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Open-source software for
automated rodent behavioral
analysis
Sena Isik and Gunes Unal*

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Istanbul, Türkiye

Rodent behavioral analysis is a major specialization in experimental psychology

and behavioral neuroscience. Rodents display a wide range of species-specific

behaviors, not only in their natural habitats but also under behavioral testing

in controlled laboratory conditions. Detecting and categorizing these different

kinds of behavior in a consistent way is a challenging task. Observing and

analyzing rodent behaviors manually limits the reproducibility and replicability of

the analyses due to potentially low inter-rater reliability. The advancement and

accessibility of object tracking and pose estimation technologies led to several

open-source artificial intelligence (AI) tools that utilize various algorithms for

rodent behavioral analysis. These software provide high consistency compared

to manual methods, and offer more flexibility than commercial systems by

allowing custom-purpose modifications for specific research needs. Open-

source software reviewed in this paper offer automated or semi-automated

methods for detecting and categorizing rodent behaviors by using hand-coded

heuristics, machine learning, or neural networks. The underlying algorithms show

key differences in their internal dynamics, interfaces, user-friendliness, and the

variety of their outputs. This work reviews the algorithms, capability, functionality,

features and software properties of open-source behavioral analysis tools, and

discusses how this emergent technology facilitates behavioral quantification in

rodent research.
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Introduction

Animals exhibit a wide range of behaviors in their natural habitats (Bateson, 1990).
Methodological observation and categorization of animal behavior dates back to Aristotle
(384–322 BC) and Erasistratus (304–250 BC), who experimented on living animals under
captivity (Hajar, 2011). These observations were historically made by manual methods,
relying on the human eye. However, animal behavior is so diverse that it may not be
reliably recorded and categorized even under the most controlled conditions. Low levels of
inter-rater reliability between different observers limit the reproducibility and replicability
of the findings (Kafkafi et al., 2018). This became a major technical challenge in modern
experimental psychology and behavioral neuroscience. Commercial automated behavioral
analysis tools emerged in this context, aiming to produce reliable behavior categorization
in rodent research (Noldus et al., 2001). This was followed by open-source software (refer
to Table 1 for a dictionary definition), which offers additional flexibility in the analyses
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(see Kabra et al., 2013). Here, we review open-source behavioral
analysis software that enable pose estimation and behavior
detection/categorization in addition to animal tracking [see
Panadeiro et al. (2021) for a review of animal tracking software]. We
focus on the algorithms, general capability, functionality, features,
and software properties of these open-source tools with their
contributions and limitations. We present a glossary of common
terminology (Table 1) and a list of open-access and open-source
software with their identifying features (Table 2).

Designating timescales for specific behaviors, that is deciding
when a particular action or movement begins and when it ends, is
a key component of behavioral analysis. Manual identification of
animal behavior is especially vulnerable to time-scaling differences
due to potentially low levels of inter-rater reliability. This issue
became a major pushing force for automated behavioral analysis
software that emerged in the 1990’s. The advancement and
accessibility of object tracking and pose estimation technologies
gave rise to AI-based (Table 1) behavioral analysis programs that
offer substantially more precise time-scaling compared to manual
analysis (Luxem et al., 2022b). These open-source software utilize a
variety of algorithms (Table 1) produced from non-neural network
machine learning (Table 1), and deep learning (Table 1) that utilize
neural networks (Table 1). These algorithms have basic differences
in their internal dynamics, generalization capabilities on different
settings and species, and computational costs. They use different
types of graphical user interface (GUI; Table 1) and vary in user-
friendliness and the diversity of outputs. Researchers either select
and use the original software or modify them for their particular
experimental needs.

Automated behavioral analysis often starts with tracking target
objects on a two- or three-dimensional field (Jiang et al., 2022). This
is known as object tracking, the ability of a software to follow the
movements of an object of interest. This can be the whole animal,
its extremities or other body parts such as the vibrissae (whiskers).
Tracking software record the trajectories of these moving “objects”
and use them to designate and categorize specific behaviors. These
behaviors range from simple motor actions such as grooming and
rearing to well-defined behavioral patterns such as thigmotaxis
in an open field. Video-based monitoring of the posture and
locomotion of the animal is employed in several behavioral mazes
and tasks. The use of this technology is not restricted to rodent
experiments. It has been tested with primates (Marks et al., 2022),
broiler chickens (Fang et al., 2021), zebra fish (Li et al., 2022), and
fruit flies (Mathis et al., 2018) as well as human eye movements
(Dalmaijer et al., 2014).

The first proprietary software (Noldus et al., 2001) to utilize
object tracking and monitoring technologies for rodent behavioral
analysis was released in 2001 with a comprehensive behavioral
repertoire that works with several paradigms. In addition to dry
mazes in which the background is static, consistent results were
produced in water-based paradigms such as the Morris water maze
(Morris, 1981). It should be noted that the versatile protocols and
user-friendly nature of this licensed software have proved success
beyond the controlled laboratory settings. It has been used to track
and analyze human locomotion and behaviors, such as studies on
children with autism spectrum disorder (Sabatos-DeVito et al.,
2019). Proprietary software, however, do not allow users to modify
their algorithms or interface according to their specific needs.

