikes (FPS). Nonclercq et al. (2012) presented an
automatic detection algorithm based on time K-Means clustering,
which clusters candidate spikes, extracts the centroid of the cluster
to generate a new matching template. Jiang et al. (2021) proposed
an improved spike detection algorithm based on multiple template
matching and feature extraction. First, candidate spikes set is
obtained through a general morphological template, time domain
features are extracted, and candidate spikes are filtered by a
threshold method. Finally, the K-Means method obtains a specific
template for spike detection. Wu et al. (2022) proposed a spike
detection algorithm based on optimal template and morphological
feature, which optimized the parameters of template according to
the EEG data of patients and used morphological features to reduce
FPS. However, due to the large difference in EEG signals of different
patients in time and space, the number of template libraries is large
in actual detection, and the detection of epileptic spikes in different
patients cannot be flexibly realized.

Since the nineteenth century, people have realized that the brain
has a complex network structure (Lynn and Bassett, 2019). The
brain needs information interaction in multiple brain regions when
completing body movements, and different functional regions are
interconnected to form a brain network. Different studies differ
in the selection of EEG signal types and the way connections
are established, but all have one thing in common, using tools
in the field of complex networks for analysis (Leitgeb et al.,

2020). Graph theory is a mathematical way to analyze complex
networks quantitatively. Complex networks can be described as
graphs G(N,K) composed of N nodes and K connections or edges.
The specificity of brain networks can be found by measuring the
multi-functional scale of the graph G (Song et al., 2015). Netoff
et al. (2004) successfully explained the etiology of epilepsy using
functional brain networks, and the complex network method was
valued in epilepsy research. The brain is a very complex network
system, with high-intensity connections between functional areas
and different small-world networks between different functional
areas (Nemzer et al., 2021). For the functional network established
by EEG, we use the knowledge of graph theory to analyze the
topological characters of the functional brain network by using
complex network measures, such as degree, clustering coefficient,
and global efficiency. In recent years, more and more studies
have shown that seizures affect the local and global characteristics
of human brain activity. Frassineti et al. (2021) constructed a
complex network by EEG data of neonatal epilepsy patients.
They explored the changes in brain properties during seizures
by studying the Synchronizability (S) index and the functional
brain network’s Circular Omega Complexity (COC). Ahmadi et al.
(2020) used short-term EEG data to detect seizures by analyzing
features such as signals, functional brain networks, and EEG
microstate features. Jiang et al. (2023) constructed the PCC and
MI combined functional brain networks (PMNet) based on the
Pearson coefficient (PCC) and mutual information (MI), used the
complex network to calculate brain network features, and detected
epileptic seizures.

As a new research direction of machine learning, deep learning
has significant advantages in effectiveness and practicability. It has
also made a series of progress in seizure detection in recent years.
Wang et al. (2021) designed a convolutional neural network (CNN)
with three-dimensional kernels, which achieved good results on
CHB-MIT. Abdelhameed et al. (2018) proposed an automatic
epilepsy detection system that uses a one-dimensional CNN as
a preprocessing front-end and a Bi-directional long short-term
memory (Bi-LSTM) as a preprocessing back-end. The system
can effectively classify EEG signals. Hu et al. (2019) divided
the amplitude spectrum of multi-channel EEG signals into 19
frequency sub-band features, used the CNN algorithm to extract
features, and combined them with the support vector machine
(SVM) for classification. Based on geometric deep learning (GDL),
Dissanayake et al. (2021) extracted networks from EEG data for
epilepsy prediction. Usman et al. (2021) automatically extracted
seizure characteristics through a three-layer CNN and used a
LSTM for seizure prediction. The typical characteristics of epileptic
seizures are the abnormal firing of neurons and synchronous firing
of action potentials, which are presented as epileptic spikes in
neuroelectric signals. For patients with BECT and other types
of epilepsy, the localization analysis of epileptic spikes is more
meaningful than seizure detection. In order to better diagnose
patients, neurologists need to analyze a large number of EEG data to
findmillisecond-level epileptic spike discharges, which is extremely
cumbersome and time-consuming (Yan et al., 2018). Therefore,
positioning monitoring and recording analysis of various spike
signals for the location of epileptic regions, the precise mechanism
of epilepsy, and even predict of seizures are important (Chahid
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et al., 2020). Fukumori et al. (2019) inputted the original EEG signal
into the convolutional layer to extract the feature frequency band.
Then, the CNN and the recurrent neural network (RNN) models
were used to detect epileptic spikes. Prasanth et al. (2020) inputted
δ, θ , α, β , and full frequency bands into a CNN to detect epileptic
spikes. Abou Jaoude et al. (2020) trained a CNN to identify medial
temporal lobe (MTL) epileptic spikes in a single intracranial bipolar
channel, with great potential for accurate detection and localization
of MTL epileptic spikes. Xu et al. (2021) proposed a BECT epileptic
spike detection algorithmwith sequence features of EEG and LSTM
classifier, which has high detection sensitivity.

