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Background: Accumulating evidence of clinical and neuroimaging studies

indicated that migraine is related to brain structural alterations. However, it is still

not clear whether the associations of brain structural alterations with migraine are

likely to be causal, or could be explained by reverse causality confounding.

Methods: We carried on a bidirectional Mendelian randomization analysis in

order to identify the causal relationship between brain structures and migraine

risk. Summary-level data and independent variants used as instruments came

from large genome-wide association studies of total surface area and average

thickness of cortex (33,992 participants), gray matter volume (8,428 participants),

white matter hyperintensities (50,970 participants), hippocampal volume (33,536

participants), and migraine (102,084 cases and 771,257 controls).

Results: We identified suggestive associations of the decreased surface area

(OR = 0.85; 95% CI, 0.75–0.96; P = 0.007), and decreased hippocampal volume

(OR = 0.74; 95% CI, 0.55–1.00; P = 0.047) with higher migraine risk. We did not

find any significant association of gray matter volume, cortical thickness, or white

matter hyperintensities with migraine. No evidence supporting the significant

association was found in the reverse MR analysis.

Conclusion: We provided suggestive evidence that surface area and hippocampal

volume are causally associated with migraine risk.
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Introduction

Migraine is a common and complex neurological disease associated with significant
psychosocial impact, and has been a leading burden for global population health (Leonardi
et al., 2005; Ashina et al., 2021). This disease is usually diagnosed on the basis of clinical
criteria and can be further divided into two subtypes, including with- and without-aura
(Charles, 2018; Ashina et al., 2021). In recent years, accumulating evidence of clinical and
neuroimaging studies indicated that brain structural alterations played a pivotal role in
migraine. These T1-weighted magnetic resonance imaging (MRI) studies used voxel-based
morphometry or surface-based morphometry to explore brain morphology differences in
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volume, thickness or surface area (SA) between migraine patients
and healthy controls (DaSilva et al., 2007; Schmidt-Wilcke et al.,
2008; Datta et al., 2011; Messina et al., 2013; Rocca et al., 2014;
Coppola et al., 2017; Husøy et al., 2019; Amin et al., 2021; Kim
et al., 2021). Currently, migraine has been hypothesized to be a
both neuronal and vascular genetic disorder upon the mainstream
opinion (Schwedt and Dodick, 2009; MacGregor, 2017). The latest
and largest genome-wide association study (GWAS) meta-analysis,
including 102,084 migraine cases and 771,257 controls, identified
123 risk loci associated with migraine, which were enriched in both
vascular and central nervous system tissue/cell types (Hautakangas
et al., 2022). And it supported the concept that migraine is a
neurovascular disorder (Hautakangas et al., 2022).

Previous studies have revealed that cortex in migraine
patients has peculiar anatomical, functional, and neurochemical
properties (Barbanti et al., 2019). And the incidence of white
matter hyperintensities obviously increased in migraine patients
(Eikermann-Haerter and Huang, 2021). Hippocampus plays an
important role in the processing of pain, pain-related attention,
and stress response (Liu et al., 2018). Besides, the volume of
hippocampus has been found to be related to migraine prognosis
(Liu et al., 2018). Although the significant relationships between
brain morphology alterations and migraine could be observed in
previous studies, it remains unclear whether brain morphology
alterations are the cause or consequence of migraine attacks. The
relationship between hippocampal volume and migraines remains
unclear, with some studies suggesting a positive correlation and
others a negative one. Thus, it is necessary to clarify the direction
of the association and provide evidence at the genetic level between
brain structures and migraine.

Mendelian randomization (MR) is a genetic epidemiologic
method by using genetic variants associated with exposures,
which can avoid many of the potential methodological limitations
of observational studies, such as reverse causation bias and
confounding (Smith and Ebrahim, 2003). In view of the basis
that both brain morphometry and migraine risk are influenced by
genetic factors, using MR analysis to improve the knowledge of the
relationship between brain morphometry alterations and migraine
is promising. Recently, only one MR study have investigated the
association between intracranial volume and migraine (Mitchell
et al., 2022). Important brain traits like cortical SA, cortical
thickness, and some other traits of interests were not assessed.
Here, we carried out an MR study to explore the causal association
between these important brain traits and migraine risk using the
largest GWAS data.