Progress in the field of AI and video monitoring technology
gave rise to open-access and open-source systems (Table 1)
that can be downloaded, installed and modified via GitHub or
other websites provided by the authors. The main difference
between open-access repositories and open-source software is that
the former does not necessarily share source codes (Table 1).
The versatile nature of rodent behavioral testing often requires
researchers to try new analysis on behavioral data, which do require
full control over used algorithms. User-specific modifications may
be needed in several different features of the analysis software,
including feature extraction (Table 1), behavior classification and
image pre-processing techniques. Only open-source software that
provide public access can fully meet this need. These non-
commercial and open-source alternatives possess the capacity to
outperform commercial systems by themselves or when supported
with additional machine learning classifiers (Sturman et al., 2020).

Below section reviews different groups of algorithms utilized
by behavioral analysis software. This is followed by the General
Capability section covering the three main components of rodent
behavioral analysis: tracking, pose estimation, and behavior
detection and categorization. We then go over specific features
and functionality that differentiate currently available open-source
software, and discuss their contribution to the main analysis tasks.
In the final section, we examine software properties that relate to
the design and usability of the reviewed tools.

Algorithms

Behavioral analysis tools reviewed in this work vary in their
algorithms that underly their computer vision tasks (Table 2).
These algorithms can be studied in three major categories:
hand-coded heuristics, non-neural network machine learning,
and deep learning (neural networks). They have different
hardware requirements, computational costs, and generalization
capabilities, in addition to differences in data size and manual
labor requirements.

Hand-coded heuristics

Image processing combined with heuristics is the oldest
approach, for which the experts extract relevant tracking and
pose data (e.g., animal position, orientation, etc.) from video
images by applying a series of transformations and computations
like masking, thresholding, and frame differencing. They then
analyze the extracted information with a set of hand-coded rule-
based heuristics. These heuristics and image processing steps are
defined by relatively limited experimental input, as it is not feasible
to define rules that cover all possible experimental settings and
scenarios. This decreases the generalizability of outputs to novel
experimental data. DBscorer (Nandi et al., 2021), for instance, only
offers mobility and immobility statistics by using image processing
and heuristics. Although these heuristics can be extended and
optimized over time by experts, as offered by BehaviorDEPOT
(Gabriel et al., 2022), covering more experimental settings and
behaviors is a time-consuming endeavor.

Designing new heuristics require good level of programming
knowledge as well as an understanding of behavioral data of
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interest. BehaviorDEPOT (Gabriel et al., 2022) offers extensive
support through its modules to make the heuristics design and
optimization process easier. Other software like AnimalTracker
(Gulyás et al., 2016), ToxTrac (Rodriquez et al., 2017), and ezTrack
(Pennington et al., 2019) only offer a set of parameters that can
be modified with already available data. As compared to data-
hungry methods, a key advantage of heuristics-based approaches
is their need for minimal, if any, annotated data. This advantage
is clearly visible in BehaviorDEPOT (Gabriel et al., 2022), which
shows significantly higher F1 scores compared to the machine
learning-based JAABA (Kabra et al., 2013) while using less data.

Image processing and heuristics-based tools also require less
computational resources. This allows AnimalTracker (Gulyás
et al., 2016), ToxTrac (Rodriquez et al., 2017), and ezTrack
(Pennington et al., 2019) to be adapted for real-time (online)
behavioral analysis. ToxTrac (Rodriquez et al., 2017) shows
outstanding performance in processing speed while having on
par accuracy scores with other tracking tools. DBscorer (Nandi
et al., 2021) and BehaviorDEPOT (Gabriel et al., 2022), however,
are not ideal for real-time analysis, as they require tracking
and pose data from DeepLabCut (Mathis et al., 2018), a deep

learning-based tracking tool. These properties make heuristics-
based tools suitable for researchers who work with relatively stable
experimental conditions and lack sufficient annotated data or
computational power required for machine learning or and deep
learning models.

Machine learning (Non-neural network)

Low levels of generalizability and other limitations of rule-
based systems gave rise to a new approach that utilizes probability
and statistics to create models that are able to learn and
generalize from data (Russell and Norvig, 2003). Certain analysis
software such as CaT-z, Motr, VSAMBR, LiveMouseTracker use a
combination of image processing and classical machine learning
methods. They use image processing methods to extract features
and feed them into the machine learning models. One of the earliest
examples of this combined use is VSAMBR (Jhuang et al., 2010),
which, by integrating machine learning to its image processing
capabilities, outperforms human annotators in behavioral analysis.
Consisting of feature computation and classification modules, this
tool extracts the motion and position features of the animal by

TABLE 1 Glossary of computational terms.

