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Objective: This study compares the complementary information from semi-
quantitative EEG (sqEEG) and spectral quantitative EEG (spectral-qEEG) to detect 
the life-long effects of early childhood malnutrition on the brain.

Methods: Resting-state EEGs (N = 202) from the Barbados Nutrition Study (BNS) 
were used to examine the effects of protein-energy malnutrition (PEM) on childhood 
and middle adulthood outcomes. sqEEG analysis was performed on Grand Total EEG 
(GTE) protocol, and a single latent variable, the semi-quantitative Neurophysiological 
State (sqNPS) was extracted. A univariate linear mixed-effects (LME) model tested 
the dependence of sqNPS and nutritional group. sqEEG was compared with scores 
on the Montreal Cognitive Assessment (MoCA). Stable sparse classifiers (SSC) also 
measured the predictive power of sqEEG, spectral-qEEG, and a combination of both. 
Multivariate LME was applied to assess each EEG modality separately and combined 
under longitudinal settings.

Results: The univariate LME showed highly significant differences between 
previously malnourished and control groups (p <  0.001); age (p =  0.01) was also 
significant, with no interaction between group and age detected. Childhood 
sqNPS (p  =  0.02) and adulthood sqNPS (p  =  0.003) predicted MoCA scores in 
adulthood. The SSC demonstrated that spectral-qEEG combined with sqEEG had 
the highest predictive power (mean AUC 0.92  ±  0.005). Finally, multivariate LME 
showed that the combined spectral-qEEG+sqEEG models had the highest log-
likelihood (−479.7).
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Conclusion: This research has extended our prior work with spectral-qEEG and 
the long-term impact of early childhood malnutrition on the brain. Our findings 
showed that sqNPS was significantly linked to accelerated cognitive aging at 45–
51  years of age. While sqNPS and spectral-qEEG produced comparable results, 
our study indicated that combining sqNPS and spectral-qEEG yielded better 
performance than either method alone, suggesting that a multimodal approach 
could be advantageous for future investigations.

Significance: Based on our findings, a semi-quantitative approach utilizing GTE 
could be a valuable diagnostic tool for detecting the lasting impacts of childhood 
malnutrition. Notably, sqEEG has not been previously explored or reported as 
a biomarker for assessing the longitudinal effects of malnutrition. Furthermore, 
our observations suggest that sqEEG offers unique features and information not 
captured by spectral quantitative EEG analysis and could lead to its improvement.

KEYWORDS

malnutrition, EEG, qEEG, grand total EEG, latent variable, item response theory, 

cognitive decline

Highlights

 − Participants with protein-energy malnutrition (PEM) limited to the first year of life have 
significantly more EEG abnormalities than controls (CON) in childhood and middle 
adulthood. These differences can be  reliably determined using GTE items from visual 
inspection of the EEG.

 − Increased sqEEG abnormalities in childhood and adulthood predicted accelerated cognitive 
decline up to 40 years later in middle adulthood.

 − A multimodal approach combining spectral-qEEG and sqEEG yields the most accurate 
results distinguishing PEM from controls.

 − sqEEG contributes additional information about PEM effects on EEG, which spectral-qEEG 
does not capture.

1. Introduction

Recent research has demonstrated that exposure to adverse 
childhood experiences during critical developmental phases can 
negatively impact both physical and mental health (Hawkins et al., 2019; 
Short and Baram, 2019; Bing-Canar et al., 2022; Tsotsoros et al., 2022; 
Rokach and Clayton, 2023). Childhood malnutrition, which accounts for 
nearly half of all deaths of children under 51 is a prevalent and significant 
form of childhood adversity. Despite improvements in public health 
measures and survival rates, the long-term effects of childhood 
malnutrition on brain development throughout an individual’s lifespan 
remain concerning. There are currently few if any scalable and cost-
effective measures for identifying brain dysfunction due to this condition 
(Galler et al., 2021). Therefore, there is a pressing need to develop brain 
imaging techniques that can directly assess the neurodevelopmental 
consequences of malnutrition, especially in low resource settings.

Our research group has addressed this issue by examining the use 
of the Electroencephalogram (EEG) as a viable technology to 
investigate the neurodevelopmental consequences of protein-energy 
malnutrition (PEM) in the first year of life (Taboada-Crispi et al., 
2018; Bringas Vega et al., 2019; Bosch-Bayard et al., 2022). This work 

1 https://data.unicef.org/topic/nutrition/malnutrition/

has leveraged the Barbados Nutrition Study (BNS), a longitudinal 
study spanning over 50 years, aimed at investigating the effects of 
protein-energy malnutrition (PEM) aimed at investigating the effects 
of early PEM over the life span (Galler et  al., 1983, 2012). Study 
participants had normal birth weights but experienced moderate-
severe protein-energy malnutrition limited to the first year of life. 
BNS subjects were identified as infants, and enrolled in a national 
intervention program (see Methods) that followed the children until 
12 years of age, ensuring no further exposure to malnutrition. The 
control group were classmates who were selected in childhood and 
matched to the affected individuals by age, sex, and handedness. EEG 
was collected on subjects from these cohorts at ages 5–11 years 
(school age) and 45–51 years (middle adulthood).

Before summarizing our prior EEG results for these BNS cohorts, 
it is necessary to note that two different modalities can extract 
potential EEG biomarkers:

 • Spectral quantitative EEG (spectral-qEEG) quantifies the EEG 
through the power spectrum of activity at the channels or the 
sources. Our group has contributed to developing this technique for 
several decades (John et al., 1977; Valdés et al., 1992; Bosch-Bayard 
et  al., 2001; Li et  al., 2022) and demonstrated its accuracy for 
detecting brain abnormalities and subject classification. Spectral-
qEEG is objective and easy to deploy, the significant stumbling block 
being the need to eliminate the effect of EEG artifacts.
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 • Semi-quantitative EEG (sqEEG) involves scores by expert 
subjective evaluations of EEG with standardized ratings that are 
later fully quantified employing statistical techniques. Such 
scoring of expert evaluation is a common technique in 
psychometrics (e.g., Likert scale) and was pioneered in imaging 
(Scheltens et  al., 1993). The usefulness of sqEEG is also an 
established technique in clinical neuroscience (Pijnenburg et al., 
2008; Roks et al., 2008; Micanovic and Pal, 2014; Barcelon et al., 
2019). The disadvantage of this technique is the need for expert 
evaluation which is a limiting factor for its diffusion.

A current and trenchant discussion in clinical neurophysiology com 
compares the relative merits of spectral-qEEG and sqEEG. As the 
existence of automatic EEG measures, such as spectral-qEEG, might 
supplant sqEEG. However, this is not the case. While spectral-qEEG is 
considered an essential complement to visual inspection of the EEG, 
visual inspection of the EEG is still considered the gold standard in 
clinical neurophysiology and is constantly being revised (Niedermeyer 
and Lopes da Silva, 2005; Beniczky et al., 2017; Wüstenhagen et al., 2022). 
Efforts are being made to compare the results of this visual inspection 
with spectral-qEEG, a goal pursued by several International Federation 
of Clinical Neurophysiology (IFCN)2 and the Global Brain Consortium 
Project (GBC)3 (Global Brain Consortium Project: Global EEG Norms).