Materials and methods

Study design

The MR study builds on three predominant assumptions
(Figure 1). (1) Selected instrumental variables (IVs) are strongly

Abbreviations: GMV, gray matter volume; GWAS, genome-wide association
study; HV, hippocampal volume; IV, instrumental variable; IVW, inverse-
variance weighted; MR, Mendelian randomization; MRI, magnetic resonance
imaging; MR-PRESSO, MR pleiotropy residual sum and outlier; OR, odds
ratio; SA, surface area; SNP, single nucleotide polymorphism; WMH, white
matter hyperintensities.

and consistently associated with exposures. (2) There is no
association between the IVs and confounders. (3) IVs impact
outcomes through exposures directly, but not other pathways.
Genetic variants are frequently utilized as IVs, due to their well-
defined nature and resistance to alteration by environmental
factors, thereby avoiding reverse causation (Burgess et al., 2017b).
We conducted this bidirectional MR study to clarify the causal
relationship between brain structures and migraine.

Genetic instruments selection and data
sources

Genetic variants associated with total cortical SA and average
cortical thickness were obtained from a genome-wide meta-
analysis, which were based on 51,665 predominantly healthy
participants in the Enhancing NeuroImaging Genetics through
Meta-Analysis Consortium and the UK Biobank. The total SA
and average cortical thickness were measured on MRI (Grasby
et al., 2020). A total of 12 SNPs associated with total SA and
2 SNPs associated with average cortical thickness were collected
(P ≤ 8.3 × 10−10). For gray matter volume (GMV), we drew 8
SNPs (P ≤ 5 × 10−8) from a large GWAS of brain imaging-derived
phenotypes from an open web server (the Oxford Brain Imaging
Genetics),1 which included 33,224 participants from the UK
Biobank (Smith et al., 2021). As for white matter hyperintensities
(WMH), we obtained 24 SNPs as IVs of WMH from 50,970
individuals from Cohorts for Heart and Aging Research in
Genomic Epidemiology consortium and from the UK Biobank
(P < 5 × 10−8) (Sargurupremraj et al., 2020). The aggregated
risk variants were then confirmed to be associated with WMH in
another cohort of 1,738 young healthy adults (P = 2.5 × 10−7),
which provided insight into the lifetime impact of WMH. In
addition, we extracted six independent SNPs as IVs significantly
associated with hippocampal volume (HV) from a genome-wide
meta-analysis with 33,536 individuals (P ≤ 5 × 10−8), which
accounted for as much as 18.76% of the variance in HV (Hibar et al.,
2017). All IVs included were clumped for independence (r2 < 0.1;
region size, 3000 kb) according to the Europeans data from the
1,000 Genomes Project. If these included SNPs were not available in
the outcome datasets, proxy SNPs (r2 > 0.8) were acquired online
as replacements.2

The summary-level data of migraine was obtained from
the largest available genome-wide meta-analysis, combining five
migraine study collections and comprising of 102,084 migraine
cases and 771,257 controls of European ancestry (Hautakangas
et al., 2022). A total of 123 independent SNPs associated with
migraine were utilized as IVs in reverse analysis (P < 5 × 10−8).
In this study, migraine phenotype was defined by self-reported
information or second edition of international Classification of
Headache Disorders. Logistic regression analyses were conducted
by adjusting for age, sex, and at least for the four ancestry principal
components. We also used a web tool3 to estimate the bias due to
sample overlap and the calculated results were negligible (<1%).

1 https://open.win.ox.ac.uk/ukbiobank/big40/

2 https://ldlink.nci.nih.gov/

3 https://sb452.shinyapps.io/overlap/
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FIGURE 1

Principles of the Mendelian randomization study for brain structural alterations and migraine risks.

All participants gave written informed consent in these studies,
and sites involved obtained approval from local research ethics
committees or Institutional Review Boards.