This paper proposes an improved BECT spike intelligent
detectionmethod using phase locking value (PLV). Themain works
of this paper are: (a) According to the morphological characteristics
of spikes, this method is used to establish the functional brain
network based on PLV (FBN-PLV), and the spike characters of
the functional brain network perspective are extracted. (b) Then,
a spike detection method is proposed based on functional brain
network features and deep learning. The time domain constructed
by spikes morphology and functional brain network features are
extracted and classified by artificial neural network (ANN). The
proposed method has achieved high sensitivity in actual BECT
patient data, confirming that the method has great clinical value.

The structure of this paper is as follows: The second section
proposes the overall algorithm framework of this paper and
introduces the extraction of temporal features of spikes, the
construction of functional brain networks, and the analysis of
network topology attributes. In the third section, the ANN model
is used to test the performance of the whole algorithm, and the
experimental results are analyzed. The fourth section compares this
algorithm with other algorithms. The fifth section summarizes this
paper and looks forward to future work.

2. Materials and methods

2.1. Framework of the method

The overall process of this method is shown in Figure 1. In the
preprocessing stage, the EEG data of BECT patients are collected,
and a 0.017 ∼ 70 HZ band-pass filter processes the EEG signal. In
the candidate spike detection stage, the triangle template matching
method filters the EEG signal. When the cross-correlation and
morphological features of the signal frame exceed the threshold, the
spike sequence is extracted, and the candidate spike is obtained by
K-Means clustering and specific template matching. In the feature
extraction stage, the time domain features and spike functional
brain network features are extracted from the candidate spikes.
Finally, these features are used as the input of ANN for detecting
and recognizing spikes.

2.2. Candidate spike detection with triangle
template matching

In EEG mapping, spikes have an apparent geometric meaning,
so they can be screened by template matching to obtain a candidate
spike set (Gloor, 1975). The specific steps are as follows :

(1) Triangle template matching

First, reset the spike template based on the triangle template
for waveform screening. Then calculate the mutual correlation
between a given template and all signal frames. The calculation
method is shown in Equation (1):

C =
∑N

n=1 y(n)× f (n)
√

∑N
n=1 y

2(n)
√

∑N
n=1 f

2(n)
(1)

where y(n) is the template, f (n) is the signal to be measured, and
N is the length of EEG. The universal template is a spike template
composed of a triangle with an amplitude of 300µV and a duration
of 60 ms, and the calculated window width is 300 ms. Finally,
extract the morphological features with rising slope, falling slope,
and curvature of the spike. The cross-correlation threshold is set to
60%, and the morphological feature threshold is set to 30%. If both
the correlation and the feature threshold exceed the set value, this
EEG signal frame is considered a spike sequence (Chatrian, 1974).

(2) K-Means clustering

The peak sequence obtained by triangle template matching is
classified into clusters by the K-Means clustering method. The
number of clusters is automatically determined. Starting from
a cluster, the number of clusters increases until the number of
candidate spikes in the cluster is less than 5% of the total number of
spikes. If the number of candidate spikes in a cluster is less than 5%
of the total number of spikes, the cluster will be discarded, and the
remaining clusters constitute the final result of K-Means clustering.

(3) Specific template matching

The centroid of the selected K-Means cluster is used as a specific
template, and a new correlation and feature threshold is set. The
template matching is performed again to obtain different types of
candidate spikes. The matching results of all specific templates are
added as the final candidate spike set. Since various centroids can
detect a single spike, an interval threshold is set. If the interval
between two neighbor spikes is less than this threshold, the two
spikes are considered as one spike.