Term Definition

Open-source “Software that is free to use and can be studied or improved by anyone because it is based on a code that anyone can use” (Cambridge Dictionary, 2023)

Open-access “Available for everyone to use” (Cambridge Dictionary, 2023)

Algorithm “A set of rules used to calculate an answer to a mathematical problem” (Cambridge Dictionary, 2023)

Artificial intelligence
(AI)

“A research field concerned with understanding and building intelligent entities—machines that can compute how to act effectively and safely in a wide
variety of novel situations” (Russell and Norvig, 2003, p. 19)

Machine learning
(ML)

“Machine learning is a subfield of AI that studies the ability to improve performance based on experience” (Russell and Norvig, 2003, p. 19)

Deep learning (DL) “Machine learning using multiple layers of simple, adjustable computing elements (e.g., artificial neurons)” (Russell and Norvig, 2003, p. 44)

Precision “A performance measure that indicates the ratio of model predictions of a class which actually belong to the predicted class” (Géron, 2019, p. 139)

Graphical user
interface (GUI)

“A way of arranging information on a computer screen that is easy to understand and use because it uses icons (pictures), menus, and a mouse rather
than only text” (Cambridge Dictionary, 2023)

Source code “The set of computer instructions that have been written in order to create a program or piece of software” (Cambridge Dictionary, 2023)

Feature extraction “Obtaining useful information from raw data by applying a series of computations” (Russell and Norvig, 2003, p. 988)

Key-point “Points of a shape that are prominent according to a particular definition of interestingness or saliency” (Tombari et al., 2013, p. 198)

Clustering “An unsupervised learning technique which aims to group similar data instances together into clusters” (Géron, 2019, p. 307)

Active learning “A learning strategy where human experts interact with the learning algorithm, providing labels for specific instances when the algorithm requests them”
(Géron, 2019, p. 332)

Supervised learning “Learning a function that maps from input to output by observing input-output pairs” (Russell and Norvig, 2003, p. 671)

Unsupervised
learning

“Learning patterns in the input without any explicit feedback” (Russell and Norvig, 2003, p. 671)

Dimensionality
reduction

“Reducing the number of features in the data in order to improve the performance of machine learning models, or to visualize the data” (Géron, 2019,
p. 279)

Neuronal networks “A very simplified model of our neuronal circuitry, composed of a stack of layers of artificial neurons” (Géron, 2019, p. 5)

Accuracy “A performance measure that indicates the ratio of correctly classified data instances.” (Géron, 2019, p. 22)

Heuristics “Experience-based techniques for problem-solving, learning, and discovery. Heuristic solutions are not guaranteed to be optimal, but heuristic methods
are used to speed up the process of finding satisfactory solutions where optimal solutions are impractical” (Martí et al., 2018, p. V)

Modular
programming

“A design technique that divides a complex system into several parts, where each part performs a single function, and can be developed or tested
independently” (Yau and Tsai, 1986, p. 714)
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TABLE 2 Open-access and open-source behavioral analysis software.

Software Article Behavioral
test/use#

Algorithm:
Ha, MLb,

DLc

General
capability

Functionality and features Software properties

Input
modality

Validation or
optimization

Background
subtraction

Real-time Modular
architecture

Operating
systems

Packages

AlphaTracker Chen et al., 2020 Social interaction DL Tracking, pose
estimation, behavior

RGB Validation Yes Yes Yes Windows+ ,
MacOS+ , Linux

Python
Package

AnimalTracker Gulyás et al., 2016 Not specified H Tracking Grayscale None Yes Yes Yes Windows GUI, JAVA

Behavior Atlas Huang et al., 2021 OFT, rearing,
grooming

ML Behavior RGB Validation No No Yes Windows+ ,
MacOS+ , Linux+

MATLAB App

BehaviorDEPOT Gabriel et al., 2022 OFT, EPM, NORT,
fear conditioning

H Behavior Pose and tracking
data

Validation No No Yes Windows, MacOS GUI,
MATLAB App

B-SOiD Hsu and Yttri, 2021 Locomotion, itching,
rearing, grooming

ML Behavior Pose and tracking
data

Validation No Yes Yes Windows, MacOS,
Linux

GUI, Python
Package

CaT-z Gerós et al., 2020 OFT, EPM ML Tracking, behavior RGB-D Validation Yes No Yes Windows GUI

DBscorer Nandi et al., 2021 FST, TST H Behavior Grayscale Validation Yes No No Windows GUI,
MATLAB App

DeepAction Harris et al., 2022 Homecage
monitoring

DL Behavior RGB Validation No No Yes Windows+ ,
MacOS+ , Linux+

GUI,
MATLAB App

DeepCaT-z Gerós et al., 2022 Locomotion, rearing,
grooming

DL Tracking, behavior RGB-D Validation Yes Yes Yes Windows, MacOS GUI

DeepEthogram Bohnslav et al., 2021 OFT, EPM, FST,
social interaction

DL Behavior RGB Both No No Yes Windows, MacOS,
Linux

GUI, Python
Package

DeepLabCut Mathis et al., 2018 OFT, EPM, MWM DL Tracking, pose
estimation

RGB Both Yes Yes Yes Windows, MacOS,
Linux

GUI, Python
Package

ezTrack Pennington et al.,
2019

OFT, EPM, FST,
NORT, fear

conditioning

H Tracking, behavior Grayscale Validation Yes Yes Yes Windows, MacOS,
Linux

Python
Package

JAABA Kabra et al., 2013 Locomotion ML behavior Tracking data Validation No No No Windows, MacOS,
Linux

