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The adult brain is a complex structure with distinct functional sub-regions, which

are generated from an initial pool of neural epithelial cells within the embryo.

This transition requires a number of highly coordinated processes, including

neurogenesis, i.e., the generation of neurons, and neuronal migration. These take

place during a critical period of development, during which the brain is particularly

susceptible to environmental insults. Neurogenesis defects have been associated

with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism

spectrum disorder and schizophrenia. However, these disorders have highly

complex multifactorial etiologies, and hence the underlying mechanisms leading

to aberrant neurogenesis continue to be the focus of a significant research effort

and have yet to be established. Evidence from epidemiological studies suggests

that exposure to maternal infection in utero is a critical risk factor for NDDs. To

establish the biological mechanisms linking maternal immune activation (MIA)

and altered neurodevelopment, animal models have been developed that allow

experimental manipulation and investigation of different developmental stages

of brain development following exposure to MIA. Here, we review the changes

to embryonic brain development focusing on neurogenesis, neuronal migration

and cortical lamination, following MIA. Across published studies, we found

evidence for an acute proliferation defect in the embryonic MIA brain, which,

in most cases, is linked to an acceleration in neurogenesis, demonstrated by an

increased proportion of neurogenic to proliferative divisions. This is accompanied

by disrupted cortical lamination, particularly in the density of deep layer neurons,

which may be a consequence of the premature neurogenic shift. Although

many aspects of the underlying pathways remain unclear, an altered epigenome

and mitochondrial dysfunction are likely mechanisms underpinning disrupted

neurogenesis in the MIA model. Further research is necessary to delineate the

causative pathways responsible for the variation in neurogenesis phenotype

following MIA, which are likely due to differences in timing of MIA induction as

well as sex-dependent variation. This will help to better understand the underlying

pathogenesis of NDDs, and establish therapeutic targets.
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1. Introduction

Neuronal development is a highly orchestrated process in
which the proliferation, differentiation and migration of neuronal
cells allow distinct functional sub-regions to form, which eventually
comprise the complex structure and function of the adult brain
(Urbán and Guillemot, 2014; Mira and Morante, 2020). Compelling
data suggests aberrant neurogenesis is a fundamental convergence
point in the etiology of all neurodevelopmental disorders (NDDs),
such as schizophrenia and autism spectrum disorder (ASD; Ernst,
2016; Fan and Pang, 2017). This is evidenced following genetic
studies, which show that a high proportion of genes linked to NDDs
are implicated in cellular proliferation and differentiation (Ernst,
2016).

Neurodevelopmental disorders have complex multifactorial
origins; believed to be triggered by a combination of genetic
and environmental factors (De Felice et al., 2015; Wilson et al.,
2022). A rapidly growing and dominant hypothesis in this field
is exposure to immune activation during early development in
utero (Kinney et al., 2010; Feigenson et al., 2014). This was
first evidenced following naturally occurring epidemics, such as
the 1957 influenza epidemic in Finland, where an increased
proportion of the population, who were in their second trimester
of gestational development at the time of the epidemic, were later
diagnosed with schizophrenia (Mednick et al., 1988; Sham et al.,
1992).

Animal models have been developed to establish the
mechanisms underlying the link between exposure to maternal
infection and increased risk of developing NDDs (Woods et al.,
2021; Bao et al., 2022). Several models involve direct administration
of microorganisms, such as influenza, to the pregnant rodent
(Garbett et al., 2012; Jacobsen et al., 2021). However, following the
understanding that it is maternal immune activation (MIA) rather
than the pathogen itself that increases the risk for NDDs (Patterson,
2002; Shi et al., 2005; Brown, 2006; Estes and McAllister, 2016),
MIA is most commonly induced by bacterial or viral mimetics,
lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid
[poly(I:C)], respectively (Meyer, 2014; Bergdolt and Dunaevsky,
2019; Woods et al., 2021; Bao et al., 2022). This stimulates the
release of pro-inflammatory cytokines in the maternal plasma
through activation of toll-like receptors and elicits adolescent and
adult behavioral deficits reminiscent to NDD symptoms in the
offspring (Meyer, 2014; Estes and McAllister, 2016; Bergdolt and
Dunaevsky, 2019).

Maternal immune activation is commonly induced during mid
to late gestation, which is defined as a critical period of brain
development, during which neurogenesis can be influenced by
adverse environmental conditions (Selemon and Zecevic, 2015;

Abbreviations: ASD, autism spectrum disorder; CTIP2, B-cell
lymphoma/leukemia 11B; CUX1, cut like homeobox 1; E, embryonic
day; GABA, γ-aminobutyric acid; IPC, intermediate progenitor cell; LPS,
lipopolysaccharide; MIA, maternal immune activation; NANOG, homeobox
protein NANOG; NDD, neurodevelopmental disorder; NEC, neuroepithelial
cell; OCT4, octamer-binding transcription factor 4; PAX6, paired box protein
pax-6; PHH3, phosphohistone 3; poly(I:C), polyinosinic:polycytidylic acid;
RGC, radial glial cell; SATB2, special AT-rich sequence-binding protein;
SOX2, SRY-box 2; SVZ, subventricular zone; TBR1, T-box brain transcription
factor 1; TBR2, T-box brain transcription factor 1; TUJ1, neuron-specific
class III beta-tubulin; VZ, ventricular zone.

Dehorter and Del Pino, 2020). Therefore, it is reasonable to
hypothesize that defects in neurogenesis are at the root of
MIA-induced brain and behavioral deficits, which has been the
focus of recent studies (Ben-Reuven and Reiner, 2021; Canales
et al., 2021; Long et al., 2021; Tsukada et al., 2021; Loayza
et al., 2022; Yu et al., 2022). However, results in outcome data
often vary between MIA models, and hence the direct actions
of MIA on embryonic neurogenesis and neuronal migration
remain often largely unclear. This review summarizes the changes
to the proliferation and differentiation of neurons, neuronal
migration and cortical lamination in the embryonic rodent brain
following MIA induction, and develops hypotheses about the
link between these aspects of neurogenesis and aberrant brain
phenotypes.