2.3. Morphological time domain
characteristics of spike

Montage is the arrangement channels on the EEG machine
display, defined by the exploring and reference electrodes. The
two most common types of montages in EEG signals are bipolar
montages and referential montages. The Montage indicates that
different lead combinations can record EEG signals from different
amplifiers. The reference montage and the bipolar Montage
correspond to the reference lead method and the bipolar lead
method, respectively. All recording electrodes of the reference lead
method are connected to the negative end of the amplifier, and
the reference electrode is connected to the positive end. Most
of the earlobe are not in direct contact with the scalp surface.
The potential is relatively weak. It is often used as EEG reference
electrode. The bipolar lead method is two recording electrodes
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FIGURE 1

Flowchart of BECT spike detection algorithm based on FBN-PLV.

connected to the two ends of the preamplifier. EEG forms the
potential difference between the two, thereby amplifying the local
potential, making it easier to eliminate external noise (Koubeissi
and Azar, 2017).

There are usually two ways of spike discharge in two average
(AV) channels in patients’ EEG signals, and their relationship with
two adjacent bipolar (BP) channels is shown in Figure 2. Figure 2A
represents a single channel discharge, there is only one channel
spike discharge, and only spikes are detected on C3-AV. The two
related BP channels are F3-C3 and C3-P3; Figure 2B represents
multi-channel discharge, both channels have spike discharge, and
spikes are detected on both C3-AV and P3-AV. The two related
BP channels are F3-C3 and C3-P3. Both of the above two spike
discharge modes show a “peak-to-peak” phenomenon (Wang et al.,
2020).

Each candidate spike obtained by template matching can
determine an AV channel and two BP channels by the ’peak-to-
peak’ phenomenon, and then extract the time-domain features of
these three channels. The peak is divided into the left, right half,
and whole waves. The time domain features are divided into four
categories, as shown in Figure 3, including duration, amplitude,
slope and area. Each channel has 10 spikes features and three
channels have a total of 3× 10 features, as listed in Table 1.

2.4. Functional brain network based on PLV

2.4.1. PLV
Phase synchronization exists widely in EEG signals, and PLV is

one of the common methods to measure phase synchronization.
It represents the absolute value of the average phase difference
between any two signals, which can be used to reflect the
instantaneous phase relationship between two signals. The PLV
indicates the synchronization of the two signals and is used to
construct functional brain networks (Ding et al., 2022). Compared

to PCC, MI, and PLI, the FBN-PLV is more appropriate for non-
stationary and nonlinear signals such as EEG. The brain is a
nonlinear and dynamic system, so it is reasonable to use the phase-
locked loop to measure the internal activity of the brain since it is
robust to amplitude fluctuations. The FBN-PLV can differentiate
the phase component from the amplitude component, making it
more suitable for EEG, which is susceptible to muscle activity and
blinks (LeCun et al., 1998).

The Hilbert transform is often used to calculate the
instantaneous value of the signal, which decomposes the amplitude
and phase.H(x(t)) is defined as the Hilbert transform of the filtered
electrode signal x(t), as shown in Equation (2). Then H(x(t)) is
decomposed, as shown in Equation (3), where 8H

x (t) is the phase
of the signal x(t), which is defined in Equation (4). Similarly, the
phase 8H

y (t) of signal y(t) can be obtained by the Hilbert transform
of signal y(t). If the phase locking ratio of signal x(t) and y(t) is
p : q, then the phase difference between the two signals is defined
as shown in Equation (5). In this paper, the contribution of the two
signals is equal, so p and q are set to 1.

H(x(t)) = 1

π

∫ +∞

−∞

x(t′)

t − t′
dt′ (2)

Zx(t) = x(t)+ iH(x(t)) = AH
x (t) exp(i8

H
x (t)) (3)

8H
x (t) = arctan(

Im{Zx(t)}
Re{Zx(t)}

) = arctan(
H(x(t))

x(t)
) (4)

8H
xy(t) = p8H

x (t)− q8H
y (t) (5)

Assuming that the total number of sample points in this time
period is N, 8H

xy(t, n) represents the instantaneous phase difference
between x(t) and y(t) at point n, the PLV for two continuous signals
x(t) and y(t) at time t is defined as:
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FIGURE 2

The “peak-to-peak” phenomenon of di�erent discharge modes. The green dots on the EEG signals indicate spike discharge in the C3 channel, and

the blue dots indicate spike discharge in the P3 channel. (A) Single channel discharge. (B) Multiple channel discharge.

FIGURE 3

Candidate spike time domain feature.

PLV(t) = 1

N
|

N
∑

n=1

exp(i(8H
xy(t, n)))| (6)

2.4.2. Construct functional brain networks based
on PLV

Since the duration of the spikes is generally 20 ∼ 70
ms, the frequency is 14.5 ∼ 70 Hz, and if the PLV time
window is too large to ensure signal stability, the sliding time

TABLE 1 Size of candidate spike morphological characteristics and

FBN-PLV feature.