One of the hypotheses underlying this paper is that sqEEG 
reflects, in addition, to rough background frequency information, 
additional features in the “grapho-elements” that arise from 
nonstationary and nonlinear harmonic signal relations, to which 
spectral analysis is blind. Rather than contraposing spectral-qEEG and 
sqEEG, we believe it essential to document differences between the 
two EEG modalities, thus enabling the discovery of additional features 
needed to improve spectral-qEEG. Beyond adding multivariate cross-
spectral EEG information to qEEG, as in (Li et al., 2022), an arsenal 
of nonlinear EEG measures (Stam, 2005) is already available to 
be evaluated against visual inspection. Our earlier studies only gave 
partial answers in terms of comparing these two EEG modalities.

We previously reported that spectral-qEEG has provided 
biomarkers that stably and accurately classified between PEM and 
control groups at 5–11 years of age with an area under the ROC curve 
(AUC) of 0.83 and 0.82 for the scalp (Taboada-crispi et al., 2018) and 
source spectra (Bringas Vega et  al., 2019), respectively. sqEEG 
achieved an AUC of 0.83 (for the best-performing expert). AUC was 
thus statistically indistinguishable for spectral-qEEG and sqEEG 
according to their sampling distribution. What was not addressed in 
the cited studies, nor to our knowledge in the literature, was whether 
spectral-qEEG and sqEEG precision accuracy arises from similar or 
distinct sources of information about the EEG. Note that these studies 
only evaluated classification at school age. Another study by our group 
assessed the life-long trajectory spectral-qEEG measures for the BNS 
cohort and showed significant differences in source spectra between the 
PEM/CON groups and between school-age/adulthood (Bosch-Bayard 
et al., 2022). These changes were significantly associated with accelerated 
cognitive decline in the PEM group.

2 www.ifcn.info

3 https://globalbrainconsortium.org/project-norms

The current study aims to address the failure to systematically 
compare spectral-qEEG and sqEEG measures of early malnutrition 
throughout the lifespan. To address this research gap, we contrast changes 
in both EEG modalities (spectral-qEEG as a function of nutrition status 
and age). Importantly, we validate these differences by comparing them 
with cognitive outcomes in adulthood as measured by the Montreal 
Cognitive Assessment (MoCA), a well-established scale for measuring 
mild cognitive impairment (Nasreddine et al., 2005). We also compare the 
classification accuracy of both EEG modalities across the life span at 5–11 
years and 45–51 years. An important design consideration of our analysis 
is to identify whether both EEG modalities convey the same information 
regarding the brain effects of malnutrition or reflect different aspects of 
the EEG signal.

2. Materials and methods

In this paper, we employ different symbols and acronyms, and 
their explanations are available in Table 1 to ensure clarity and ease of 
comprehension. A flowchart in Figure 1 also provides an overview of 
the methods and procedures.

2.1. Study site

The current study was conducted in Barbados, a Caribbean 
country whose population was 281,635  in 2022. The demographic 
makeup is 92% African/Caribbean origin, 4% Caucasian, and 4% 
individuals of Asian, Lebanese, and Syrian descent. In 1970, when the 
study began, the infant mortality rate was 46 per 1,000 live births. 
Today it stands at 9.3, and Barbados was ranked 70/193 countries and 
territories (and classified as a High level of human development) on the 
Human Development Index in 2021-2022 (Conceição et al., 2022). 
Malnourished participants (N = 129, 52 females, 77 males) were born 
between 1967 to 1972. They were clinically diagnosed with Grade II-III 
protein-energy malnutrition (PEM, weight below 75% of expected 
weight for age, in the absence of edema) limited to the first year of life. 
Selection criteria were as follows: birth weight ≥ 2,500 grams; APGAR 
scores ≥8, no pre or perinatal complications; and no childhood 
encephalopathic events (Galler et al., 1983). Controls (CON, N = 129, 
52 females, 77 males) were healthy classmates of the PEM children 
matched by age, sex, and handedness who met the same inclusion 
criteria but had no histories of malnutrition. After discharge from the 
hospital, all PEM children were enrolled in a government-supported 
intervention program from ages 0–12 years, which provided food 
subsidies, nutrition education for the primary caretaker, a 2–3 day/
week nursery program, routine medical care, and regular home visits 
(Ramsey, 1979; Ramsey et al., 1986). These participants have been 
comprehensively evaluated over seven waves of data collection between 
1977 and 2018.

2.2. Research design

EEGs were first recorded in this sample in 1977–1978 (n = 258) 
when the subjects were between 5 and 11 years of age. However, only 
108 original EEG recordings (CON = 62, PEM = 46) were available 
during follow-up (Taboada-Crispi et al., 2018). In 2018, we conducted 
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a 40-year follow-up study of a subset of 100 participants from the 
original cohort, and EEGs were again recorded at this time point 
(Bosch-Bayard et al., 2022). Ninety-four individuals had valid EEGs 
at 45–51 years (CON = 51, PEM = 43). Thus, 202 valid EEG recordings 
were available for the current study, and 53 participants had EEG data 
available in both childhood and adulthood. For more details about the 
BNS longitudinal study design and the flow of the samples (see 
Figure 1; Bosch-Bayard et al., 2022).

Note that the reduction in sample size between 1978 and 2018 
was primarily due to funding constraints, requiring us to limit this 
later study phase to 100 participants. Furthermore, we were unable 
to locate some of the original participants for whom 1977 EEG data 
were valid for the following reasons: some participants lived 
overseas, others did not respond to requests for contact or refused 
to participate, and some were deceased, in prison, and/or severely 
ill. We  have previously reported that the 1978 childhood 
characteristics of the participants vs. non-participants in the 2018 
study were similar (see Table 1A, Bosch-Bayard et al., 2022). To 
confirm if the missing cases affected the results presented here, 
we  implemented a sensitivity analysis for the ignorability 
assumption of data missingness; details are in the statistical analysis 
section below.

Informed consent was provided by the parents of all participants 
when they were initially enrolled in the study under Protocol E1962, 
approved by the Boston University Medical Center Institutional 
Review Board and the Barbados Ministry of Health Ethics Committee. 
Current oversight was provided by the Massachusetts General 
Brigham IRB (Protocol No. 2015P000329, approved to 1/19/25), the 
Cuban Neurosciences Center (2017/02/17/CNEURO), and the 
Barbados Ministry of Health and Wellness. All adult participants 
provided written informed consent and were compensated for their 
time and travel expenses.

2.3. Measures

2.3.1. EEG recording
The original 1978 EEG recordings were obtained using the DEDDAS 

EEG equipment (sampling rate 100 Hz). The protocol has been described 
elsewhere in detail (Taboada-crispi et al., 2018). For the 2018 follow-up 
study, EEG recordings were performed using the same procedures as 
those in the earlier study using the MEDICID system at a sampling rate 
of 200 Hz (Neuronic, Havana, Cuba). The equivalence of both recording 
systems is described in Appendix 1, Bosch-Bayard et al. (2022). We used 
standard protocols developed jointly by the Brain Research Laboratories, 
NYU, and the Cuban Neuroscience Center (Hernandez-Gonzalez et al., 
2011), using IFCN guidelines for resting-state EEG analysis (International 
Federation of Clinical Neurophysiology IFCN; see footnote 1). The EEG 
acquisition protocol for both studies was as follows:

Data was collected and visually inspected by two 
neurophysiologists, who were blind to the subjects’ malnutrition 
history. Nineteen surface electrodes were placed (Fp1, Fp2, Fz, F3, 
F4, F7, F8, Cz, C3, C4, T3, T4, T5, T6, Pz, P3, P4, O1, and O2) 
according to the international 10–20 system, referenced to linked 
earlobes. The electrode impedance was kept below 5 kΩ. Subjects 
were seated on a comfortable reclining armchair in a quiet, 
air-conditioned room and were instructed to stay awake. Resting-
state EEGs were recorded for 8–10 min. Note that in 1978 only 
eye-closed EEGs were collected; in 2018, the EEG was recorded 
under different conditions (open and closed eyes, hyperventilation, 
and recovery). Subjects were monitored regularly by the 
neurophysiologist for their wakefulness. Throughout the recording, 
subjects were also asked to report if they were awake.