2. Modeling maternal immune
activation

Animal models of human disorders should have face validity,
meaning the model has similar endophenotypes to the human
disease, construct validity, related to the biological deficit causing
the disease, and predictive validity, defined as the similarity
between model and patient in response to treatment (Crawley,
2012; Silverman et al., 2022). Strong evidence for predictive and face
validity has been reported in the MIA model [reviewed extensively
by Bergdolt and Dunaevsky (2019) and Haddad et al. (2020)],
which is demonstrated by behavioral outputs recapitulating NDD-
like symptoms in the offspring. For example, animals display
altered amphetamine sensitivity when assessed through locomotor
activity (Zager et al., 2012; Gray et al., 2019; Weber-Stadlbauer
et al., 2021), as well as cognitive dysfunction, demonstrated by
visual recognition and spatial memory deficits (Savanthrapadian
et al., 2013; MacDowell et al., 2017; Richetto et al., 2017a;
Lorusso et al., 2022). These are translatable to the positive and
cognitive symptoms of schizophrenia, including psychotic agitation
and dysfunctional working memory, respectively (Redrobe et al.,
2010; van den Buuse, 2010; Batinić et al., 2016). Despite this,
the biological deficits associated with MIA have been suggested
to reflect specific aspects of NDDs, rather than recapitulating
the biological phenotypes as a whole (Haddad et al., 2020). For
example, MIA offspring brains exhibit shifts in excitatory versus
inhibitory signaling systems, including defects in parvalbumin-
containing γ-aminobutyric acid (GABA)ergic neurons (Zhang and
van Praag, 2015; Canetta et al., 2016; Vojtechova et al., 2021),
as well as alterations in the glutamatergic N-methyl-D-aspartate
receptor subunit composition (Rahman et al., 2017; Hao et al.,
2019). Deficits in glutamatergic and GABAergic neurotransmission
are present in the brains of patients with schizophrenia and ASD
(Gonzalez-Burgos et al., 2015; Balu, 2016; Rahman et al., 2020;
Schoonover et al., 2020; Strube et al., 2020) and are believed
to underlie the cognitive deficits associated with NDDs (Bojesen
et al., 2021; Kumar et al., 2021). In comparison, few studies
report changes to dopaminergic gene expression (Woods et al.,
2021), which, until recently, dominated the field of schizophrenia
research and remains the primary target of antipsychotic treatment
(Coyle et al., 2010; Stahl, 2018; McCutcheon et al., 2020). However,
current treatment lacks efficacy in ameliorating the negative and
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cognitive symptoms of schizophrenia (Fusar-Poli et al., 2015;
McCutcheon et al., 2020), and hence, the MIA model may provide
a useful tool in helping to identify therapeutic targets for these
symptoms.

3. Typical neurogenesis

Neurodevelopment begins with the formation of the neural
tube, where an initial pool of neuroepithelial cells (NECs) divide
symmetrically until a sufficient number have formed (Figure 1;
Stiles and Jernigan, 2010; Egger et al., 2011; Semple et al., 2013).
At around embryonic day (E) 10–12 in the mouse telencephalon,
division of NECs begins to switch from symmetric to asymmetric,
forming one NEC and a radial glial cell (RGC; Dennis et al.,
2016). The gradual switch from proliferation to differentiation is
associated with cell cycle changes including decreased re-entry and
increased cell cycle exit, as well as parameter alterations, such as
lengthening of the cell cycle, or G1 phase specifically (Sommer
and Rao, 2002; Ohnuma and Harris, 2003; Lancaster and Knoblich,
2012; Hardwick et al., 2015; Szűcs et al., 2020).

This transition is highly regulated by the expression of specific
transcription factors, which may be used to trace the lineage of
NEC to mature neuron (Urbán and Guillemot, 2014; Stevanovic
et al., 2021). It is widely known that SRY-box 2 (SOX2), octamer-
binding transcription factor 4 (OCT4) and homeobox protein
NANOG (NANOG) are involved in maintaining pluripotency
among stem cells (Figure 1; Ahmed et al., 2009; Desai and
Pethe, 2020). The transition from NEC to RGC is associated
with a decrease in expression of these pluripotent transcription
factors and a concomitant increase in paired box protein pax-6
(PAX6) expression, which has received a lot of attention due to
its essential role in controlling neurogenesis (Sansom et al., 2009;
Suter et al., 2009; Zhang et al., 2010; Manuel et al., 2015). Despite
the glial-like properties of RGCs, including certain molecular and
cytological features, they can divide asymmetrically to form one
RGC and either a neuron or an intermediate progenitor cell (IPC),
identified as direct and indirect neurogenesis, respectively, and
are responsible for the formation of all cortical neurons as well
as several glial cell lineages (Figure 1; Beattie and Hippenmeyer,
2017). IPCs, also known as basal progenitors, have been uniquely
associated with the subventricular zone (SVZ), which is located
above the ventricular zone (VZ), and, unlike NECs and RGCs,
divide only symmetrically a limited number of times (1–3) to
produce neurons (Figure 1; Kowalczyk et al., 2009; Mira and
Morante, 2020). For this reason, it has been suggested that IPCs
function to increase the number of neurons and size of the
SVZ, which becomes one of the two limited neurogenic regions
in the adult (Smart et al., 2002; Götz and Huttner, 2005; Mira
and Morante, 2020). RGCs, which eventually give rise to IPCs,
transiently express neurogenin 2, which is the transcriptional target
of T-box brain protein 2 (TBR2) and is expressed in IPCs. Hence,
differentiation of RGCs to IPCs to neurons is associated with
decreased PAX6 and increased TBR2 cellular density, followed
by increased expression of post-mitotic neuron markers, such
as neuron-specific class III beta-tubulin (TUJ1) or T-box brain
transcription factor 1 (TBR1; Figure 1; Sun and Hevner, 2014;
Manuel et al., 2015; Guo et al., 2021; Kim et al., 2021).

4. MIA-induced defects

Although embryonic neurogenesis and neuronal migration
are highly controlled processes, they are defined as a critical
period of neurodevelopment, which can be influenced by adverse
environmental challenges (Fan and Pang, 2017). Accordingly,
current evidence suggests MIA affects the proliferation of NECs,
the differentiation of those cells into neurons and the migration
of neurons to form distinct regions (De Miranda et al., 2010;
Carpentier et al., 2011, 2013; Stolp et al., 2011; Gumusoglu et al.,
2017; Ben-Reuven and Reiner, 2021).