GUI,
MATLAB App

LabGym Hu et al., 2022 Test agnostic DL Tracking, behavior RGB Validation Yes Yes Yes Windows+ ,
MacOS+ , Linux+

GUI, Python
Package

LiveMouse
Tracker*

de Chaumont et al.,
2019

OFT, rearing,
grooming, head

movements

ML Tracking, pose
estimation, behavior

RGB Validation Yes Yes No Windows GUI

(Continued)

Fro
n

tie
rs

in
N

e
u

ro
scie

n
ce

0
4

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fnins.2023.1149027
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1149027
A

pril10,2023
Tim

e:12:40
#

5

Isik
an

d
U

n
al

10
.3

3
8

9
/fn

in
s.2

0
2

3
.114

9
0

2
7

TABLE 2 (Continued)

Software Article Behavioral
test/use#

Algorithm:
Ha, MLb,

DLc

General
capability

Functionality and features Software properties

Input
modality

Validation or
optimization

Background
subtraction

Real-time Modular
architecture

Operating
systems

Packages

MARS Segalin et al., 2021 Social interaction ML, DL Tracking, pose
estimation, behavior

RGB Validation No No Yes Windows, MacOS,
Linux

GUI, Python
Package

Motr Ohayon et al., 2013 Not specified ML Tracking Grayscale Validation Yes No No Windows, Linux GUI,
MATLAB App

OpenLabCluster Li et al., 2022 Test agnostic ML, DL Behavior Pose and tracking
data

Validation No No No Windows, MacOS,
Linux

GUI, Python
Package

SimBA Nilsson et al., 2020 Social interaction ML, DL Tracking, pose
estimation, behavior

RGB Both No No Yes Windows, MacOS,
Linux

GUI, Python
Package

SIPEC Marks et al., 2022 OFT DL Tracking, pose
estimation, behavior

RGB Validation Yes No Yes Windows+ ,
MacOS+ , Linux

GUI, Python
Package

ToxTrac* Rodriquez et al.,
2017

Not specified H Tracking Grayscale None Yes Yes No Windows GUI

TREBA Sun et al., 2021 Not specified H, DL Behavior RGB Validation Yes No No Windows+ ,
MacOS+ , Linux+

Python
Package

VAME Luxem et al., 2022a Locomotion, OFT,
rearing, grooming

ML, DL Behavior Pose and tracking
data

Validation No No No Windows, MacOS,
Linux

Python
Package

VSAMBR Jhuang et al., 2010 Homecage
monitoring

ML Tracking, behavior Grayscale Validation Yes No Yes Windows+ ,
MacOS+ , Linux

GUI,
MATLAB App

#Please note that specified behavioral tests are those mentioned in the original articles. Listed software may analyze other behaviors or tests that are not specified here.
aHand-coded heuristics.
bMachine learning (non-neural network).
cDeep learning (neural network).
*These software are open-access, but not open-source.
+Software may work in these operating systems, but this is not specified in the original article.
OFT, open field test; EPM, elevated plus maze; FST, forced swim test; MWM, Morris water maze; NORT, novel object recognition test.

Fro
n

tie
rs

in
N

e
u

ro
scie

n
ce

0
5

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fnins.2023.1149027
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1149027 April 10, 2023 Time: 12:40 # 6

Isik and Unal 10.3389/fnins.2023.1149027

FIGURE 1

Flowchart of the general capabilities of different tracking and behavioral analysis software.

FIGURE 2

Popularity of open-source repositories as assessed by the number of GitHub stars (left panel) and contributors (right panel) as of March 2023.

analyzing differences in each frame and uses the extracted features
to train a Support Vector Machine-Hidden Markov Model (SVM-
HMM). Feature extraction with image processing, followed by
a machine learning model works well for behavior classification
when the annotated data is scarce. More recent tools such as Live
Mouse Tracker (de Chaumont et al., 2019) and CaT-z (Gerós et al.,
2020) additionally make use of RFID sensors and infrared/depth
RGBD cameras to extend the features that machine learning models
use to classify animal behaviors. This adds depth information to
processing and substantially improves performance. Software like
JAABA (Kabra et al., 2013) use machine learning-based tracking
tools like Motr (Ohayon et al., 2013) to train their models. However,
as discussed in the following sections, deep learning-based tracking
models often yield more reliable results. Even rule-based models
can be effective by using deep learning tools for tracking as
observed in BehaviorDEPOT (Gabriel et al., 2022).

Compared to heuristics-based tools, machine learning systems
do not require additional rule design and manual labor when a new

variable, like a behavior category, is introduced to the experiments.
This enables researchers to analyze a wide range of behaviors
with less time and effort. This constitutes the main advantage
of machine learning-based tools over rule-based methods, which
require manual parameter optimization and calibration for each
experimental setting. On the other hand, machine learning
algorithms may perform worse compared to deep learning-based
tools when there is sufficient amount of annotated data.