The raw EEG data is denoted as v e ti ,� �, here i is, the subject, e and 
t  are EEG electrode and time, respectively. The v e ti ,� � processing and 
cleaning method was:

TABLE 1 Symbols used in the paper and their explanation.

Symbol Acronyms Description

– PEM Protein Energy Malnutrition

– CON Controls

i –
ith  Subject

age – Childhood or Adult age to represent two studies

v e ti age, ,� � Time-domain EEG EEG recordings for the electrode e at the time t

s ei age, ,�� � voltage spectra Voltage spectra at electrode e and frequency ω

z ei age, ,�� � z-scalp spectra Quantitative EEG for the electrode e at the frequency ω

Gi age evaluator, ,
GTE Scores Grand Total EEG (GTE) scores

sqNPSi age evaluator, ,
semi-quantitative (sq) Neurophysiological status Latent sqEEG factor generated from item Response theory 

(IRT) based on GTE scores

sqNPSi age, , �
Average sqNPS Averaged over multiple evaluators for sqNPS

qNPSi age,
quantitative (q) Neurophysiological status Latent spectral-qEEG variable generated via factor 

analysis of spectral-qEEG biomarkers selected by the 

stable sparse classifier (SSC)

MFi age yrs, � �45 51
MoCA Factor IRT-based factor generated from Montreal Cognitive 

Assessment (MoCA) sub-scores
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 • For both sqEEG and spectral qEEG, visual inspection was used 
to remove bad channels, interference by power lines interference, 
EKG, EMG. teeth grinding, eye or body movement, and high 
electrode impedance.

 • Spectral qEEG artifact rejection was supplemented by independent 
component analysis (ICA)and the AAR plug-in from the EEGLAB 
13.6.5b toolbox (Gomez-Herrero et  al., 2006). Additionally, the 
neurophysiologists conducted visual inspections to select at least 
1 min of EEG epochs free of artifacts that lasted 2.56 s.

EEG Pre-processing resulted in clean data (Figure 1A) denoted as 
v e ti age, ,� �, here, agerepresents the childhood or adult age to 
accommodate two studies.

2.3.2. Grand total EEG scale
Two clinical neurophysiologists from the Cuban Neuroscience 

Center evaluated the v e ti age, ,� �  independently for both studies 
(Figure  1C). They were blind to the participant’s malnutrition 
history. A modified version of the GTE scale was implemented 
(Jonkman, 1989; de Weerd and Perquin, 1990; Claus et al., 1999; 
Marcuse et  al., 2016) denoted here as Gi age evaluator, ,  which was 

composed of 6 items. Here i is the subject, age is childhood or adult 
age and evaluator  represents the neurophysiologist who performed 
the visual inspection. Gi age evaluator, ,  items were graded between 0 
and 5 (Kane et al., 2017).

 1. Frequency of rhythmic background activity (the 
predominant EEG activity observed in resting state. This 
activity is commonly associated with alpha activity, 
although this may vary depending on the recording  
conditions)

   0= > 8 Hz, 1 = 7-8 Hz, 2 = 6-7 Hz
 2. Diffuse slow activity (the occurrence of persistent 

non-rhythmic delta and slow theta waves localized in 
broader regions)

    0 = None, 1 = Slow theta, 2 = Intermittent theta + sporadic 
delta, 3 = Intermittent theta + intermittent delta

 3. Reactivity of rhythmic background activity
    0 = Normal, 1 = Decreased with eye-opening, 2 = Absent 

with eye-opening
 4. Focal abnormality (the occurrence of EEG abnormality that is 

localized topographically)

FIGURE 1

This flowchart outlines the various processing steps and outputs involved in the study. The edges represent the applied processes, while the nodes/
rectangles depict the outcomes of different processing steps. The dashed rectangles indicate a sub-process with multiple steps. These include 
(A) preprocessing of raw EEG v e ti age, ,� �, (B) processing pipeline for spectral quantitative EEG (spectral-qEEG) z-scalp spectra z ei age, ,�� � using Fast 
Fourier Transform (FFT), average reference, Global Scale Factor (GSF), and normative equations, (C) processing steps for semi-quantitative 
Neurophysiological status (sqNPSi age evaluator, , ): visual inspection to generate Grand Total EEG (GTE) scores Gi age evaluator, ,  and Item Response 
Theory (IRT) based latent factor, (D) univariate linear mixed effect (LME) modal analysis: to estimate the effects of nutritional group, age, and group: age 
interaction on sqNPSi age evaluator, , . (E) Validation of sqNPSi age evaluator, ,  scores based on MoCA Factor (MFi age yrs, � �45 51 ), (F) application of the stable 
sparse classifier (SSC) for selecting stable qEEG biomarkers and comparing the prediction accuracy of z ei age, ,�� � and sqNPSi age evaluator, ,  separately 
and combined, (G) transformation into a single dimension by applying factor analysis to qEEG, resulting in quantitative Neurophysiological status 
(qNPSi age, ), and averaging sqNPSi age evaluator, ,  over evaluators to produce Average sqNPS ( sqNPSi age, , � ) scores, (H) multivariate LME for longitudinal 
model comparisons for qNPSi age,  and sqNPSi age, , �  separately and combined.
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    0 = No focal abnormality, 1 = Slight unilateral abnormality, 
2 = Slight bilateral abnormality, 3 = Severe unilateral + Slight 
contralateral, 4 = Severe bilateral, 5 = Multifocal

 5. Paroxysmal activity (the occurrence of activity that has a 
sudden rapid onset, rapid attainment of a maximum, abrupt 
termination, and is distinguished from background activity. 
Such as spikes and spike-and-waves. Spikes have a duration 
between 20 and 70 msec by convention)

    0 = None, 1 = Paroxysmal slow activity, 2 = Spikes, 3 = Spike 
and wave (one Spike followed by a delta frequency wave)

 6. Sharp wave activity (Paroxysmal activity that has a lower initial 
slope than spikes with a duration between 70-and 200 ms).

   0 = None, 1 = Sporadic sharp waves, 2 = Frequent sharp waves.

For the 1978 analyses, only five GTE items were used since the 
“Reactivity of rhythmic background activity” must be evaluated by 
comparing the resting state to other conditions which were not 
included in this earlier study.

2.3.3. Montreal cognitive assessment
The Montreal cognitive assessment (MoCA) was administered to 

participants in middle adulthood (at 45–51 years) by a researcher 
blind to the participant’s nutrition group. The MoCA comprises seven 
subscales, assessing visuospatial and executive functions, naming, 
attention, language, abstraction, memory, and orientation. It is a 
validated screening measure for mild cognitive impairment (MCI) 
(Nasreddine et al., 2005). The highest possible score is 30, and the 
threshold below which MCI is suspected is 26.