4.1. Neurogenesis

Several studies show decreased proliferation in the fetal cortex
acutely following MIA, demonstrated by reduced phosphohistone
H3 (PHH3), a mitotically active cell marker shortly after (2–8 h)
LPS administration (Table 1; Carpentier et al., 2011; Stolp et al.,
2011; Kim et al., 2017; Braun et al., 2019). This is supported by
nucleotide uptake studies, where the administration of a thymidine
analog allows the synthesis of DNA, and hence, the proportion
of cell divisions, to be tracked. For example, a reduction in single
nucleotide uptake was reported when administered at 2–22 h
post-LPS administration, which provides evidence for reduced
proliferation in the MIA embryonic cortex (Cui et al., 2009; Stolp
et al., 2011; Carpentier et al., 2013). Double-labeled thymidine
studies enable a more precise determination of proliferation
kinetics, where the time interval between the two nucleotides
defines the cellular readout (Solius et al., 2021). Studies report
decreased double-labeled cells within the first 24 h following both
LPS and poly(I:C)-induced MIA, when an interval of over 10 h
was used between nucleotide administration, indicating that there
is a reduction in the number of cells which have re-entered the
cell cycle (De Miranda et al., 2010; Carpentier et al., 2013). This
is supported by findings of an increased quit fraction in these cells,
which represents the proportion of cells that have left the cell cycle
(Table 1; Carpentier et al., 2013). However, when an interval of
2.5 h was used, there was no significant change in the proportion
of double labeled cells within the first 8 h after poly(I:C) injection
and this was increased after 24 h (Ben-Reuven and Reiner, 2021).
In contrast to 10 h, 2.5 h may be long enough to allow cells to
exit S-phase, but not to re-enter, and hence, double-labeled cells
in this instance are more likely to represent cells that have stayed
in S-phase, rather than re-entered, suggesting that the length of
S-phase has changed (Ben-Reuven and Reiner, 2021). Nucleotide
dilution assays can also indicate proliferation state, where the
nucleotide becomes diluted through cell divisions, and hence, high
threshold cells represent cells that have not divided but are still
in S-phase, and a low threshold signal is indicative of cells that
have undergone multiple cell divisions. Studies report significantly
decreased number of high threshold cells acutely following MIA
in the fetal cortex (De Miranda et al., 2010; Ben-Reuven and
Reiner, 2021), and De Miranda et al. (2010) showed that this
was concordant with no change in the number of low threshold
cells, which would be expected to increase following increased cell
cycle divisions. They hence proposed that there is increased cell
cycle exit, lending support to the theory of decreased proliferation
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FIGURE 1

Typical murine corticogenesis. Following expansion of the NEC pool, division of NECs begin to switch from symmetric to asymmetric, forming one
RGC and one NEC. RGCs then divide either asymmetrically to generate two RGCs, or symmetrically to form one RGC and an IPC or neuron. IPCs
divide only symmetrically to form a pair of IPCs or neurons. Migrating neurons use radial glial cells as scaffolds, to migrate up to the cortical plate,
which expands in an “inside-out” manner, with the deep layer IV neurons forming first, at around E12.5. During late corticogenesis, RGCs begin to
directly divide into glial cells, such as astrocytes. CP, cortical plate; CTIP2, COUP TF1-interacting protein 2; CUX1, cut like homeobox 1; E, embryonic
day; SATB2, special AT-rich sequence-binding protein 2; SOX2, SRY-box 2; PAX6, paired box protein Pax-6; TBR1, T-box brain transcription factor;
TBR2, T-box brain protein 2; IPC, intermediate progenitor cell; NANOG, nanog homeobox; NEC, neural epithelial cell. Created with BioRender.com.

acutely following MIA (De Miranda et al., 2010; Carpentier et al.,
2011, 2013; Stolp et al., 2011; Ben-Reuven and Reiner, 2021).

The defective proliferation phenotype appears to be associated
with a premature acceleration in neurogenesis, where cells are
exhibiting a higher proportion of neurogenic divisions at the
expense of self-renewal (Figure 2). This is demonstrated by
cell cycle parameter changes recorded acutely following MIA,
including a shortening of S-phase, which has been associated with a
commitment to neuron production (Salomoni and Calegari, 2010;
Arai et al., 2011; Mi et al., 2018; Ben-Reuven and Reiner, 2021). In
accordance, it appears more NECs are dividing asymmetrically to
form RGCs, IPCs or neurons, which is demonstrated by increased
expansion of the RGC (PAX6) population (De Miranda et al., 2010;
Tsukada et al., 2021) and elevated proportion of newly formed
IPCs (Tsukada et al., 2021), contributing to indirect neurogenesis.
Furthermore, studies report increased number of RGCs giving rise
to a post-mitotic neuron and RGC, otherwise known as direct
neurogenesis (Ben-Reuven and Reiner, 2021). Although the route
of neurogenesis appears to differ between studies, where there is a
discrepancy in the proportion of newly formed IPCs (Table 2; De
Miranda et al., 2010; Ben-Reuven and Reiner, 2021; Tsukada et al.,
2021), it is clear that MIA acutely promotes neural differentiation
within the fetal brain (Figure 2).

Further evidence of a neurogenesis defect has been
demonstrated at a delayed time point following MIA, including

a reduction in proliferation after 5–6 days (Soumiya et al., 2011;
Canales et al., 2021), which is in contrast to reports of increased
proliferation in cortical neurospheres taken from offspring brains
one week following MIA (Table 1; Baines et al., 2020). However,
the use of an in vitro approach in the latter experiment may
not directly reflect in vivo phenotypes, and hence, it is not
known whether the differences in proliferation between these two
studies is due to gestational timing differences or experimental
approach. In comparison to the acute time point, dysregulated
proliferation 3–5 days following MIA is predominantly associated
with decreased proportion of RGCs and IPCs (Table 2; Soumiya
et al., 2011; Cunningham et al., 2013; Canales et al., 2021).

It is likely that discrepancies in methodology between studies,
including experimental approach, i.e., in vivo or in vitro, species and
strain of model, source and dosage of immunostimulant and timing
of MIA induction, contribute to differential outcomes (Kowash
et al., 2019; Bao et al., 2022). Timing of MIA induction may be
particularly important in this case due to the rapid and precise
nature of embryonic neurogenesis (Urbán and Guillemot, 2014).
The majority of studies referenced in this review expose pregnant
mice to MIA at E12.5–13.5 (Maekawa et al., 2005; Osumi et al.,
2008; Carpentier et al., 2011; Stolp et al., 2011; Gallagher et al.,
2013; Choi et al., 2016; Braun et al., 2019; Ben-Reuven and Reiner,
2021; Canales et al., 2021; Tsukada et al., 2021), which, in typical
murine neurodevelopment, coincides with significant changes in
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TABLE 1 Cell cycle phenotypes in fetal MIA offspring brains relative to vehicle controls.