Deep learning (Neural network)

Deep learning, or deep structured learning, is a type of machine
learning that utilizes artificial neural networks (Table 1) with
multiple layers of processing. These algorithms typically provide
better key-point extraction and pose estimation. However, unlike
classical machine learning and heuristic-based methods, deep
learning models generally require training with large datasets to
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approximate the desired feature space from the given input and
output pairs when they are trained from scratch (Goodfellow
et al., 2016). Their behavioral analysis performance drops when the
neural networks are fed solely with image data without prior feature
extraction. Therefore, researchers often use a pre-trained deep
learning-based model to extract trajectory and pose information,
and then feed this information into other models that specialize
in behavioral detection and categorization. Deep learning-based
software VAME (Luxem et al., 2022a) and OpenLabCluster tackle
these problems by utilizing previously extracted features (Li et al.,
2022). These systems have proven to work well even when the
annotated dataset is small. LabGym uses another technique to solve
this common problem of neural networks (Hu et al., 2022). It
removes the background from the videos, which allows models
to learn features better from relevant signals by eliminating noise,
and then extracts animation and positional changes of the animal.
In addition to using pre-trained model weights, DeepEthogram
(Bohnslav et al., 2021) and DeepCaT-z (Gerós et al., 2022),
respectively, incorporate optic flow and depth information into the
video frames to overcome the need for large datasets. TREBA (Sun
et al., 2021) proposes a unique approach that utilizes both expert
knowledge and neural networks. This method incorporates the
outputs of MARS (Segalin et al., 2021) and SimBA (Nilsson et al.,
2020) together with custom heuristics written by domain experts.
Computed attributes are then used to train a neural network
in a semi-supervised fashion, resulting in a 10-fold reduction of
annotation requirements.

Recent progress in deep learning allowed software such as
SimBA (Nilsson et al., 2020), B-SOiD (Hsu and Yttri, 2021),
MARS (Segalin et al., 2021), and Behavior Atlas (Huang et al.,
2021) to use pre-trained pose estimation and motion tracking
tools for feature extraction, instead of depending on image
processing or machine learning models. This enables them to
combine the generalization capabilities of deep learning algorithms
with classical machine learning methods that yield more robust
analyses of animal behavior. In addition, Behavior Atlas (Huang
et al., 2021) uses multiple cameras to estimate the 3D motion
and posture of the animal and discriminates behaviors by using
machine learning techniques like dimensionality reduction and
unsupervised clustering (Table 1).

Deep learning-based methods share the advantages of machine
learning algorithms over heuristics. Owing to transfer-learning, this
approach provides substantially better generalization capabilities
compared to machine learning. The requirement for large datasets
is often overcome by using pre-trained networks and unsupervised
or semi-supervised learning algorithms that minimize the need
for annotated data.

General capability

Behavioral analysis in rodent research covers tracking the
locomotion (i.e., movement of the whole animal) and movement
of distinct body parts to detect and categorize particular
behaviors such as rearing, freezing, and thigmotaxis. Workflow
of the automated analysis tools therefore consists of three
main stages: object tracking, pose estimation and behavior
detection/categorization. Certain software only deal with object

(i.e., animal) tracking (see Panadeiro et al., 2021), while others
combine tracking with pose estimation and/or behavior detection
capabilities to provide automated or semi-automated rodent
behavioral analysis (Figure 1).

Tracking

Object tracking constitutes the first step for most behavioral
analysis software. It includes following the moving animal and
recording its position within the maze by applying different
computational techniques onto the recorded image sequences.
Currently, the most widely known open-source tracking tool is
DeepLabCut (Mathis et al., 2018), as assessed by the number of
“stars” and contributors of its GitHub repository (Figure 2). As
mentioned in the previous section, it is a deep learning-based tool,
which uses pre-trained neural networks and adapts them to animal
tracking and pose estimation tasks by using transfer-learning.
DeepLabCut is also utilized in other software like Behavior Atlas
(Huang et al., 2021), BehaviorDEPOT (Gabriel et al., 2022), and
SimBA (Nilsson et al., 2020). These programs focus on behavioral
analysis while making use of the tracking abilities of DeepLabCut.
This review focuses on open-source software that incorporate
animal tracking in behavioral analysis or rely on other software
for this step. However, for comparison, we also provide three
examples that solely offer animal tracking without pose estimation
or behavior detection/categorization: AnimalTracker and Motr are
open-source tracking software, while ToxTrac is an open-access
Windows tool (Table 2).

Identity preservation in multi-animal settings constitutes the
most challenging sub-task of tracking. ToxTrac (Rodriquez et al.,
2017), AlphaTracker (Chen et al., 2020), SIPEC:IdNet (Marks et al.,
2022), MARS (Segalin et al., 2021), and LabGym (Hu et al., 2022)
are capable of tracking many animals, allowing analysis of social
behavior. Another software, Live Mouse Tracker (de Chaumont
et al., 2019), uses RFID sensors to isolate and retain the track of
different rodents. DeepLabCut (Mathis et al., 2018) recently started
supporting multi-animal tracking with the help of community
contributions (Lauer et al., 2022). This is another good example
showing the unique strength of open-source systems: enabling
custom-purpose modifications.