2.3.4. Covariates
Childhood standard of living was measured at three time points 

in childhood and adolescence using the 50-item Barbados Ecology 
Questionnaire (Galler and Ramsey, 1985; Galler et al., 2012), which 
assessed conditions in the home, parental educational achievement, 
and type of employment. Factor analysis, based on data combined 
across all three-time points, identified a first principal component that 
appeared to represent the household standard of living, including the 
presence of a refrigerator, closet, bathroom, television, electricity, 
running water, and gas or electric cooking fuel; the number of 
bedrooms/rooms; household food expenditure; type of toilet; and 
weekly household income. Scores based on this factor were 
standardized to have zero mean and unit variance. The Hollingshead 
Scale (Hollingshead and Redlich, 1963) was used to evaluate the adult 
participants’ educational level and employment status to measure 
adult SES (socioeconomic status).

2.4. Statistical analyses

2.4.1. Semi-quantitative EEG
Using Item Response Theory (IRT), we obtained a latent variable 

underlying all GTE items for sqEEG. This approach is used as the 
indicator variables were categorical and not continuous. A polytomous 
IRT was implemented as the responses ranged between 0 and 5 
(Beaujean, 2014; Chalmers, 2015). The analysis was conducted via R 
package MIRT (Chalmers, 2012), utilizing a generalized partial credit 
model (Pollitt and Hutchinson, 1987; Chalmers, 2015). The latent 
variable, “semi-quantitative Neurophysiological status” (sqNPS ), was 

created based on the most informative items with the highest loadings. 
Therefore, the final latent score was the optimal combination of 
measured items based on their information content. Notably, the high 
factor loadings were solely focused on items with a clear separation of 
probabilities between the different levels of the item scale and not 
between the two groups (CON vs. PEM), as responses for all 
participants were included in the IRT analysis. Thus the construction 
of the latent factor did not bias subsequent analysis. The 
sqNPSi age evaluator, ,  was estimated using the original raw item scores 
from five common GTE items for the 1978 and 2018 datasets. Here i 
is the subject, age is childhood or adult age to represent the two time 
points of data collection and evaluator  represents the 
neurophysiologist who performed the visual inspection (Figure 1C). 
When we needed to pool the results of both evaluators, we used the 
average of the two sqNPSi age evaluator, ,  denoted as sqNPSi age, , �  
(Figure 1G). Considering individual subjects, the sample size was 
N  = 202 (108  in 1978 and 94  in 2018). However, the number of 
repeated measures doubled when judging the effect of differences 
between evaluators. We assessed alternative IRT factor models based 
on item loadings and trace plots and optimized them using model fit 
indices such as Akaike’s Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC).

2.4.2. Spectral quantitative EEG
We processed the EEG recordings v e ti age, ,� � using the methods 

outlined in Bosch-Bayard et al. (2022); EEGs were re-referenced to the 
Average Reference. To convert the time-domain scalp EEG signals to 
the frequency domain, we used the Fast Fourier Transform (FFT). 
We then calculated spectral matrices s ei age, ,�� � using 24 EEG epochs 
for most cases, with a minimum of 20 to match both studies. These 
calculations produced a spectral matrix with 48 frequency bins 
ranging from 0.78 Hz to 19.15 Hz denoted as ω. As reported by Bosch-
Bayard et al. (2022), we compared the technical parameters for both 
systems (1978 and 2018). We found them practically equivalent with 
no significant bias. To correct the EEG spectra at the scalp and 
eliminate scale variability in the EEG signal that is not related to 
physiological sources, we used the Global Scale Factor (GSF). This step 
is beneficial when comparing recordings obtained from different 
hardware. More details about this can be  found in our previously 
published study (Bosch-Bayard et al., 2022).

Furthermore, normative EEG norms (Bosch-Bayard et al., 2020) 
were applied to the log spectra. This process produced z scalp spectra 
(Figure 1B) for each channel and frequency z ei age, ,�� �. Here e is the 
EEG electrode or channel, and ω is the frequency. The z-scalp spectra 
z ei age, ,�� � were screened for stable biomarkers, then used to construct 
a univariate latent variable qNPSi age,  via factor analysis (Figure 1G). 
The details about these steps can be found in subsections 2.4.5–2.4.6.

2.4.3. Univariate linear mixed effect model for 
longitudinal sqNPS

We incorporated the latent variable sqNPSi age evaluator, ,  into a 
linear mixed effect (LME) model (Figure  1D) to examine the 
differences in longitudinal evolution between nutrition groups. LME 
models are statistical models that can analyze data with repeated 
measures, accounting for the random variations between subjects or 
evaluator  not explained solely by the fixed effects, thus leading to 
more precise estimates of the effects of interest. To implement mixed-
effect modeling, we utilized the lme function from the nlme R package 
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(Pinheiro et al., 2020). We modeled age (in years) and nutrition group 
as the main/fixed effects, with an interaction term between age and 
nutrition group to estimate any differences in slope over the life span. 
Sex and standard of living (Ecology Factor) were also modeled as 
covariates, and their effects were adjusted. Participants were modeled 
as random effects to account for the repeated measures. Furthermore, 
we implemented another model where the participants and evaluator  
were included as random effects to eliminate any evaluation biases. 
We  compared both models via R ANOVA function to select the 
optimal model.

2.4.3.1. Sensitivity analysis for missing data
As mentioned before, when describing data collection, EEG 

recordings in 2018 were limited by funding constraints, producing a 
missing data issue. In order to assess the validity of the ignorability 
assumption, we  conducted a sensitivity analysis. The ignorability 
assumption is based on the notion that all confounding factors should 
be adjusted-for to infer from the regression coefficient as average 
effects. This assumption makes the treatment assignment ignorable, 
like a completely randomized experiment. However, the missing data 
mechanisms, such as Missing Not at Random (MNAR), can violate 
this assumption. To evaluate the effects of missing data mechanisms 
on the LME model estimates, we used the R package ISNI (Ma et al., 
2005; Xie et  al., 2018) to apply an index of local sensitivity to 
non-ignorability (ISNI). ISNI provides a standardized sensitivity 
index “c” where a large c indicates that LME estimates are robust, and 
only extreme violations of the ignorability assumption can alter the 
initial estimates. Therefore, non-ignorability is of little concern. 
According to a guideline proposed by Ma et al. (2005), a rule of thumb 
is that c > = 1 demonstrates robust estimates.

2.4.4. Association of sqNPS with cognitive 
outcomes

To validate the sqNPSi age evaluator, ,  with the Montreal Cognitive 
Assessment (MoCA), used for detecting mild cognitive impairment 
(MCI), we compared MOCA scores with sqNPSi age evaluator, , scores 
(Figure  1E). The MOCA test assesses visuospatial and executive 
functions through its seven subscales: naming, attention, language, 
abstraction, memory, and orientation. To reduce the dimensionality 
of the MOCA variables, we applied polytomous IRT and obtained a 
latent MOCA factor (MFi age yrs, � �45 51 ). We  applied two linear 
regression analysis to determine the relationship between (i) 
sqNPSi age yrs evaluator, ,� �5 11  and MFi age yrs, � �45 51  (ii) 
sqNPSi age yrs evaluator, ,� �45 51  and MFi age yrs, � �45 51 , while adjusting 
for age, sex, and standard of living.