Cellular
phenotype

Marker Location Change Time after MIA
brain taken or
nucleotide
administration (T)

Induction (route,
commercial source),
rodent, embryonic
day

Sex References

Active cell cycle Ki67+ Cortex (VZ) ↓ 5 days 30 mg/kg PIC (i.p., Sigma)
C57BL/6N mice, 12.5

M, F Canales et al.,
2021

CGE ↓ 48 h 150 µg/kg LPS (i.p., Sigma),
GAD65-GFP C57BL/6 mice,
15.5 + 16.5

M, F Lacaille et al.,
2019

Active mitosis PHH3+ Cortex (VZ) ↓ 5 days 30 mg/kg PIC (i.p., Sigma)
C57BL/6N mice, 12.5

M, F Canales et al.,
2021

Cortical neurosphere
(in vitro)

↑ 7 days 10 mg/kg PIC (i.p., Sigma),
Sprague Dawley rats, 8.5

M, F Baines et al.,
2020

Cortex ↓ 2 h 60 µg/kg (LPS, Sigma),
C57BL/6N mice

ND Carpentier et al.,
2011

Cortex NS 6 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

Cortex ↑ 24 h

Cortex M: ↓
F: NS

2 h 60 µg/kg LPS (i.p., Sigma),
C57BL/6 mice, 12.5

M, F Braun et al.,
2019

Cortex (VZ) ↓ 8 h 10 µg/kg LPS (i.p., Sigma),
C57BL/6 mice, 13.5

ND Stolp et al., 2011

Cortex (SVZ) NS

Cortex (VZ) NS 48 h

Cortex (SVZ) NS

Cells in S-phase Thymidine analog+ Cortex ↓ 2 h (T1), 24 h 60 µg/kg LPS (i.p., Sigma),
C57BL/6 mice, 12.5

ND Carpentier et al.,
2013

↓ 22 h (T2), 24 h

NS 0 h (T1), PD0 5 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 16

ND De Miranda
et al., 2010

↑ 7.5 h (T2), 8 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

Cortex NS 24 h + 36 + 72 h (T1), 4 days 2.5 or 25 µg/kg LPS (i.p.,
Sigma), Sprague Dawley rats,
14

ND Chao et al., 2016

Cortical neurosphere
(in vitro)

↑ 7 days, 14 days (T1) 10 mg/kg PIC (i.p., Sigma),
Sprague Dawley rats, 8.5

M, F Baines et al.,
2020

Cortex (VZ) ↓ 24 h (T1), 8 h 10 µg/kg LPS (i.p., Sigma),
C57BL/6 mice, 13.5

ND Stolp et al., 2011

Cortex ↑ 24 h (T1), 2 days 5 µg recombinant mouse IL-6
(i.p., R&D), CD1 mice, 13.5

ND Gallagher et al.,
2013

Cortex (VZ + SVZ) ↑ 24 h (T1), 4 days

Cortex (IZ) NS

Cortex (CP) ↓

CGE ↓ 0 h (T1), 48 h 150 µg/kg LPS (i.p., Sigma),
GAD65-GFP C57BL/6 mice,
15.5 + 16.5

M, F Lacaille et al.,
2019

Re-entered or
stayed in
S-phase

Thymidine
analog+/thymidine
analog+

Cortex ↓ 2 h (T1), 22 h (T2), 26 h 60 µg/kg LPS (i.p., Sigma),
C57BL/6 mice, 12.5

ND Carpentier et al.,
2013

↓ 0 h (T1) 10 h (T2), PD0 5 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 16

ND De Miranda
et al., 2010

(Continued)
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TABLE 1 (Continued)

Cellular
phenotype

Marker Location Change Time after MIA
brain taken or
nucleotide
administration (T)

Induction (route,
commercial source),
rodent, embryonic
day

Sex References

NS 5 h (T1), 7.5 h (T2), 8 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

↑ 24 h (T1), 26.5 h (T2), 27 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

Exited S-phase Thymidine
analog+/thymidine
analog−

Cortex ↑ 5 h (T1), 7.5 h (T2), 8 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

NS 24 h (T1), 26.5 h (T2), 27 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

Quit fraction Ki67-/thymidine
analog+

Cortex ↑ 2 h (T1), 24 h 60 µg/kg LPS (i.p., Sigma),
C57BL/6 mice, 12.5

ND Carpentier et al.,
2013

Proportion of
cell divisions

Thymidine analog
dilution assay

Cortex ↓ THIGH 6 h (T1), 24 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

↓ THIGH

NS TLOW
24 h (T1), 3 days 5 mg/kg PIC (i.p., Sigma),

C57BL/6 mice, 15 + 16 + 17
ND De Miranda

et al., 2010

CGE, caudal ganglionic eminence; CP, cortical plate; F, female; IZ, intermediate zone; h, hours; LPS, lipopolysaccharide; M, male; mg/ml, milligram per milliliter; mg/kg, milligram per kilogram
dam weight; ND, not described; PD, postnatal day; PHH3, phosphohistone H3; PIC, poly(I:C); SVZ, subventricular zone; T, time after MIA of nucleotide administration; µg/kg, microgram
per kilogram dam weight; VZ, ventricular zone; ↑, significantly increased; ↓, significantly decreased; +, positive stained cell;−, negative stained cell.

FIGURE 2

The impact of MIA on murine corticogenesis. Exposure to MIA whilst in utero causes an acute neurogenesis defect, associated with a decreased
proportion of symmetric, proliferative divisions and increased number of asymmetric, neurogenic divisions. This results in cortical lamination defects
which are dependent on the timing of MIA exposure. When induced at E12.5, increased neuron production at the expense of proliferation is
associated with altered density of earlier born cortical layers, such as VI and V, which are defined by the transcription factors TBR1 and CTIP2,
respectively. Mitochondrial dysfunction as well as an altered epigenome may explain the acute neurogenesis defect following MIA. Created with
BioRender.com.
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PAX6 density (Englund et al., 2005; Duan et al., 2013; Ben-Reuven
and Reiner, 2021). It is thus not surprising that MIA at this
time point primarily affects the PAX6 cell population. Several
studies reported an acute increase in the proportion of PAX6 cells,
which appears to reverse three days after MIA (De Miranda et al.,
2010; Soumiya et al., 2011; Ben-Reuven and Reiner, 2021; Canales
et al., 2021; Tsukada et al., 2021). In contrast, MIA at an early
gestational time point, such as E8.5, exhibits a pro-proliferation
phenotype (Baines et al., 2020). Differences in brain and behavioral
phenotype depending on timing of gestational MIA exposure have
been consistently reported and may translate to the development of
distinct NDDs in humans, hence highlighting the requirement for
further research (Meyer et al., 2006; Guma et al., 2022; Nakamura
et al., 2022).