Pose estimation

Pose estimation is a computer vision task that aims to encode
the relative position of individual body parts of a moving animal to
derive its location and orientation. This task can be carried out by
deep learning models such as AlphaPose (Fang et al., 2022), a state-
of-the-art whole-body pose estimation tool that can concurrently
be used with many people. Deep learning-based pose estimation
technology can be applied to other animals, including rodents,
to facilitate behavior detection and categorization. AlphaTracker
(Chen et al., 2020) utilizes the architecture of the AlphaPose to
distinguish multiple unmarked animals, which appear identical.
This program can therefore be utilized to study rodent social
interaction, in which the body posture and head orientation signify
particular types of social behavior.
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As for object tracking, pose estimation algorithms of particular
software can be used by other software for their particular
needs. SimBA (Nilsson et al., 2020), for instance, relies on pose
estimation capabilities of DeepLabCut (Mathis et al., 2018) for
analyzing social interaction. Behavior Atlas (Huang et al., 2021)
uses DeepLabCut to analyze videos from different viewpoints and
perform 3D skeletal reconstructions from 2D pose predictions.
Using multiple viewpoints and 3D pose features improves the
robustness of the model against discrepancies in video recordings
and obstruction of body parts.

The ResNet (He et al., 2016) architecture, a widely used
pre-trained object recognition model, constitutes the backbone
of DeepLabCut’s pose estimation. The last layers of ResNet are
modified for a key-point detection task to reliably detect the
coordinates of moving objects (i.e., animals). SIPEC:PoseNet
architecture of the SIPEC (Marks et al., 2022), in contrast, utilizes
a smaller network, the EfficientNet (Tan and Le, 2019), as its
backbone model. With its smaller size, this model was designed
to generate faster predictions compared to larger pre-trained
networks like ResNet.

Behavior detection/categorization

Detecting a particular rodent behavior and its subsequent
categorization requires segmenting frames that contain specific
patterns of motor actions (or lack of action/movement) across
pre-defined time periods. These include species-specific responses
such as freezing, darting, rearing, grooming, and thigmotaxis. As
explained above, several tools like DeepLabCut (Mathis et al., 2018)
employ solutions for object tracking and pose estimation, while the
ultimate step, behavioral detection and categorization, is completed
with a different software. Hence, the output from reliable object
tracking software like Motr or more comprehensive programs that
combine tracking and pose estimation are used as the input for
software specialized in behavior detection (e.g., BehaviorDEPOT,
JAABA, VAME, B-SOiD). This separation of functionality allows
researchers to experiment with a combination of tracking, pose
estimation, behavior analysis software, and find the most suitable
combination for their specific needs. Certain software such as
AlphaTracker (Chen et al., 2020), MARS (Segalin et al., 2021),
SIPEC (Marks et al., 2022), LabGym (Hu et al., 2022), DeepCaT-
z (Gerós et al., 2022), and DeepEthogram (Bohnslav et al., 2021)
offer a combination of these solutions, enabling a comprehensive
behavioral analysis within the same system (Table 2). This is
especially useful for researchers who do not have the necessary
technical skills to merge the inputs and outputs of different tools.

Functionality and features

Input modality

Behavioral analysis software may directly use video recordings
as their input. These recordings consist of frames that can
be represented in grayscale or RGB (Red, Green, Blue) color
models. In a grayscale depiction, each pixel is represented by a
single value that corresponds to the light intensity of that pixel,

with higher values indicating a brighter pixel, and lower values
indicating a darker pixel. An RGB image, in contrast, contains the
hue information by representing each pixel by three values that
correspond to the intensity of red, green, and blue in that pixel.
Grayscale images thereby contain a single channel of information,
whereas RGB images contain three channels. Grayscale images
are more suitable for real-time analyses as well as offline analysis
that deal only with motion capturing (e.g., color information
is irrelevant). They can be acquired by monochrome cameras
that possess better signal-to-noise ratio and spatial resolution in
comparison to color cameras (Yasuma et al., 2010). Containing
a single channel of information, grayscale images also require
less computational power and time for processing. Using RGB
color model in behavioral analysis may introduce additional noise
to the image and decrease model performance. RGB images
are useful when the color information influences the automated
analysis or the observations of the researcher. Image colors can
facilitate understanding how the appearance of the maze and its
surroundings influence the behavior of the animal.

The performance of automated behavioral analysis programs
may also vary based on the intensity and the direction of lighting
in analyzed video recordings. Certain programs like ezTrack
(Pennington et al., 2019) and DBscorer (Nandi et al., 2021) require
a good level of contrast between the animal and the background.
This can be obtained by providing sufficient illumination on
the field of interest (e.g., the experimental apparatus/maze) and
playing with the distance and direction of the video camera. Other
software, such as CaT-z (Gerós et al., 2020), are less vulnerable
to lighting conditions and deliver consistent results under non-
uniform illumination. When rodents are observed through RGB
cameras in a behavioral maze, the distinction between different
body parts and the background may not be possible with the
naked eye. Automated software substantially ameliorated this
problem. Combining depth information with the RGB input of
video cameras significantly improved object detection, even in
relatively dark environments. With RGB-D (D stands for depth)
cameras, lighting conditions ceased to be a determining factor in
behavioral analysis.