2.4.5. Discriminant analysis for prediction power
In order to evaluate the effectiveness of sqNPSi age evaluator, , and 

how it compares to z ei age, ,�� �  as a longitudinal biomarker for 
malnutrition, we  applied a stable sparse classifier (SSC) (Bosch-
Bayard et al., 2018), as shown in Figure 1F. This method divides 
samples into training (70%) and test sets to avoid random selection. 
SSC implements the “independent significant features (IndFeat)” 
procedure to screen variables, and the elastic net regression method 
selects the best variables for classification. This process is repeated 
1,000 times, and only significant features in over 50% of the 
iterations are kept for further analysis. Receiver operator 
curves(ROCs) are generated to evaluate the expected classification 

accuracy, carried out on an independent set of 1,000 cross-
validations. The median ROC is used to summarize the classifier’s 
operational characteristics. Furthermore, the distribution of the 
1,000 areas under the ROC curve (AUC) is used to fit a kernel 
probability density that quantifies the variability of classification 
performance with variable selection.

2.4.6. Multivariate linear mixed effect model
Screened variables from the stable sparse classifier (SSC) were 

employed as stable biomarkers to test for the nutritional group 
differences. The selected variables for z ei age, ,�� � were transformed 
via factor analysis for dimensionality reduction, creating a new latent 
variable named quantitative NPS (qNPSi age, ).

These new variables were utilized to implement multivariate LME 
models (Figure 1H). The idea is to implement linear mixed effect 
models (multilevel modeling) to evaluate both modalities under 
longitudinal settings and repeated measure design. A third model was 
also implemented for a joint estimate. We implemented these models 
under multivariate design, where the model’s outcome becomes a 
matrix with two columns qNPS sqNPSi age i age, , ,, ��� �� . The 
Multivariate linear mixed effect (MLME) estimated the combined 
effect of malnutrition on both dependent variables.

Furthermore, we created two other models from the main MLME 
model. These models were implemented such that coefficients related 
to one of the modalities were forced to be zero. We have implemented 
these models via MLME to make these models comparable in terms 
of model fit indices and to evaluate the optimal biomarkers under 
longitudinal settings.

R ANOVA function was applied for model comparison. The 
ANOVA function is a statistical tool used to compare multiple models 
and determine if the difference in fit between them is significant. The 
ANOVA functions work with log-likelihood values and Log 
Likelihood ratio (L ratio). The log-likelihood is the probability of 
observing the data given the model parameters and measures how 
well the model fits the data. The higher the log-likelihood, the better 
the model fits the data.

On the other hand, the L ratio measures the improvement in 
model fit when comparing two nested models. It is calculated as the 
difference in log-likelihoods between the two models. Moreover, the 
Log-Likelihood of the different models is compared using a 
chi-squared test to determine if the difference is statistically significant. 
If the value of p of the chi-squared test is less than 0.05, in that case, 
we reject the null hypothesis that the models are equally good fits and 
conclude that one model is a better fit than the other based on the 
log-likelihood values.

3. Results

3.1. Demographics

Table  2 displays the demographic characteristics of the study 
participants. The table confirms that the PEM and CON groups did 
not differ in age, sex, or handedness. However, PEM participants were 
disadvantaged in childhood with respect to their household standard 
of living (Childhood Ecology Factor), consistent with earlier 
publications in this cohort (Galler et al., 1983). The standard of living 
is therefore adjusted in all analyses reported below.
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3.2. GTE items

Visual inspection of the EEG recordings using the GTE items 
demonstrated a higher rate of abnormalities in the PEM group 
compared to the controls in both the 1978 and 2018 datasets, with 
more abnormal findings reported at the older ages in 2018 than in 
children (1978). The total abnormalities found at ages 5–11 years have 
been previously reported (Taboada-Crispi et  al., 2018). At ages 
45–51 years, the total number of EEG recordings with abnormalities 
was 63/94, with 35 (77.7%) from the PEM group and 28 (52.7%) from 
the Control group (χ2 with Yates correction = 5.79, p = 0.016).

3.3. sqEEG: sqNPS score

In this study, we  initially employed an Item Response Theory 
(IRT) model with five items to investigate the relationship between the 
GTE (Grand Total EEG) items and the latent factor sqNPSi age evaluator, ,
(Neurophysiological status). The results revealed that the “Background 
Frequency” item had a low loading of 0.134 and was not associated 
with the sqNPSi age evaluator, , . Additionally, we  observed that the 
“Sporadic Sharp Wave” response category for the “Sharp Waves” item 
was rarely used by the evaluators, and the “Paroxysmal Activity” item 
had a binary trend with only two responses used by the evaluators 
(“0 = None” and “1 = Paroxysmal Activity/spikes”). The model fit 
indices were AIC 3424.02 and BIC 3508.21.

To optimize the model, we excluded the “Background Frequency” 
item and collapsed the response categories for “Sharp Waves” and 
“Paroxysmal Activity.” This change resulted in a more favorable model 
with improved fit indices (AIC 2494.16 and BIC 2554.29). The results 
of the optimized model are presented in Table 3, which shows the 
sqNPSi age evaluator, , loadings for each GTE item. Notably, all items 
loaded well onto the latent factor, with “Focal Abnormality” and 
“Paroxysmal Activity” indicating the highest values at 0.98 and 0.73, 
respectively.

Figure 2 shows the trace plots for the items with the largest and 
smallest loadings, showing a curve for every response category under 
the item and representing it against the latent factor sqNPSi age evaluator, ,
. The trace plots for the optimized model show that all categories of 
response items are well represented.

3.4. Univariate LME model comparing 
nutritional groups

The statistical model used to assess group differences is as follows:

 

sqNPS group age group agei age evaluator
Fixed Effect

, , :� � � �1

 

1 244444 34444

1 244 344
� � �sex ecology Subjects Evaluator

Covariate Ran

/

ddom Effect 

1 2444 3444

We compared two models (1) that included random effects for 
subjects only and (2) random effects for both subjects and evaluators. 
However, the ANOVA results indicated no significant difference 
between the model that only considered participant-based random 
effects and the other model that included participants plus evaluator 
effects (p = 1). Consequently, we proceeded with the simpler model 
that only included participant effects. Additionally, the interaction 
between Group and Age was not significant (p = 0.81), suggesting that 
the nutritional group differences remain constant over the lifespan 
(slopes are parallel).

As presented in Table 4, the fixed effect of the nutrition group was 
highly significant (p < 0.001), indicating a strong association between 
malnutrition history and the outcome variable, sqNPSi age evaluator, , . 
Age was also found to be a significant predictor of sqNPSi age evaluator, ,
(p < 0.001), while Sex and Standard of Living (Ecology factor) did not 
demonstrate any significant association with sqNPSi age evaluator, , .  It 
is worth noting that our analyses showed that sqNPSi age evaluator, , has 
c ≥ 1, which is an index of local sensitivity to non-ignorability (ISNI) 
of missingness pattern. These results indicate that the missingness 
pattern of the EEG data was ignorable, and that the missing data was 
not significantly different from the observed data. Therefore, the 
results are reliable and can be generalized to the population.

3.5. Association of sqNPS with MoCA factor

We initially conducted a comparison between the Total MoCA 
scores of two groups (PEM, CON) where the former had a mean score 
of 24.74 (±4.23) and the latter had a mean score of 28.04 (± 3.16). The 
results showed a significant difference between the two groups, with 
higher scores in the control group indicating less cognitive 

TABLE 3 Item response theory results: factor loadings for the latent 
neurophysiological status (sqNPSi age evaluator, , ).