An increasing body of evidence suggests that there are
sex-dependent effects in developing resilience or susceptibility
to neurodevelopmental insults, reported in both patients and
animal models (Palmer et al., 2017; Nugent et al., 2018; Hodes
and Epperson, 2019; May et al., 2019; Vojtechova et al., 2021;
Woodward and Coutellier, 2021). It is therefore essential for sex to
be treated as an independent variable within MIA models (Coiro
and Pollak, 2019). However, a number of studies referenced in
this section did not indicate which sex was used for offspring
experiments, nor how sex was determined (Tables 1–3), and it may
therefore be assumed that in these instances, sex was disregarded,
with male and female being treated as one group. Data shows a
disparity in sex response to MIA in a number of developmental
stages and systems (Haida et al., 2019), from the adult behavioral
phenotype (Gogos et al., 2020; Zhao et al., 2021) to the acute
inflammatory response (Barke et al., 2019). We may thus expect
sex differences in neurogenesis. This view is further supported
by evidence of decreased active mitosis in male but not female
MIA cortices (Braun et al., 2019), as well as results showing that
male neural progenitors have an increased tendency to differentiate
in vitro (Baines et al., 2020). Hence, the pooling of both sexes
into one group may often mask a sex-dependent effect, which
in turn may lead to variation in proliferation phenotypes across
studies.

4.2. Neuronal migration

Neuronal migration is a complex process, which involves
the coordination of neuronal branching and extension with
cellular movement, and is guided by a number of vital
signaling molecules and stimuli (Khodosevich and Monyer,
2011; Cooper, 2013; Buchsbaum and Cappello, 2019). Neurons
migrate via two distinct mechanisms, radial and tangential, which
are predominantly utilized by cortical projection neurons and
GABAergic interneurons, respectively. Radial migration describes
the process used by neurons migrating from the VZ, where radial
glial “guides” are used as a scaffold for migration (Figure 1;
Molyneaux et al., 2007; Stiles and Jernigan, 2010; Perez-Garcia
and O’Leary, 2016). On the other hand, tangential migration
involves neurons migrating from five main proliferative regions, in
a manner parallel to the plial surface and perpendicular to radially
migrating neurons, which thereby increases neuronal diversity in
the brain (Marín, 2015).

Evidence suggests MIA offspring have neuronal migratory
defects (Shi et al., 2009; Soumiya et al., 2011; Gumusoglu et al.,
2017), such as a transient delay in cellular migration at E13.5–
E14.5 in cortices exposed to MIA on E9.5 (Soumiya et al., 2011).
GABAergic progenitors also show defective migration at E14
following administration of IL-6 to the pregnant dam (Gumusoglu
et al., 2017), which may be linked to dysregulated expression of
molecules required for interneuron migration, such as Nkx2.1,
Nrp1, Trkb, and Arx as well as the Dlx family of genes (Oskvig et al.,
2012; Nakamura et al., 2019, 2022).

Aside from these studies, there has been minimal research
regarding neuronal migration in the MIA-offspring fetal brain,
presumably due to the difficultly in researching cellular migration
in vivo. However, neuronal migration in the murine neocortex takes
place during mid-to-late gestation (Ayala et al., 2007), which often
coincides with the timing of MIA insult. Further, genes involved in
neuronal migration were differentially expressed in MIA prenatal
non-candidate gene sets (Oskvig et al., 2012; Lombardo et al., 2018).
Future research on the affected migratory processes following MIA
is therefore necessary to elucidate NDD pathogenesis.

4.3. Cortical lamination

The proliferation and migration of neurons is instrumental in
defining complex structures within the brain, one of which, the
neocortex, is characterized by the lamination of neurons into six
distinct layers (Kostović and Judaš, 2007; Guarnieri et al., 2019; Wu
et al., 2021). During early murine cortical development (around
E10.5), the first wave of neuronal migration from the VZ and SVZ
forms the thin, preplate layer which later splits into the superficial
marginal zone and the inner subplate, allowing the cortical plate to
form in between (Figure 1). The cortical plate is then expanded in a
tightly orchestrated, “inside-out” manner to form the characteristic
six-layered structure of the cortex (Figure 1). These layers are
defined by distinct cellular morphologies and densities, with each
projecting to designated regions of the brain (Harris and Shepherd,
2015; Lodato and Arlotta, 2015). In brief, during early murine
corticogenesis (E12.5), a wave of migrating neurons forms the
corticothalamic layer, otherwise known as layer VI, which can
be defined by the expression of TBR1. Layers V to II then
migrate successively, in temporal waves, past earlier-born neurons,
forming the subcerebral layer (V), the pyramidal layer (IV), and
upper callosal layers (III-II). These layers are recognized by the
expression of the transcription factors B-cell lymphoma/leukemia
11B (CTIP2), special AT-rich sequence-binding protein (SATB2),
and cut like homeobox 1 (CUX1), respectively and are formed on
E13.5–E14.5 (Figure 1; Molyneaux et al., 2007; Ben-Reuven and
Reiner, 2021).

The densities of these layers are often altered following
MIA exposure, particularly the earlier born, deep-layer neurons.
However, there are differences in the direction of density change
(Table 3; Gallagher et al., 2013; Chao et al., 2016; Choi et al., 2016;
Wu et al., 2018; Ben-Reuven and Reiner, 2021; Canales et al., 2021),
most likely due to minor discrepancies in timing of MIA induction
as well as the gestational time point of lamination. The latter theory
is supported by a study which administered the thymidine analog,
BrdU, daily on E13.75–E16.75 after poly(I:C) on E9.5 and tracked
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TABLE 2 Cell fate phenotypes in fetal MIA offspring cortex relative to controls.