Automated programs that solely focus on behavioral
categorization (e.g., B-SOiD, VAME, JAABA, and
BehaviorDEPOT) rely on tracking or pose estimation capabilities
of other software. They do not process graphic information
themselves, but utilize data extracted from the videos. When
multiple behavioral analysis tools support outputs from a common
tracking/pose estimation software, different analyses can be applied
to the same dataset without processing the videos multiple times,
saving time and energy. For example, VAME (Luxem et al., 2022a)
and BehaviorDEPOT (Gabriel et al., 2022), which, respectively,
rely on deep learning models and heuristics, utilize output data
from DeepLabCut.

Validation and optimization

Validation methods ensure fitness and robustness of the
computational model, while optimization deals with the reliability
of the model on novel data. Validation is used to verify the
accuracy (Table 1) of the model by evaluating the predictions on
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the acquired data (Hastie et al., 2001), which informs researchers
on the generalization capabilities of their model. Optimization, in
contrast, refers to fine-tuning the software parameters in order to
minimize model prediction errors on validation datasets (Bergstra
et al., 2013). Using validation and optimization methods in animal
behavioral analysis contributes to the error correction in the models
and increases the reproducibility and generalizability of research
findings. As shown in Table 2, the majority of open-source analysis
software utilize validation methods, while some use both validation
and optimization.

Background subtraction

Background subtraction refers to the image processing
technique of isolating the moving object of interest, in this case the
experimental animal, from the background of the video recording.
Reliable detection of the moving animal on the foreground
can boost tracking, pose estimation, and behavior detection
performance. Background subtraction in automated behavioral
analysis software often relies on one of the two techniques: masking
or object segmentation. Masking is a well-known image processing
technique, used by behavioral analysis software to build robust
models. It allows researchers to focus on specific regions of interest
within a video frame, allowing them to isolate and categorize
specific behavioral patterns. This is especially useful for behaviors
or states that involve limited movement or locomotion such as
freezing or immobility during the forced swim test (Unal and
Canbeyli, 2019). Masking also helps to reduce the influence of
extraneous variables, such as the presence of other animals or
distractions in the background, on the analyzed behavior. This
improves the accuracy and reliability of visual data collection
and enables researchers to identify subtle behaviors that are
otherwise difficult to discern. Masking is also useful in tracking
the movement of individual animals within a group, as it allows
researchers to isolate and analyze the behavior of a specific
animal within the group composed of other moving conspecifics
(Kretschmer et al., 2015). The use of masking techniques in
behavioral analysis software is one way to substantially enhance
the precision (Table 1) and reliability of research findings. Object
segmentation, in contrast, is a relatively more complex approach,
which generally utilizes deep learning models instead of simple
image processing techniques of masking to separate background
and foreground objects. It helps define the boundaries of the
animals more accurately so that they can be separated using the
masking technique.

Real-time analysis

Usefulness of real-time analysis in behavioral neuroscience
is observed in in vivo electrophysiological experiments that
manipulate ongoing neuronal activity with closed-loop protocols.
This allows researchers to combine detection of specific
electrophysiological events with stimulation or inhibition (see
Couto et al., 2015). Likewise, particular behaviors can be followed
by neuronal manipulation with real-time detection (see Hu et al.,
2022). Behavioral analysis software that can function in real-time

typically utilize sensors or tracking devices attached to the animal.
They provide a continuous stream of data on the locomotion
of the rodent and the movement of its extremities. Real-time
analyses are used to study a wide range of behaviors including
social interactions, feeding patterns, and locomotor activity. Video
analysis software, in contrast, can only analyze the recorded video
footage of the animal. Video analysis is used for behaviors that
either do not need to be detected in real-time or are difficult to
detect in real-time due to their long-time span.

Software properties

Modularity

Modular software architecture, also known as modular
programming (Table 1), is a general programming concept that
involves separating program functions into independent pieces,
each executing a single aspect of the executable application
program (Yau and Tsai, 1986). Open-source behavioral analysis
programs show key differences in modularity. BehaviorDEPOT,
for instance, consists of six separate modules: the analysis module,
experiment module, inter-rater module, data exploration module,
optimization module, and the validation module. Such multi-
functionality enables users to analyze rodent behaviors in a
comprehensive way. The analysis module, for instance, uses the
key-point tracking output of another program, DeepLabCut, as its
input to define behaviors like escaping and novel object exploration
(Gabriel et al., 2022). Another example of a modular automated
analysis software is ezTrack (Pennington et al., 2019). It consists
of a freeze analysis module and a location tracking module.
CaT-z (Gerós et al., 2020), on the other hand, includes three
different modules that take annotated recordings from RGBD
sensors as input. Programs with no modular system may offer
limited variety in behavioral analysis and specialize in particular
paradigms. DBscorer, for instance, is only used to assess behavioral
despair by recording immobility in the forced swim test and
tail suspension test (Nandi et al., 2021). Furthermore, modular
architectures enable researchers to use the modules separately,
which decreases computational workload and saves time when
analyzing large amounts of data.