Grand total EEG items Loadings

Diffuse slow activity 0.65

Paroxysmal activity 0.73

Focal abnormality 0.98

Sharp waves 0.56

TABLE 2 Childhood demographic characteristics mean and standard 
deviation of protein energy malnourished (PEM) and control (CON) 
participants.

PEM CON t or χ2 Value 
of p

N (%) 66 (44.3) 83 (55.7)

Males (%) 38 (57.6) 50 (60.2) 0.11 0.72

Age in 1977 

(years)

8.10 ± 1.83 7.85 ± 1.89 0.81 0.418

Age in 2018 

(years)

48.77 ± 1.83 48.52 ± 1.89 0.81 0.418

Left-

handedness 

(%)

4 (6.1) 3 (3.6) 0.49 0.483

Childhood 

standard of 

living (5–

11 years)

−1.056 ± 0.836 0.189 ± 0.896 −6.11 <0.0001
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impairment. To validate the Neurophysiological status latent score 
(sqNPSi age evaluator, , ) generated from semi-quantitative EEG (sqEEG), 
we compared our results with factor MoCA.

To assess if sqNPSi age evaluator, , is comparable with the MoCA, 
we applied a polytomous IRT model for dimensionality reduction of 
the seven MoCA subscales. The resulting latent MoCA factor 
(MFi age yrs, � �45 51 ) was found to have high factor loadings on language 
(0.92), attention (0.89), and abstraction (0.81). We investigated the 
association between the MFi age yrs, � �45 51  and sqNPSi age evaluator, ,
scores at two-time points separately, as the longitudinal analysis was 
not possible due to MoCA being measured only in adult life. Table 5 
shows the results of the associational analysis.

As shown in Table  5, the sqNPSi age evaluator, , scores were 
significantly associated with the MoCA Factor (MF) at both time points, 
even after adjusting for standard of living, sex, and age. Notably, there was 
a significant association between sqNPSi age yrs evaluator, ,� �5 11 measured 
between the ages of 5–11 years and MFi age yrs, � �45 51  scores assessed 
40 years later. This association was statistically significant (p  = 0.02), 
indicating that early EEG abnormalities associated with malnutrition 
predict adult cognitive impairment. Interestingly, this association was also 
observed in middle adulthood with sqNPSi age yrs evaluator, ,� �45 51

(p  = 0.003), indicating that the relationship between childhood 
sqNPSi age evaluator, , values and cognitive impairment persists over 
the lifespan.

3.6. Discriminant analysis for prediction 
power

We applied the stable sparse classifier (SSC) to predict biomarkers 
for two different time points: childhood and adulthood. As a 
prediction method, the classifier was not designed to handle 
longitudinal data. SSC was employed under three different settings to 
compare the prediction accuracy of both methods independently and 
when combined. The implemented models are

 • sqNPSi age evaluator, ,

 • z ei age, ,�� �
 • a joint model for sqNPSi age evaluator, , and z ei age, ,�� �

Table 6 presents the performance of the sparse stable classifier in 
classifying childhood malnutrition-based on z ei age, ,�� �  and 
sqNPSi age evaluator, , and their combination, both at the ages of 
5–11 years and 45–51 years. The mean area under the receiver operating 
characteristic (ROC) curve for 1,000 cross-validations and the standard 
deviation is reported for each classification scenario. The results 
indicate that the sparse stable classifier achieved a high level of accuracy 
for ages 5–11 years, with mean AUC values ranging from 0.83 ± 0.007 

FIGURE 2

Trace/ICC plots. The x-axis is the value of the latent variable sqNPSi age evaluator, ,  (neurophysiological status), and the y-axis is the 
P sqNPSi age evaluator, ,� � that shows the probability or chance of occurrence for each response category across different levels of NPS. (Left) “Focal 
Abnormality,” the item with the highest loading (0.976). (Right) “Sharp waves,” the item with the lowest loading (0.563).

TABLE 4 Linear Mixed effect results: Estimates with Missing at Random (MAR) assumption, the second column is p-values and 95% lower, and upper 
confidence interval (CI) and last two columns are Sensitivity analysis estimates for the violation of MAR assumption.

Estimate Value of p 95% Lower CI 95% Upper CI ISNI c

(Intercept) 0.08 0.46 −0.14 0.31 0.157 0.63

Nutrition Group 

(PEM) −0.69 <0.001

−0.97 −0.40 −0.025 4.98

Age 0.01 0.01 0.00 0.01 −0.004 0.74

Sex (Male) 0.16 0.08 −0.02 0.34 0.004 17.61

Ecology Factor −0.02 0.67 −0.11 0.07 0.002 22.97

Age: Nutrition Group 

(PEM)
0.00 0.81 −0.01 0.01 0.001 5.67

Significance (p < 0.05) is shown in bold.
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[z ei age yrs, � � � �5 11 ,� ] to 0.84 ± 0.007 (sqNPSi age yrs evaluator, ,� �5 11 ). 
Notably, the combination of z ei age yrs, � � � �5 11 ,�  and 
sqNPSi age yrs evaluator, ,� �5 11  yielded the highest mean AUC value of 
0.92 ± 0.005, indicating that integrating these two measures can 
improve the accuracy of childhood malnutrition classification.

In contrast, the performance of the sparse stable classifier in 
middle adulthood (for ages 45–51 years) was slightly lower, with mean 
AUC values ranging from 0.72 ± 0.01 (sqNPSi age yrs evaluator, ,� �45 51 ) 
to 0.82 ± 0.008 (z ei age yrs, � � � �45 51 ,� ). However, combining both 
modalities outperformed the individual methods (mean AUC of 
0.87 ± 0.007).

3.7. Multivariate linear mixed effect model

The SSC identified a set of stable biomarkers from z ei age, ,�� � , 
which were utilized to construct a latent variable via factor analysis 
known as quantitative NPS (qNPSi age, ). On the other hand, we created 
an average score over evaluators for sqNPSi age evaluator, ,
resulting in sqNPSi age, , � .

 

, , ,
 

 

, 1 :  = + + + 

+ + +



 

i age i age
Fixed Effect

Covariate Random Effect

qNPS sqNPS group age group age

sex ecology Subjects



The main MLME model is given above; three different variations 
of this model were compared where

 • Model 1: qNPSi age, ,,0�� ��  and

 • Model 2: , ,0, ,  i agesqNPS 

 • Model 3: , , ,, .  i age i ageqNPS sqNPS 

M1 and M2 were compared with model 3 with the log-likelihood 
test. The null hypothesis is that the models have no significant 
difference in performance. Table  7 shows the model comparison 
results, where the log-likelihood measures how well a model fits the 
data, while the log-likelihood ratio (L Ratio) compares the 
improvement in model fit between two nested models.

Table 7 shows that the joint model qNPS sqNPSi age i age, , ,, ��� ��  
had the highest log likelihood (−479.7), indicating the best overall fit 
to the data. In contrast, the qNPSi age, ,0�� ��  model had the lowest 
log-likelihood (−506.91). The difference in performance between the 
qNPSi age, ,0�� ��model and qNPS sqNPSi age i age, , ,, ��� ��  model was 

statistically significant (L Ratio = 54.381, p < 0.0001). This suggests that 
adding sqNPSi age,  improves the model’s accuracy.