Cellular
phenotype

Marker Change Time after MIA brain
taken or nucleotide
administration (T)

Induction (route,
commercial source),
rodent, embryonic day

Sex References

NECs SOX2+ ↓ 5 days 30 mg/kg PIC (i.p., Sigma)
C57BL/6N mice, 12.5

M, F Canales et al., 2021

↑ 24 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

↑ 6 days

NECs in S-phase SOX2+/thymidine
analog+

↑ 24 h (T1), 4 days 5 µg recombinant mouse IL-6
(i.p., R&D), CD1 mice, 13.5

ND Gallagher et al., 2013

RGCs PAX6+ ↑ 24 h 20 mg/kg PIC (i.p. Sigma)
C57BL/6J mice, 12.5

ND Tsukada et al., 2021

NS 48 h

↑ in SVZ 6 days

↑ 24 h (T1), 3 days 5 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 15 + 16 + 17

ND De Miranda et al.,
2010

NS 8 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

NS 24 h

↓ 5 days 30 mg/kg PIC (i.p., Sigma)
C57BL/6N mice, 12.5

M, F Canales et al., 2021

↓ 4 days 100 µg/kg (i.p., Sigma), Sprague
Dawley rat, 15–16

ND Cunningham et al.,
2013

RGC in S-phase PAX6+/thymidine
analog+

↑ 6 h (T1), 24 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

NS 4 days (T1), 5 days 20 mg/kg PIC (i.p., Sigma), ddY
mice, 9.5

ND Soumiya et al., 2011

NS 4 days (T1), 5.5 days

NS 4 days (T1), 6 days

↓ 6 days (T1), 5 days

↓ 6 days (T1), 5.5 days

NS 6 days (T1), 6 days

RGC neurogenic
divisions

PAX6+→
PAX6+/TUJ1+

↑ 8 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

NS 24 h

Newly formed IPCs PAX6+/TBR2+ ↑ 24 h 20 mg/kg PIC (i.p. Sigma)
C57BL/6J mice, 12.5

ND Tsukada et al., 2021

NS 48 h

↓ 24 h (T1), 3 days 5 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 15 + 16 + 17

ND De Miranda et al.,
2010

NS 24 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

IPCs TBR2+ ↑ SVZ 6 days 20 mg/kg PIC (i.p. Sigma)
C57BL/6J mice, 12.5

ND Tsukada et al., 2021

NS 24 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

↓ 4 days 75 µg/kg LPS (i.p., Sigma),
C57BL/6 mice, 14.5

ND Wu et al., 2018

↓ 4 days 100 µg/kg (i.p., Sigma), rat (strain
ND), 15 + 16

ND Cunningham et al.,
2013

(Continued)
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TABLE 2 (Continued)

Cellular
phenotype

Marker Change Time after MIA brain
taken or nucleotide
administration (T)

Induction (route,
commercial source),
rodent, embryonic day

Sex References

IPCs in S-phase TBR2+/thymidine
analog+

NS 6 h (T1), 24 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

NS 4 days (T1), 5 days 20 mg/kg PIC (i.p., Sigma), ddY
mice, 9.5

ND Soumiya et al., 2011

NS 4 days (T1), 5.5 days

NS 4 days (T1), 6 days

NS 6 days (T1), 5 days

NS 6 days (T1), 5.5 days

NS 6 days (T1), 6 days

F, female; h, hours; IPC, immediate progenitor cell; LPS, lipopolysaccharide; M, male; mg/kg, milligram per kilogram dam weight; ND, not described; NEC, neural epithelial cell; PAX6, paired
box protein Pax-6; PHH3, phosphohistone H3; PIC, poly(I:C); RGC, radial glial cell; SOX2, SRY-box 2; SVZ, subventricular zone; T, time after MIA of nucleotide administration; TBR2, T-box
brain protein 2; TUJ1, beta-III tubulin; VZ, ventricular zone; ↑, significantly increased; ↓, significantly decreased; +, positive stained cell;−, negative stained cell.

layer density according to cell birth date. Although the deep-layer
born neurons were consistently increased between E14.75 and
E16.75 in MIA offspring brains, this was not evident at E13.75,
and the group which had the most densely populated upper-layer
fluctuated between poly(I:C) and control animals depending on
embryonic day (Soumiya et al., 2011). This suggests poly(I:C) may
affect the timing at which layer-specific neurons are generated
(Choi et al., 2016), where there appears to be increased production
of deep-layer neurons, later in corticogenesis, when this would
be expected to be diminished. A number of studies support the
notion of an immature phenotype in poly(I:C) animals during late
gestational development, including evidence of overlapped TBR1
and CTIP2 neurons at E20, which are clearly distinguishable in
vehicle controls at this time point (Chao et al., 2016), as well
as localization of PAX6 and TBR2 cells in the SVZ during late
corticogenesis, which would typically only be localized in the VZ
at this stage (Tsukada et al., 2021).

Changes to lamination could be explained by the
aforementioned acute and premature shift from symmetric
to asymmetric divisions in the MIA fetal brain, where more
neurons are exiting the cell cycle and are maturing to becoming
CTIP2/TBR1 positive (Figure 2). These cells are typically formed
at E12.5/E13.5 which coincides with timing of MIA induction of
the majority of studies referenced in this review (Maekawa et al.,
2005; Osumi et al., 2008; Carpentier et al., 2011; Stolp et al., 2011;
Gallagher et al., 2013; Braun et al., 2019; Ben-Reuven and Reiner,
2021; Canales et al., 2021; Tsukada et al., 2021).

5. Causative mechanisms

5.1. Paired box protein pax-6

Overall, the PAX6 positive RGCs are the most affected
population of cells within the embryonic brain following immune
insult (Table 2), and a number of studies additionally report a
change in PAX6 protein expression (De Miranda et al., 2010;
Wu et al., 2018; Ben-Reuven and Reiner, 2021; Canales et al.,
2021). PAX6 is a highly dose dependent transcription factor, where
increased expression favors increased neurogenic divisions, yet

knockout studies have also shown that it is essential for progenitor
proliferation (Maekawa et al., 2005; Osumi et al., 2008; Sansom
et al., 2009; Mi et al., 2018). Hence, the acute increase in PAX6
protein expression or relative intensity, which has been reported
in MIA offspring (De Miranda et al., 2010; Ben-Reuven and
Reiner, 2021), may be directly linked to the premature switch
to neurogenic phenotype. In contrast, studies report decreased
PAX6 protein expression 4–5 days following immune insult (Wu
et al., 2018; Canales et al., 2021). This could be the result of a
compensatory mechanism due to early depletion of the progenitor
pool, therefore reversing the effect of MIA, which would support
the aforementioned immature lamination at this time point.

Research indicates that PAX6, and other transcriptional
regulators of neurogenesis, may be directly controlled by
inflammatory mediators which are upregulated in the MIA
offspring brain (Loayza et al., 2022), such as microglia
(Cunningham et al., 2013) and cytokines (Walter et al., 2011;
Borsini et al., 2015). However, a number of studies report no
changes to inflammation status within the fetal MIA offspring
brain (see Hameete et al., 2021), yet neurogenesis is defective across
the prenatal timeline (Tables 1–3). Epigenetic mechanisms are
believed to mediate the prolonged effects of MIA on the offspring
brain and behavioral phenotypes (Bergdolt and Dunaevsky,
2019), and hence, considering epigenetics is critical for healthy
neurogenesis (Albert et al., 2017; Albert and Huttner, 2018), could
provide a basis for putative causative mechanisms.