Statistical analysis

In the main analyses, we applied the random-effects and fixed-
effects inverse-variance weighted (IVW) approach to obtain causal
estimates (Burgess et al., 2017a). We conducted several sensitivity
analyses to identify potential pleiotropy. Cochran’s Q test was
used to evaluate the heterogeneity among different instrumental
variables (Burgess et al., 2017a). Weighted median method allowed
less than 50% of the genetic variants to be invalid instrumental
variables (Burgess et al., 2018). MR-Egger method was conducted to
detect and adjust pleiotropic bias (Burgess and Thompson, 2017).
To further control potential pleiotropy, we used the MR Pleiotropy
Residual Sum and Outlier (MR-PRESSO) method to conduct a
global test of heterogeneity and identify horizontal pleiotropy
(Verbanck et al., 2018). Once the pleiotropic outlier instruments
were identified, a repeated IVW analysis after removing these
outlier instruments would be performed (Verbanck et al., 2018).

All tests were two sided and the Bonferroni-corrected
significance threshold was set to P < 0.005 (correcting for 10
outcomes). The P-values between 0.005 and 0.05 was defined as
suggestive of potential association between exposure and outcome.
Odds ratios (ORs) are presented for each 1 standard deviation
difference in all exposures. All analyses were conducted by
using TwoSampleMR and MR-PRESSO packages in R software
(Version 4.1.3).

Results

The main characteristics of datasets adopted in the MR analyses
were shown in Supplementary Table 1. All F-statistics of these
IVs were higher than the threshold of 10, suggesting no weak
instrument bias in the present study. The summary information of
SNPs on the five traits was shown in Supplementary Table 2.

In the random-effect IVW estimates, genetically increased
cortical SA was potentially associated with a decreased risk of
migraine (OR = 0.850; 95% CI, 0.754–0.957; P = 0.007; Figure 2).
This association was robust in the weighted median and MR-
Egger. And MR-PRESSO did not identify any potential SNP
outliers and we did not observe evidence of horizontal pleiotropy
in MR-Egger (P for intercept = 0.452). The Cochran’s Q test
indicated significant heterogeneity (Cochran Q-derived P = 0.032).
There was no significant evidence for association of cortical
thickness with migraine (OR = 1.195; 95% CI, 0.958–1.491;
P = 0.115).

A suggestive association was found between genetically
determined HV and migraine (OR = 0.737; 95% CI, 0.546–0.996;
P = 0.047; Figure 2). The Cochran’s Q test indicated significant
heterogeneity (Cochran Q-derived P < 0.001). There was no
indication of horizontal pleiotropy in the association of HV with
migraine as measured by MR-Egger (P for intercept = 0.959). Three
SNPs (rs11979341, rs61921502, and rs7020341) were detected
in the MR-PRESSO test, and the result remained suggestive
(P = 0.029). Genetically determined GMV and WMH were not
causally associated with migraine in the IVW method. The lack
of causality was also confirmed in the weighted median, MR-Egger
estimates, and MR-PRESSO.
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FIGURE 2

Association between genetically determined brain structural
alterations and migraine risks. *MR-PRESSO outlier detected
(Supplementary Table 2). CI, confidence interval; OR, odds ratio;
SNP, single nucleotide polymorphism; WMH, white matter
hyperintensities.

There were no any significant effects of migraine
on brain structural alternation in the reverse estimates
(Supplementary Table 3).

Discussion

This MR analysis revealed a suggestive causal association of
genetically decreased SA and HV with higher risk of migraine. In
addition, there was no evidence supporting the association between
genetic liability to migraine and brain structural alterations in the
reverse MR analysis.

The literatures on the association between brain structural
alterations and migraine remained inconclusive. Several
observational studies demonstrated that the global or regional
SA decreased in migraine cases compared with healthy controls
(Messina et al., 2013; Petrusic et al., 2018; Planchuelo-Gómez
et al., 2020). And it frequently involved the visual motion
processing, pain processing, and executive function regions
(Messina et al., 2013; Planchuelo-Gómez et al., 2020). Cortical SA
is usually thought to be congenital and is largely independent of
environmental or external factors (Kapellou et al., 2006; Frye et al.,
2010; Messina et al., 2013). Some authors supposed that cortical SA
could be a good biomarker to distinguish migraine patients from
healthy controls (Petrusic et al., 2018). Our results of bidirectional
MR analysis further supported the causal association between
cortical SA and migraine risk. However, the causal relationship was
only found in total SA instead of regional SA due to low variance

explained by SNPs. Thus, further studies are required to identify
the association between migraine and the related regional SA.