4. Discussion

Our findings indicate noticeable distinctions between protein-
energy malnutrition (PEM) and the control (CON) groups. Specifically, 
we observed a higher frequency of abnormal Grand Total EEG (GTE) 
item scores in the PEM group compared to control during both 
childhood and middle adulthood. The Supplementary material presents 
the raw scores of the GTE items for each group and time point, including 
the mean and standard deviations as evaluated by two independent 
evaluators for each study. The histograms illustrate the graphical trends 
between groups and conditions, with the control group consistently 
displaying lower scores over time, except for the focal abnormality item. 
We employed the semi-quantitative EEG (sqEEG) method to generate 
Neurophysiological Status (sqNPSi age evaluator, , ) latent scores from GTE 
items to ensure an unbiased assessment.

Our sqEEG-based approach utilized Item Response Theory (IRT) 
to generate latent sqNPSi age evaluator, , . It is important to note that our 
IRT-based approach differs from the Taboada-crispi et al. (2018) study 
on the same cohort in several aspects. Firstly, our study included a 
larger dataset and more time points, providing a more comprehensive 

TABLE 5 Standardized β-estimates showing associations between sqNPS at 5–11  years and 45–51  years with MF scores for PEM and CON groups, 
combined (N =  202)—linear regression analyses adjusted for sex, age, and standard of living.

Age  =  5–11  years Age  =  45–51  years

β Value of p 95% 
Lower CI

95% 
Upper CI

β Value of p 95% 
Lower CI

95% 
Upper CI

(Intercept) 0.38 0.76 −1.47 2.23 −0.65 0.35 −2.12 0.82

sqNPSi age evaluator, , −0.23 0.02 −0.43 −0.03 −0.22 0.00 −0.36 −0.07

Ecology −0.20 0.04 −0.39 −0.01 0.01 0.83 −0.13 0.16

Sex (Male) −0.18 0.35 −0.55 0.19 −0.02 0.90 −0.32 0.28

Age 0.30 0.75 −1.59 2.20 0.71 0.33 −0.72 2.14

TABLE 6 Performance of the sparse stable classifier: the mean area under the ROC curve for 1,000 cross-validations and standard deviation.

Age
( ),, ωz ei age , ,sqNPSi age evaluator

Both

5–11 years 0.83 ± 0.007 0.84 ± 0.007 0.92 ± 0.005

45–51 years 0.82 ± 0.008 0.72 ± 0.01 0.87 ± 0.007

The classification was performed separately at both time points. Columns show different implementation settings with (1) spectral quantitative EEG ( ,z ei age ,�� �), (2) Neurophysiological 
status (sqNPSi age evaluator, , ), and (3) a combination model using both z ei age, ,�� � and sqNPSi age evaluator, , .
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and reliable analysis. Additionally, we excluded non-reliable items 
from the data and also modified and collapsed the response categories 
which were not informative. This resulted in an optimized IRT model 
with better fit indices. This allowed us to create standardized scores 
comparable across evaluators, which provided valuable insights into 
the neurophysiological status (sqNPSi age evaluator, , ) of the PEM and 
control groups.

Among the GTE items, two significant contributors to the 
IRT-based latent neurophysiological status were “Focal abnormalities 
(0.98)” and “paroxysmal activity (0.73).” Focal abnormalities are 
characterized by an increase in bilateral and multifocal abnormalities 
in the EEG recordings, which contradicts the expected normal 
maturation process of the brain (Segalowitz et al., 2010). On the other 
hand, Paroxysmal activity indicates Interictal Epileptic Discharge 
(IED), as noted by Kural et  al. (2020) and Tatum and Shellhaas 
(2020). According to a meta-analysis encompassing data from over 
50,000 subjects by Shelley et al. (2008), paroxysmal activity prevalence 
in normal children ranges from 0.8 to 18.6%, and in adults, it ranges 
from 0.3 to 12.3%. In childhood, PEM individuals have higher rates 
of paroxysmal activity (21.4% vs. 14.3% in controls). The paroxysmal 
activity in controls is well within the range as reported by Shelley 
et al. (2008); however, some other studies report lower activity values 
for healthy children (Darwish et al., 2017; Redka et al., 2020). In 
adulthood, the paroxysmal activity in the BNS cohort was 18.6% for 
the PEM group vs. 14.4% in controls, with PEM values exceeding the 
reported normative range and with slightly elevated values for the 
CON group (Shelley et al., 2008). The focal abnormalities observed 
bilaterally and multifocally in the recordings and higher paroxysmal 
activity may result from early adversity, as previously reported that 
early environmental adversity can lead to altered brain networks 
(Wijeakumar et al., 2019).

The standardized IRT scores based on two evaluators at each time 
point were analyzed using a Linear Mixed Effect (LME) model, which 
revealed no significant differences when incorporating evaluators as 
random effects. The additional random effects did not improve the 
model’s performance, thus indicating the absence of evaluator bias. 
The LME results revealed highly significant differences between the 
groups (p  < 0.001). The sensitivity index for missingness yielded 
robust results, which aligns with our previous findings (Bosch-Bayard 
et al., 2022). Furthermore, sqNPSi age evaluator, , showed a significant 
association with age (p  = 0.01). However, the interaction between 
Group and Age was insignificant (p  = 0.81), suggesting that the 
observed differences in nutritional groups remained consistent across 
the lifespan, with no reversal of the effects of malnutrition as subjects 
matured. The non-significant interaction term between age and 
nutritional group indicates agreement between the two studies.

Linear mixed-effects results showed no significant association 
between sqNPSi age evaluator, , and Sex. While numerous studies have 
demonstrated that sex can influence brain anatomy and function, EEG 
studies do not consistently observe this association (Matsuura et al., 
1985; Bosch-Bayard et al., 2001, 2022; Li et al., 2022). On the other 
hand, despite a more disadvantaged socioeconomic status in the PEM 
group, sqNPS showed no significant relationship with ecology. A 
previous study conducted by Harmony et al. (1988) determined that 
socioeconomic status played an important role in predicting deviant 
spectral-qEEG results. However, some factors may explain the 
discrepancies between our findings in the BNS cohort and that study. 
Firstly, during the 1977–1978 study, Barbados did not experience the 
same extremes of socioeconomic conditions as other underserved 
populations. Additionally, the PEM children in the study were 
involved in a 12-year government intervention program, potentially 
mitigating any disparities in outcomes due to disadvantaged home 
environments. This finding is consistent with previous research from 
the BNS cohort (Galler et al., 1983; Bosch-Bayard et al., 2022). While 
socioeconomic status is crucial, it may not fully encompass the extent 
of adversity being addressed here (Farah, 2017).

We compared our method with MoCa to validate our findings 
based on sqNPSi age evaluator, , . We  found that semi-quantitative 
Neurophysiological Status in childhood and middle adulthood was 
significantly associated with cognitive outcomes on the 
MoCA. Increased EEG abnormalities in the PEM group at ages 
5–11 years predicted elevated cognitive decline 40 years later and over 
the life span. These findings signal the lasting neurological and 
neurobehavioral consequences of early childhood malnutrition and 
extend our earlier observations of cognitive deficits in the BNS cohort 
(Galler et al., 1983; Waber et al., 2011, 2014). We have previously 
reported associations between the spectral-qEEG and MoCA 
outcomes (Razzaq et  al., 2020; Razzaq, 2021; Bosch-Bayard 
et al., 2022).