5.2. Epigenetics

Epigenetic modifications, comprising DNA methylation,
histone modifications and non-coding RNAs, enable a change
in transcriptional response without editing the underlying DNA
(Goldberg et al., 2007; Capell and Berger, 2013). As well as
playing vital roles in cellular differentiation and other “typical”
developmental mechanisms, epigenetic alterations contribute
to a wide range of human diseases such as cancer, autoimmune
disorders and NDDs (Moosavi and Motevalizadeh Ardekani,
2016). It has therefore been suggested that the epigenome serves
as a “molecular bridge,” by which external triggers and stressors
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TABLE 3 Cortical lamination changes in MIA fetal offspring brains in contrast to vehicle controls.

Layer Cell marker Location Direction
of change
in MIA

Time after MIA
brain taken or
nucleotide
administration
(T)

Induction
(commercial
source), rodent,
strain, embryonic
day

Sex References

VI TBR1+ Cortex NS 48 h 20 mg/kg PIC (i.p. Sigma),
C57BL/6J mice, 12.5

ND Tsukada et al.,
2021

Cortex NS 6 days 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

Cortex NS 24 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 13.5

Cortex ↓ 5 days 30 mg/kg PIC (i.p., Sigma),
C57BL/6N mice, 12.5

M, F Canales et al.,
2021

Cortical plate NS 4 days 75 µg/kg LPS (i.p., Sigma),
C57BL/6, 14.5

ND Wu et al., 2018

Cortex 2.5 µg/kg: NS
25 µg/kg: ↓

4 days 2.5 or 25 µg/kg LPS (i.p.,
Sigma), Sprague Dawley rats,
14

M, F Chao et al., 2016

Cortex (blocks 0–5) ↑ 6 days 20 mg/kg PIC (i.p., Sigma)
C57BL/6 mice, 12.5

M Choi et al., 2016

Cortex (blocks 6–7) ↓

Cortex (blocks 8–10) NS

TBR1+/thymidine
analog+

Cortex NS 6 h (T1), 6 days 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

TBR1 (thickness) Cortex NS 5 days 30 mg/kg PIC (i.p., Sigma),
C57BL/6N mice, 12.5

M, F Canales et al.,
2021

V CTIP2+ Cortex ↓ 5 days 30 mg/kg PIC (i.p., Sigma),
C57BL/6N mice, 12.5

M, F Canales et al.,
2021

Cortex 2.5 µg/kg: NS
25 µg/kg: ↓

4 days 2.5 or 25 µg/kg LPS (i.p.,
Sigma), Sprague Dawley rats,
14

M, F Chao et al., 2016

Cortex ↑ 6 days 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

CTIP2+/thymidine
analog

Cortex ↑ 6 h (T1), 24 h 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 13.5

ND Ben-Reuven and
Reiner, 2021

↑ 6 h (T1), 6 days 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

CTIP2 (thickness) Cortex ↓ 5 days 30 mg/kg PIC (i.p., Sigma),
C57BL/6N mice, 12.5

M, F Canales et al.,
2021

IV SATB2+ Cortex NS 5 days 30 mg/kg PIC (i.p., Sigma),
C57BL/6N mice, 12.5

M, F Canales et al.,
2021

Cortical plate ↓ 4 days 75 µg/kg LPS (i.p., Sigma),
C57BL/6, 14.5

ND Wu et al., 2018

Cortex ↓ 6 days 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

Cortex (block 2) ↑ 6 days 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

M Choi et al., 2016

Cortex (blocks 3–4) ↓

Cortex (blocks 0–1,
5–10)

NS

SATB2+/thymidine
analog+

Cortex ↓ 24 h (T1), 4 days 5 µg recombinant mouse IL-6
(i.p., R&D), CD1 mice

ND Gallagher et al.,
2013

Cortex ↑ 6 h (T1), 6 days 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

(Continued)
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TABLE 3 (Continued)

Layer Cell marker Location Direction
of change
in MIA

Time after MIA
brain taken or
nucleotide
administration
(T)

Induction
(commercial
source), rodent,
strain, embryonic
day

Sex References

SATB2 (thickness) Cortex ↑ 5 days 30 mg/kg PIC (i.p., Sigma),
C57BL/6N mice, 12.5

M, F Canales et al.,
2021

II–III CUX1+ Cortex NS 6 days 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

CUX1+/thymidine
analog+

Cortex NS 6 h (T1), 6 days 20 mg/kg PIC (i.p., Sigma),
C57BL/6 mice, 12.5

ND Ben-Reuven and
Reiner, 2021

CUX1 (thickness) Cortex NS 5 days 30 mg/kg PIC (i.p., Sigma),
C57BL/6N mice, 12.5

M, F Canales et al.,
2021

CTIP2, COUP TF1-interacting protein 2; CUX1, cut like homeobox 1; F, female; h, hours; LPS, lipopolysaccharide; M, male; mg/kg, milligram per kilogram dam weight; ND, not described; PIC,
poly(I:C); SATB2, special AT-rich sequence-binding protein 2; T, time after MIA of nucleotide administration; TBR1, T-box brain transcription factor 1;↑, significantly increased;↓, significantly
decreased; +, positive stained cell;−, negative stained cell.

can modulate gene transcription and expression, and thereby
contribute to an altered phenotype in the exposed individual
(Nestler, 2009; Bollati and Baccarelli, 2010; Acevedo et al., 2021;
Smeeth et al., 2021). The majority of studies that have researched
epigenetic modifications within the MIA model focus on DNA
methylation, which is consistently affected within the adult
offspring brain (Labouesse et al., 2015; Richetto et al., 2017a,b;
Schaafsma et al., 2017; Basil et al., 2018; Weber-Stadlbauer et al.,
2021; Woods et al., 2021). However, despite the evidence that
neural progenitors display dynamic changes in DNA methylation
within the embryonic brain, the function of DNA methylation in
neurogenesis has been questioned, where it is expected to play a
lesser role in cell fate determination, and may, instead, act as a
consequence of histone modifications (Stricker and Götz, 2018;
Adam and Harwell, 2020).