Type Feature Size

Time domain feature Dura_left, Dura_right, Dura_peaks 3× 3

Amp_left, Amp_right, Amp_peaks 3× 3

Slope_left, Slope_right, Slope_peaks 3× 3

Area_peaks 1× 3

Network structure
feature

AD, ACC, CPL, GE, MD 5× 1

window of 100 ms and the step length of 100 ms are selected
to calculate PLV. In this paper, scalp EEG channels are selected
as nodes. The functional brain network is constructed according
to the absolute value of the PLV correlation index between any
two channels in the candidate spike segments, and the phase
synchronization functional network matrix is obtained, as shown
in Figure 4. When PLV is 0, there is no phase synchronization
between the two signals. When PLV is 1, the two signals
are completely synchronized. Figure 4A is the functional brain
network when the actual spike discharge in the candidate spikes,
and Figure 4B is the functional brain network when the FPS
discharge in the candidate spikes. Compared Figures 4A, B, it
can be concluded that the cerebral cortex has strong phase
synchronization and high information interaction efficiency during
spikes discharge. Figure 5A is the brain network connection when
the actual spike discharge in the candidate spikes, and Figure 5B
is the brain network connection when the FPS discharge in the
candidate spikes. The results show that the network connection is
stronger, and the information is more prosperous when the spike
is discharged.
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FIGURE 4

Functional brain network association matrix, horizontal axis and vertical axis represent EEG lead combination, the element value in the matrix is the

PLV between any two node signals, the PLV range is [0, 1], blue represents the PLV is small, red represents the PLV is large. (A) Spike discharge. (B)

Nospike discharge.

FIGURE 5

Functional brain network connections. The darker the color represents the weight of each side, the more red connections indicate the stronger

signal phase synchronization between the two nodes, and the more bluer connections indicate the weaker signal phase synchronization between

the two nodes. (A) Spike discharge. (B) Nospike discharge.

2.4.3. Features of FBN-PLV
After constructing the FBN-PLV, the connection weights

are retained. The weighted complex brain network topology
attributes are analyzed by the graph theory method, including the
average degree (AD), the average clustering coefficient (ACC), the
characteristic path length (CPL), the modularity (MD), and the
global efficiency (GE), as shown in Table 1.

Degree is graph theory’s most basic index of statistical complex
network topology attributes. The degree of a node represents
the number of edges connected to other nodes and the sum of
information transmission of the node. The larger the degree value,
the more influential the node is in the network structure. In the
weighted network, aij represents the connection between node i

and node j, and Di represents the degree of node i, as shown in
Equation (7). The AD in the network is defined as the average value
of all N node degrees. As shown in Equation (8), it can represent
the network’s sparsity. The larger the average degree value, themore
edges there are between nodes in the network, and the denser the
street edges, and vice versa.

Di =
N

∑

j−1

aij (7)

AD = 1

N

N
∑

i

Di (8)
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Clustering coefficient measures the degree of aggregation of
nodes in the network, which can reflect the density between
neighbor nodes of a network node. In a network, the larger the
clustering coefficient of a node is, the more influential the node is
in the network. The definition of the clustering coefficient is shown
in Equation (9).

Ci =
2|ei|

ki(ki − 1)
(9)

ACC = 1

N

N
∑

i

Ci (10)

where |ei| denotes the number of connected edges between nodes
in the neighborhood of node i, the number of triangles formed by
node i and two nodes in its neighborhood, and ki denotes the degree
of node i. A complex network has a large number of nodes, so the
study of the clustering coefficient of each node is more complex
and meaningless. The definition of ACC is shown in Equation (10),
which can measure the accumulation of the network. A high ACC
represents a higher degree of a grouping of the whole network, and
vice versa, a lower degree.

In a complex network, the edges a node needs to pass from one
node to another are defined as paths, and the number of edges is
defined as the path length. The path between nodes is not unique.
There is a shortest path between two nodes, which is the shortest
number of edges that need to be traversed. The average shortest
path between all pairs of nodes in a network is defined as the CPL,
which can be represented by Equation (11).

CPL =
∑

l 6=j Lij

N(N + 1)
(11)

The Lij represents the shortest path length from node i to node
j. The CPL reflects the dispersion and connectivity of the network
structure. The shorter the CPL in a network, the more stable the
network and the higher the information transmission efficiency.
The longer the CPL, the worse the network connectivity and the
slower the communication speed between nodes.