The comparison between Neurophysiological State 
(sqNPSi age evaluator, , ) with spectral quantitative EEG [spectral-qEEG: 
z ei age, ,�� �] was in two steps (1) stable sparse classifier (SSC) and (2) 
Log Likelihood of Multivariate linear mixed-effects (MLME) models. 
The SSC analysis showed that the combination of z ei age, ,�� �  and 
sqNPSi age evaluator, , yielded the highest predictive power, with an 
average AUC value of 0.92 ± 0.005. Additionally, we compared three 
MLME models to identify the best biomarker for longitudinal effects, 
and the joint MLME model qNPS sqNPSi age i age, , ,, ��� ��  had the 
highest log-likelihood (−479.7). Notably, the qEEG only model 
qNPSi age, ,0�� ��  has the lowest log-likelihood. Our findings indicate 

that while sqNPSi age,  and qNPSi age, produce similar results, 
sqNPSi age, , �  offers unique information that cannot be obtained 

TABLE 7 ANOVA for linear mixed effect models based on the comparison between the performance of quantitative neurophysiological status (qNPSi age, ),  
semi-quantitative NPS ( sqNPSi age, , � ), and a combination model using both [qNPSi age, , , ,sqNPSi age ].

MLME models Log-likelihood Test L ratio p-value

qNPSi age, ,0�� ��
−506.91

qNPSi age,  vs. Both
54.381 <0.0001

0, , ,  sqNPSi age
−489.3

, ,sqNPSi age  vs. Both
19.3 0.02

,, , ,  qNPS sqNPSi age i age
−479.7 - - -

The first column shows the multivariate linear mixed effect (MLME) models, followed by log-likelihood for each model. The last three columns pertain to the comparative test between models. 
These columns are the test performed, the log-likelihood ratio (L Ratio), and the corresponding value of ps for each test.
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solely through qNPSi age, . Combining sqNPSi age, , �  with qNPSi age,  
proves to be more effective than using either method independently. 
Therefore, adopting a multimodal approach may enhance the efficacy 
of future studies in this field.

Our study provides valuable insights into the distinct 
neurophysiological patterns observed in individuals with PEM compared 
to the control group. Our findings highlight the importance of considering 
a history of childhood malnutrition when analyzing EEG recordings and 
GTE scores in underserved populations. This study further supports 
earlier reports showing that EEG changes resulting from early childhood 
malnutrition predict accelerated cognitive decline at ages 45–51 years 
(Bosch-Bayard et al., 2022) and adds to the literature on the long-term 
brain and behavioral consequences of early malnutrition. Findings from 
the Dutch famine study are focused on the effects of famine exposure 
during gestation on cognitive decline (De Groot et al., 2011; Wiegersma 
et al., 2022) and brain aging in adulthood using structural and functional 
fMRI (Franke et al., 2018; Boots et al., 2022). Two long-term studies of 
survivors of the Chinese Great Leap Forward Famine have reported on 
early cognitive decline in adults exposed to undernutrition during 
gestation and late childhood (Wang et al., 2016) and following famine 
exposure in early childhood (1–3 yrs. of age) (Kang et al., 2017). However, 
neither famine study included neuroimaging assessments during early 
life. Furthermore, famine studies have generally relied on reports of 
period of famine exposure but have not directly evaluated the nutritional 
status and health of the child at the time of exposure. Unlike these earlier 
studies, we examined all children during their malnutrition episode and 
throughout childhood and have incorporated neuroimaging measures, 
specifically the EEG, in both children and adults.

In summary, this study contributes to the existing literature by 
examining the impact of early malnutrition on the brain using EEG 
measures and relating these to cognitive decline in adulthood. The 
sqEEG thus represents another cost-effective measure that can be used 
to identify individuals at risk for malnutrition effects on brain 
development in resource-poor settings. With the development of qEEG, 
the sqEEG analysis is less represented in the scientific literature. Even if 
spectral quantitative EEG has been employed repeatedly and successfully 
to demonstrate differences between groups in many settings, 
we recognize that it does not consider other cross spectra, as in Li et al. 
(2022), or nonlinear and nonstationary features which provide rich 
information about the underlying electrophysiological changes. Note 
that conventional EEG analysis is based solely on the visual examination 
of the continuous tracings, which may be  highly subjective and, 
therefore, a disadvantage. Nevertheless, neurophysiologists can provide 
unique and valuable information about EEG resting state activity which 
can be partially quantified using sqEEG.

5. Limitations and future work

This study has several limitations which may have impacted the 
findings. One limitation is the attrition of the original sample of 
participants with EEG in 1978 (N = 258). However, the composite 
sample employed for this analysis (N = 149) represents 58% of the total 
cohort, which is substantial in comparison with other international 
longitudinal studies (Pollitt et al., 1993; Victora et al., 2008; Gustavson 
et al., 2012; Launes et al., 2014; Sánchez and Escobal, 2020). Further, 
this is one of the few studies that has followed individuals exposed to 
a limited period of postnatal malnutrition during the first year of life 
who were then fully rehabilitated following their illness. The sensitivity 

procedure we employed to test the influence of missing data in the 
analysis ruled out any potential effect of attrition on the results.

A second limitation pertains to potential environmental 
influences that may not have been documented. Even though the 
healthy controls were selected from the same classrooms as the 
PEM group, the nutrition groups nonetheless differed with respect 
to their childhood and adult standard of living (Galler and Ramsey, 
1985; Galler et al., 2012). Although we adjusted for these effects in 
all our statistical models, it is possible that we failed to include all 
environmental factors and childhood adversities that may have 
contributed to their impaired cognitive and neurological outcomes. 
Other examples of childhood adversity that were more likely to be 
present in the PEM group and may have played a role in these 
findings include child maltreatment (Hock et al., 2017) and 
maternal depression (Salt et al., 1988; Galler et al., 2010; Waber 
et al., 2011). It is well known that childhood adversity plays a major 
role in brain and behavioral development (Fox et al., 2010; Teicher 
et al., 2016). Future EEG studies will address these additional 
childhood adversities more comprehensively.

Finally, in further developing our work using sqEEG, we would 
like to carry out sqEEG with a more comprehensive EEG grapho-
element ontology, such as SCORE (Beniczky et  al., 2017). When 
comparing sqEEG with qEEG, we will augment the qEEG biomarker 
set, as mentioned before, with functional connectivity measures and 
nonlinear features. Finally, we also plan to examine a broader set of 
behavioral and cognitive outcomes that are available in the BNS 
archival records.

6. Conclusion

This research affirms the long-term impact of early childhood 
malnutrition on brain function, as assessed through semiquantitative 
EEG (sqEEG) and spectral quantitative EEG (qEEG). This study found 
that increased sqEEG abnormalities during childhood predicted an 
accelerated cognitive decline that persisted for over five decades into 
middle adulthood. Both the MoCA and qEEG results corroborated 
these findings. Overall, the study highlights the distinct features of both 
sqEEG and spectral-qEEG and underscores the value of utilizing a 
combined approach to develop an effective predictive biomarker for 
malnutrition-related cognitive impairment in children who are at high 
risk. It also highlights the need for an augmented qEEG measure set, 
including functional connectivity and nonlinear/nonstationary features.
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