Operating systems and packages

Since users of the open-source behavioral analysis software
are behavioral neuroscientists and experimental psychologists, who
may lack strong programming skills, user-friendliness emerges as a
key aspect of these software. In fact, one of the primary motivations
for developing automated analysis software is to make behavioral
analysis processes easier and faster for researchers from diverse
backgrounds. It should be noted that proprietary software excels
in this area, offering a costly alternative to open-source programs
listed in this article (Table 2).

The most important aspect of a user-friendly software is having
a stable and functional user interface. A good user interface
design enables researchers to learn and use the program faster
with minimal error. Another defining feature of a user-friendly
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software is its compatibility with different operating systems. While
certain programs like DBscorer (Nandi et al., 2021) and Live
Mouse Tracker (de Chaumont et al., 2019) are only optimizable
in Microsoft Windows, others like ezTrack are available in all
common operating systems, including Unix systems like macOS
and the open-source Linux (Table 2).

Automated analysis software have certain prerequisites for
reliable use of their key-point (Table 1) tracking system in
pose estimation. Programs like BehaviorDEPOT (Gabriel et al.,
2022), are less effected by environmental changes compared to
machine learning-based software, and therefore provide a better
key-point tracking performance. However, these programs also ask
researchers to train the key-point tracking system (Gabriel et al.,
2022), increasing user workload and analysis time. Some open-
source software like ezTrack (Pennington et al., 2019) require little
or no background in programming. These programs utilize simple
computational notebooks or GUI designs that enable researchers
to effectively use them irrespective of their level of computational
literacy. Other software may offer a Python package, MATLAB
App, or a combination of these (Table 2). VAME (Luxem et al.,
2022a), for instance, only works via a custom-made Python
package, while DeepEthogram (Bohnslav et al., 2021) provides a
GUI in addition to a Python package.

Conclusion

Open-source behavioral analysis software offer an affordable,
or virtually free, alternative to proprietary software. Researchers
still need to acquire the necessary computing power to effectively
run these software, many of which require powerful, hence
costly, GPUs. Avoiding software license fees, however, is
a significant financial relief for many laboratories, and an
important contribution to “the democratization of neuroscience”
(Jackson et al., 2019).

Another major impact of the open-source software movement
is its contribution to the relative standardization of behavioral
analysis in rodent research. Securing a good inter-rater reliability
has been a major concern in traditional rodent behavioral analysis,
where at least two independent observers record and categorize
behaviors. Automated analysis software eliminates the potential
variability between different observers, producing substantially
consistent results within each experiment. Furthermore, by using
automated software, researchers/coders do not need to be blind to
the experimental conditions. A complete, universal standardization
of behavioral analysis is not possible, as different analysis
software and their different versions may produce dissimilar
results on the same behavioral experiment. Yet, accessibility
of open-source software makes it possible for laboratories to
easily re-analyze their results with other programs, allowing
standardized comparisons between findings of different research
groups. Open-source behavioral analysis software do not only
facilitate behavioral/systems neuroscience research done under
controlled laboratory conditions, but they also contribute to
computational neuroethology, in which the environmental context
is also incorporated in the model (Achacoso and Yamamoto, 1990;
Datta et al., 2019).

An important move to overcome technical challenges of
open-source software use would be establishing international

societies and networks that aim to disseminate the know-how
on designing and using these software in rodent research. The
European University of Brain and Technology, NeurotechEU,
is a good example in this pursuit, connecting different training
opportunities and making them available to students and young
scientists through its graduate school and Campus + initiative.
Implementing a research vision and strategy that places
programming skills and open-source software development at its
core is a common trend in science (Martinez-Torres and Diaz-
Fernandez, 2013). Albeit some behavioral analysis software like
BehaviorDEPOT (Gabriel et al., 2022) state that a computational
background is not necessary to effectively use open-source
software, coding and programming already constitute a central
skillset in contemporary life sciences.

Analyzing behavioral data has been a time-consuming and
arduous task in rodent research for decades. Moreover, inter-rater
reliability issues were a major factor in manual coding, effecting
both the reproducibility and replicability of research findings.
Manual methods were often insufficient to reliably capture the
wide range of behaviors displayed by rodents. Various AI-based
algorithms, incorporated into the open-source software reviewed in
this article, became the game changer in rodent behavioral analysis.
The open-source automated behavioral analysis tools offer an
affordable and accessible alternative to proprietary software, while
enabling custom-purpose modifications to suit unique research
needs. Importantly, these tools contribute to the standardization
of rodent behavioral analysis across different laboratories by
eliminating the inter-rater reliability issues of manual coding. The
growing use of open-source analysis software is a general trend
in science and already constitutes the gold standard of analyzing
rodent behaviors in contemporary neuroscience.
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