MD is used to measure the possibility of a specific cluster in
the network, which is called clustering strength in the network.
The higher the MD, the clearer the community structure, and
the smaller the mixing between communities. At this time, the
proportion of edges within a community is more significant than
between communities with the definition as Equation (12).

MD =
M

∑

u=1

[euu − (
M

∑

v=1

euv)
2] (12)

GE = 1

N(N + 1)

∑

i6=j

1

Lij
(13)

The network is divided into M modules. The euv refers to
the proportion of the number of edges connected to the nodes
in module u and the nodes in module v to the total number of

edges. MD also defines the possibility that each node belongs to a
community. Suppose there is a single isolated node in the network.
In that case, the shortest path length from other nodes to this node
tends to infinity, and the CPL is difficult to describe the network
characteristics. Therefore, the GEmust be introduced, as defined in
Equation (13). It is the average value of the reciprocal of the shortest
path length, which can be used to measure whether the network
transmission and information processing process is efficient. High
GE means that the network has high efficiency of information
circulation and is more stable.

Figure 6 shows the topological properties of the functional
brain network corresponding to actual spike discharge and
FPS discharge in the C3 channel and P3 channel in the
first 600s, and carries on the normalization processing. It
can be clearly seen that there is a big difference in the
topological properties of FBN-PLV between the presence of spike
discharge and the absence of spike discharge. Among them,
the AD, ACC, and CPL of spike discharge are significantly
increased. At this time, the brain information interaction
mode is more complex, while the GE and MD show a
downward trend.

2.5. ANN net-based classifier

2.5.1. Network structure
ANN is a mathematical model that simulates the processing

mechanism of the human brain nervous system to complex
information after understanding and abstracting the response
mechanism of the human brain structure to external stimuli
on the basis of biology. It uses a hierarchical structure to
construct a high-dimensional model (Lee and Lee, 2022). The
model has parallel distributed processing capability, a simple
structure, many network parameters, a large amount of calculation,
and can withstand the scale of a multi-hidden layer network.
Recently, it has been widely used in image recognition and
audio processing.

The ANN used in this article has a four-layer structure, as
shown in Figure 7. The first layer is the input layer, the second and
third layers are the hidden layers, and the fourth layer is the output
layer. A Dropout layer is added to the hidden layer. The input
layer sets 35 neurons to accept feature data. The hidden layer is
the internal processing layer in the neural network. These neurons
form an intermediate layer inside the network and are not directly
associated with external input and output. Multiple hidden layers
can abstract input features at multiple levels to linearly partition
different types of data. In view of the moderate complexity of
the epileptic EEG data set and the problems of overfitting and
training difficulty caused by too many hidden layers, two hidden
layers are set up, the first layer has 64 hidden nodes, and the
second layer has 32 hidden nodes. The Dropout layer is mainly
used to solve the overfitting problem. The principle is: using the
regularization method, some neurons are randomly selected to
output 0 in this iteration, but the weights are retained, and the
nodes are reselected in the next iteration to participate in the
weight update.
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FIGURE 6

The abscissa of the comparison of functional brain network features. (A–E) Represents the recording time, the ordinate represents di�erent

functional brain network features, and the red dots represent the spike discharge and the corresponding FBN-PLV eigenvalues in this epoch. The

green dots represent FPS discharge and the corresponding FBN-PLV eigenvalue in this epoch. The (F) is a comprehensive comparison of weighted

network topology attributes.

FIGURE 7

ANN network structure.

2.5.2. Activation function
When training the neural network, the adjustment of

hyperparameters is indispensable. The hyperparameters commonly
used in deep learning neural networks are: gradient descent
optimizer, loss function, and activation function. The activation

function is often used to solve nonlinear problems, which
determines the input of the next neuron and can increase the
expression ability of the entire network. The common activation
functions are Sigmoid, Relu, and Tanh. The definitions are shown
in Equations (14–16). The Relu function is composed of two linear
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components. The output can be divided from 0 to infinity, and
the convergence speed is faster than Sigmoid and Tanh. Therefore,
the input and hidden layers use the Relu activation function. The
classification of epileptic spikes belongs to the binary classification
problem, so the output layer uses the Sigmoid activation function.
The output is interpreted as a class label according to the probability
value returned by the function.