Cortical thickness is a marker reflecting gray matter integrity,
which can be determined by the number of their neurogenic
divisions. In previous literatures, variation in regional or global
cortex thickness was controversial (DaSilva et al., 2007; Messina
et al., 2013; Husøy et al., 2019; Torres-Ferrus et al., 2021). A possible
explanation was that the sample of included subjects was rather
small, while the traits to be compared were many, which might
lead to false positive results in this way of comparison. Besides,
cortical thickness might undergo considerable changes postnatally.
For patients with migraine, several factors might affect cortical
thickness, such as age, disease duration, frequency of the attacks,
and even the scanning timing (attack phase vs. interictal phase).
Some authors hypothesized that increased cortical thickness was a
compensatory mechanism to meet the requirement for increased
sensory processing of migraine attacks. Similar results of increased
cortical thickness were found in other neuropsychiatric disorders,
including schizophrenia, autism spectrum disorder, early-stage
Parkinson’s disease and so on (Biundo et al., 2013; Williams et al.,
2022). Although the direction of the association in our analysis was
in accordance with previous studies, the result was not significant
(P = 0.115). In addition, only two available SNPs were applied as
IVs in the causal estimate, which might influence the result.

Besides, the decrease in HV was suggestively associated with an
increased risk of migraine, which was in lined with most of previous
studies (Liu et al., 2013, 2017; Chong et al., 2017). At the same
time, observational evidence showed that HV had been negatively
associated with the frequency and severity of migraine attacks
(Maleki et al., 2013; Liu et al., 2017). Mitchell et al. (2022) suggested
that migraine attacks might influence HV in a longitudinal study.
However, this reverse relationship was not verified in our study or
a recent MR study. WMH and GMV were reported to be associated
with migraine. Some studies suggested that a patent foramen ovale
might be associated with migraines, accompanied by changes in
the gray matter and destruction of the white matter (Signoriello
et al., 2018; Cao et al., 2022). Possible mechanisms implicated in
the pathophysiology of this phenomenon include microembolus-
triggered cortical spreading depression, the vasoactive substance
hypothesis, impaired cerebral autoregulation, and a common
genetic basis (Signoriello et al., 2018; Cao et al., 2022). However,
these association were not discovered in our bidirectional MR
analysis. In fact, null findings in our study do not truly reflect lack
of associations, since MR analyses are dependent on the power of
the original GWAS to a large extent (Pierce and Burgess, 2013).

There are some strengths in our study. Firstly, the use
of bidirectional MR design permitted an examination of the
reverse causation. Secondly, several sensitivity analyses, including
pleiotropy robust methods were applied to ensure the valid
estimation of the causal effect size. In addition, we used well-
powered GWAS data of migraine, which had more statistical
power to detect associations than past smaller study. Finally, our
results were in lined with a recent MR study based on voxel-based
morphometry, which additionally increased the robustness of our
results (Mitchell et al., 2022).

This study also has some limitations. Firstly, we only used total
cortical SA and average thickness to explore the causal association
between cortical structure and migraine, since the fraction of
variance explained by SNPs was low in regional SA and thickness.
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Secondly, sample overlapping may occur between exposure and
outcomes population, especially for cohort of UK biobank, which
may potentially bias the results. But recently, one study showed that
two-sample MR can be applied safely and robustly in a single large
dataset using large biobanks (Minelli et al., 2021). Thirdly, most of
participants in this study were of European descents, which limited
our findings to extend to other ancestries.

In conclusion, we provided suggestive evidence that decreased
cortical SA, and decreased HV are suggestively associated with
higher migraine risk, and we did not find any significant effect of
migraine on brain structural alternation in the reverse estimates.
Future investigation into the brain regions is recommended, which
helps to clarify the underlying mechanisms and point to new
therapies against migraine.
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