Sigmiod(x) = 1

1+ e−x
(14)

Relu(x) =
{

x,if x > 0

0,if x ≤ 0
(15)

Tanh(x) = ex − e−x

ex + e−x
(16)

2.5.3. Optimizer and learning rate
The definition of the loss function is the error between the

single training sample and the actual value, which is used to
evaluate the degree of deviation between the predicted value and
the actual value of the model. The more appropriate the loss
function is selected, the better the model’s performance. The choice
of loss function depends onmany factors, which can be divided into
two categories: classification loss and regression loss. The binary
cross entropy loss function is commonly used in classification
problems. It is defined as Equation (17), where y represents the label
0 or 1, and p(y) represents the probability that the output is 0 or 1.
The greater the entropy of the probability distribution, the greater
the uncertainty of the data distribution; similarly, the smaller the
probability value, the more certain the distribution, the smaller the
uncertainty.

Loss = − 1

N

N
∑

i=1

yi log(p(yi))+ (1− yi) log(1− p(yi)) (17)

The optimizer is a tool to guide the deep learning neural
network to update the parameters. Using the optimization
algorithm, starting from the loss value, the last layer is back-
propagated to the front layer, and the weight and bias derivative of
the network are calculated to complete the update of the network
parameters. Adam is a first-order optimization algorithm that can
replace the traditional stochastic gradient descent process. It can
update the neural network weights in time based on training data
iteration (Kingma and Ba, 2014). The traditional stochastic gradient
descent maintains a single learning rate alpha and updates all

weights. The learning rate does not change during the training
process. However, Adam designs independent adaptive learning
rates for different parameters by calculating the gradient’s first-
order moment estimation and second-order moment estimation.
Assuming that the number of samples is f , the learning rate is η,
β1 and β2 are two momentum hyperparameters that need to be
adjusted, gnew and vnew are the modified first-order and second-
order moments, and wnew represents the parameter update. The
definition of the minimization objective function is shown in
Equation (18):

Q(w) = 1

f

f
∑

i=1

Qi(w) (18)

The Adma optimizer can be expressed as:

gnew = β1g + (1− β1)∇Q̂(w)

1− β1
(19)

vnew = β2g + (1− β2)∇Q̂(w)2

1− β2
(20)

wnew = w− η
gnew√
vnew + ε

(21)

3. Results

3.1. Subjects and data acquisition

The EEG signals used in this study are recorded by digital
EEG instruments in the Children’s Hospital, Zhejiang University
School of Medicine. A total of 4 patients are children, but
the patient’s names and age information are hidden. The EEG
acquisition method is 10–20 international standard lead system,
including 21 electrodes, including A1 and A2 reference electrodes,
and the sampling rate is 1,000Hz. Due to the baseline effect
of the device itself, as well as factors such as muscle activity
and blinking, noise and artifacts are generated in EEG signals.
Therefore, the Butterworth filter is used to filter the EEG signals
of 0.017–70 Hz (Wang et al., 2020). The pathogenesis of epileptic
spines usually originates from a part of the brain, including the
frontal, central, parietal and temporal regions. The EEG signals
of 4 patients with BECT are analyzed. It is found that spike
discharges of these EEG signals had specific attack areas. The
four EEG data used in this study are named S1-S4. Table 2 shows
the recorded scalp EEG information of 4 patients, including
recording duration, the number of spikes, and spike position.

TABLE 2 Comparison of raw data of spikes (actual peaks) and candidate spikes obtained by specific template matching (candidate peaks).

Name Duration of data Actual peaks Candidate peaks Regions

S1 20 min 20 s C3(147), P3(134) C3(2152), P3(2477) C3, P3

S2 20 min 12 s C3(327), P3(277) C3(2395), P3(2445) C3, P3

S3 20 min 12 s C3(197), P3(203) C3(1582), P3(1491) C3, P3

S4 19 min 56 s C3(437), P3(437) C3(1101), P3(1197) C3, P3
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Each EEG signal contains an average AV channel (FP1, FP2,
F3, F4, F7, F8, T3, T4, T5, T6, C3, C4, P3, P4, O1, and O2),
and professional electroencephalogram technician marked spike
discharge position.

FIGURE 8

The STra, SVal, STes division of BECT data.

The candidate spike set obtained by preliminary screening
through specific template matching is also shown in Table 2. There
are a large number of spike signals in the candidate spike set, of
which only a few are spikes and a large number are FPS. Such
data sets need to be more balanced. Therefore, we use the random
undersampling method for FPS data to obtain a positive and
negative sample balanced candidate spike data set Sall.

After obtaining a balanced positive and negative sample SAll,
it is segmented twice. The SAll divides the data set into a
training set and a test set, where 80% of the data is used for
training and 20% for testing, as shown in Figure 8. The STes
represents the test set, which is used to evaluate the model after
training and test the final performance of the model. The STra
represents the training set to train the model and update the model
parameters. The SVal represents the validation set, which is used
to observe the training effect of the model. The STra and SVal are
set according to the 5-fold cross-validation method. The model
structure and hyperparameters are adjusted according to the loss
value and accuracy.

FIGURE 9

Loss value and accuracy under di�erent iterations.

FIGURE 10

The performance comparison between FBN and FBN-PLV models. (A) AC, SE, and SP of the actual EEG data of each patient after using the method of

this paper. (B) AC, SE, SP after synthesis of actual EEG data for all patients.
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3.2. Evaluation criteria

The quality of the model requires an objective evaluation
standard. For the classification model, the confusion matrix can
intuitively calculate the accuracy (AC), specificity (SP), sensitivity
(SE), and other indicators of the model. Equation (22), where
TN is the number of correctly detected FPS, FN is the number
of missed spikes, TP is the number of correctly detected spikes,
and FP is the number of incorrectly detected spikes. As shown
in Equation (23), the AC reflects the percentage of samples that
predict correctly. SE refers to the ratio of the number of detected
correct spikes to the number of all spikes, which is the proportion
of the number of actual spikes detected, as defined in Equation (24).
SP refers to the ratio of the number of correctly detected FPS to the
number of all FPS, as defined in Equation (25). SE and SP represent
the detection ability of the positive and negative samples of the
model, respectively.

CM =
[

TN FP

FN TP

]

(22)

AC = TN + TP

TN + FN + TP + FP
× 100% (23)

SE = TP

FN + TP
× 100% (24)

SP = TN

TN + FP
× 100% (25)

3.3. Experimental results

The experimental computer configuration is as follows: 11th
Gen Intel (R) Core (TM) i5-11400H @ 2.70GHz 2.69GHz,
16GRAM; the simulation environment is python3.7. A round
represents training once with all the samples in the training set,
and the value of round is the number of times the entire data set
is trained. We use different rounds on the training and validation
sets to observe the changes in loss values and accuracy, as shown in
Figure 9, and then select the most appropriate number of rounds.
The validation and training sets’ loss values decreased rapidly in
the first 20 rounds. When the number of rounds is 100, the model
performance tends to be stable, and the number of rounds is finally
selected to be 100.

Based on the data set division method mentioned above,
after selecting the best parameters of the model, divide different
training sets and test sets each time, and run 100 times in total.
The experimental results are shown in Figure 10. FBN refers to
the model’s performance on the EEG data of each patient when
there are only time-domain characteristics. FBN-PLV represents
the model’s performance on EEG data of each patient when
inputting time-domain features and functional network features.
The overall AC, SE, and SP are calculated by adding the confusion
matrix of each patient. The input of functional network features
and time-domain features significantly improves the performance
of the whole model compared with the input of only time-
domain features. The average results of these 100 experiments

TABLE 3 Model performance comparison between FBN and FBN-PLV.

Feature Patients FN AC (%) SE (%) SP (%)

FBN S1 18 96.05 95.69 96.21

S2 7 96.37 96.60 96.15

S3 19 95.82 95.11 96.35

S4 9 97.07 97.21 95.92

ALL 53 96.27 96.54 96.20

FBN-PLV S1 10 97.32 97.75 96.90

S2 3 97.83 98.53 97.14

S3 7 97.13 97.88 96.40

S4 4 97.84 98.74 96.97

ALL 24 97.60 98.24 96.83

FIGURE 11

Performance comparison of di�erent classifiers based on FBN-PLV.

are shown in Table 3. The addition of PLV features improved the
model’s accuracy by 1.33%, sensitivity by 1.70%, and specificity by
0.63%. In auxiliary medical detection and other related fields, SE
means whether the model can effectively detect positive cases. The
significant improvement of SE also reflects the significance of the
characteristics of the functional brain network.

We used the same data set partitioning method and data set as
in this paper. The performance of random forest (RF), K-Nearest
neighbor (KNN), Gaussian naive bayes (GNB), SVM, and Logit
were compared with the indexes of the algorithms presented in this
paper. Figure 11 shows the performance comparison of FBN-PLV
features on different classifiers and then observes the evaluation
index of each classifier. The specificity of the RF classifier is slightly
higher than ANN, but the AC and SE are lower. In general, the
ANN classifier based on FBN-PLV has achieved the best results on
the actual EEG data of BECT.

4. Discussion

The algorithm is compared with the related algorithms
of other researchers, and the results are shown in Table 4.
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TABLE 4 Performance comparison of recent automatic spike detection methods.

References Feature Classifier Number of
patients

AC(%) SE(%) SP(%)

Prasanth et al. (2020) Frequency sub-bands CNN – – 90.00 –

Xu et al. (2021) Time domain, SEN Bi-LSTM 15 92.04 92.04 85.05

Wang et al. (2020) Adaptive template matching, FPS elimination RF 7 96.90 97.40 96.50

Dao et al. (2019) Fisher score, p-value SVM 6 93.80 82.80 96.40

Le et al. (2018) Time domain DBN 16 – 87.40 97.90

Thanh et al. (2020) Eigenspikes derived from nonnegative GSMLRAT – 17 91.00 83.00 91.10

Rácz et al. (2020) Features from RNN and CNN CNN – 89.00 69.00 –

Chahid et al. (2020) PWM SVM 8 98.22 98.06 98.38

Cheng et al. (2022) Multilevel learning features – 8 90.62 90.38 91.00

Our method Time domain, network structrue ANN 4 97.60 98.24 96.83

The bold values represent the best results.

In addition to Chahid et al.’s position weight matrix (PWM)
method, other methods are EEG-based (Chahid et al., 2020).
Our proposed FBN-PLV method has better AC, SE, and SP
than all EEG-based methods. Due to the spikes’ relatively
clear morphological definition, the candidate spike set is
obtained by triangle-specific matching and threshold selection.
The time-domain feature extraction of spike morphology is
a more efficient spike screening method. At the same time,
because of the temporal and spatial correlation between
brain regions, especially the dispersion of spikes showing
a “peak-to-peak” mode, the spikes show a synchronous
characteristic in phase. Accordingly, this paper proposes the
construction method of FBN-PLV, using PLV to calculate
the synchronization characteristics between channels and
establish phase synchronization FBN. The AD, ACC, CPL, MD,
and GE are calculated according to the established network.
As shown in Figures 10, 11, the functional brain network
characteristics improve the model’s performance. In addition,
the ANN is also the most suitable model for the algorithm
in this paper. The final results obtained in the data set test
are AC: 97.60%, SE: 98.24%, and SP: 96.83%, which is the
best among the listed spike recognition methods based on
EEG data.

It is worth noting that reference (Chahid et al., 2020)
proposed an automatic detection algorithm for epileptic spikes
based on machine learning magnetoencephalography (MEG),
using PWM method combined with a uniform quantizer to
generate useful features and using SVM for classification. The
literature has achieved higher AC and SP than the algorithm
in this paper. However, compared with EEG, MEG is affected
by physical activity, and it is difficult to locate epileptic foci
and functional areas accurately. The process of extracting MEG
requires high cooperation from patients. Finally, the SE of
this paper is higher than that of the literature (Chahid et al.,
2020). In auxiliary medical detection, the importance of SE is
much greater than SP and AC. The algorithm achieves the
best SE of 98.3% in all algorithms and also ensures high SP
and AC.

5. Conclusion

The main contributions of this paper are as follows: (1) A
phase synchronization functional brain network is proposed, and
the weighted network structure features are extracted to study
the attribute changes caused by BECT spike discharge from this
perspective. (2) An artificial neural network deep learning model
is used to detect spikes intelligently by combining time domain
features with phase synchronization functional brain network
features. The proposed method is tested on the actual patient EEG
data set provided by the Children’s Hospital, Zhejiang University
School of Medicine, and achieves superior performance, in which
the SE is significantly improved. This paper only validates the
algorithm on EEG datasets from four BECT patients, and each
dataset contains only a limited number of spike discharge samples.
While good results have been achieved, further optimization and
improvement are needed to enhance the versatility and robustness
of the spike detection algorithm. The FBN-PLV can enhance the
accuracy of spike detection to some extent, but it only detects the
presence of spike discharge, which is insufficient to pinpoint the
specific location of spike discharge. In the future, more ways can be
used to construct functional brain networks, study the differences
before and after epileptic spike discharges, and optimize algorithms
for more types of EEG data except for BECT data sets.
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