Although there are a limited number of studies, there is some
evidence that histone acetylation is dysregulated in the offspring
brain following immune exposure (Tang et al., 2013; Pujol Lopez
et al., 2016; Reisinger et al., 2016; Woods et al., 2021). Histone
acetylation actively promotes neurogenesis through a number of
histone acetyltransferases, such as the CREB binding protein and
p300 co-activator family, which drive the differentiation of NECs
by stimulating the transcription of pro-neural genes (Wang et al.,
2010; Tsui et al., 2014; Yao and Jin, 2014; Schoof et al., 2019).
Hence, a disturbance in this process, where the availability or
regulation of these modifications is altered (as reported in the MIA
offspring brain; Tang et al., 2013; Pujol Lopez et al., 2016; Reisinger
et al., 2016), could provide a mechanism for the pro-neurogenic
phenotype exhibited in MIA exposed animals. Nevertheless, as far
as we know, no studies have investigated histone acetylation in the
fetal MIA brain, which represents a major gap in the literature.

There are a number of hypothesized pathways in which
an environmental stressor (such as MIA), may lead to altered
epigenetic regulation in the exposed individual. First, regulation
of epigenetic enzymes by cytokines has been reported, such as
increased expression of DNA methyltransferase 1 by interleukin-
6 (Braconi et al., 2010; Villagra et al., 2010), which is of interest
following evidence of increased cytokine response in offspring
brains acutely following insult (Woods et al., 2021). Second,
availability of the substrate used by epigenetic enzymes to generate

the modification may be limited. In the case of histone acetylation,
acetyl-coenzyme A is utilized by histone acetyltransferases, which
is produced following glycolysis in the mitochondria and is an
essential intermediate of several metabolic pathways. In fact,
mitochondrial biogenesis generates a number of substrates which
alter epigenetic enzyme activity, including those responsible
for DNA and histone modifications, as well as ATP-dependent
chromatin remodelers (Wiese and Bannister, 2020). Recently, a
growing body of literature has reported mitochondrial dysfunction
in the MIA model (Robicsek et al., 2018; Swanepoel et al., 2018;
Cieślik et al., 2020, 2021; Gyllenhammer et al., 2021; Zawadzka
et al., 2021), which may provide a mechanistic pathway for altered
epigenetic modifications and neurogenesis in the model.

Mitochondrial activity regulates the fate of neural progenitors,
where a switch to oxidative phosphorylation from glycolysis,
along with increased reactive oxygen species generation, promotes
neuronal differentiation (Iwata and Vanderhaeghen, 2021). It is
therefore possible that impaired mitochondrial activity, which
is often concordant with elevated reactive oxygen species in
the MIA model (Swanepoel et al., 2018; Cieślik et al., 2020,
2021), is controlling the acute switch from proliferative to
neurogenic divisions in the embryonic brain. It is interesting to
note that alternative studies of developmental insult, including
mitochondrial dysfunction, intrauterine growth restriction and
maternal hyperglycemia, report an almost identical phenotype in
embryonic neurogenesis, where increased NECs are differentiating,
at the expense of proliferation (Khacho et al., 2017; Ji et al., 2019;
Brown et al., 2021). This suggests that disturbed neurogenesis may
be the result of a common downstream pathway, such as oxidative
stress, which has been linked to a wide range of diseases (Cenini
et al., 2019; Forman and Zhang, 2021).

6. Conclusion

Neuronal development within the embryonic brain is clearly
affected by MIA as demonstrated by an acute proliferation defect,
which, in most cases, is concordant with increased differentiation
of neurons and altered cortical lamination (Figure 2; Shi et al.,
2009; De Miranda et al., 2010; Carpentier et al., 2011, 2013;
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Soumiya et al., 2011; Stolp et al., 2011; Chao et al., 2016; Gumusoglu
et al., 2017; Wu et al., 2018; Ben-Reuven and Reiner, 2021; Canales
et al., 2021).

Disturbed cortical neurogenesis has been linked to neural
connectivity deficits in the postnatal offspring as well as behavioral
phenotypes associated with ASD, such as reduced ultrasonic
vocalizations (Wagner and MacDonald, 2021; Griffin et al., 2022),
which has been reported in MIA offspring (Gzielo et al., 2021;
Scott et al., 2021; Potter et al., 2023). Hence, the altered embryonic
neurogenesis phenotype highlighted in this review may provide an
underlying mechanism responsible for MIA-induced dysfunctional
behavior. A recent review concluded that MIA causes defective
hippocampal neurogenesis in the adult offspring, which is linked
to defects in memory, mood and anxiety and is hypothesized
to mediate susceptibility to future “hits” (Couch et al., 2021).
Generation of the neurogenic niches in the adult brain, known
as the SVZ and the subgranular zone, are dependent on the
precise mechanisms of embryonic neurogenesis (Nicola et al.,
2015; Mira and Morante, 2020). It could thus be postulated that
the proliferation defect reported in this review, which remains
defective at late gestational time points, is at the root of improper
neurogenic niche development within the MIA model, as has
been hypothesized following alternative developmental insults
(Khacho et al., 2017; Brown et al., 2021). Accordingly, accelerated
brain growth and dysregulated expression of genes involved in
neurogenesis has been reported within ASD patients (Hazlett et al.,
2011; Chow et al., 2012; Fan and Pang, 2017; Shen and Piven, 2017).

Studies of neurogenesis within the fetal MIA brain have mostly
focused on the pallium (De Miranda et al., 2010; Gallagher et al.,
2013; Braun et al., 2019; Canales et al., 2021), which is the main
source of excitatory neurons within the cerebral cortex (Llorca
and Deogracias, 2022). Yet, inhibitory interneurons, which are
repeatedly reported to be affected following MIA and in NDDs
(Nakamura et al., 2021; Yang et al., 2022; Yu et al., 2022), are
predominantly derived from sub-pallial regions such as the caudal
and medial ganglionic eminences as well as the preoptic area (Yang
et al., 2022). To our knowledge, only one study has investigated
neurogenesis within sub-pallial regions following MIA induction,
which reported decreased expression of proliferation markers
within the caudal ganglionic eminence during late gestation
(Lacaille et al., 2019). Future studies will help to elucidate whether
neurogenesis defects within sub-pallial regions are contributing to
GABAergic deficits following MIA.

This review focused on the effect of MIA on embryonic
neurogenesis and neuronal migration, which is critical for
understanding the underlying mechanisms of MIA as well as

establishing how MIA interacts with genetic or subsequent
environmental insults to alter the neurodevelopmental trajectory. It
is clear that the embryonic neurogenesis phenotype is significantly
affected by the timing of MIA induction, consistent with the
rapid nature of fetal brain development. Hence, further research
is required to better understand how even seemingly minor
alterations to the timing of immune insult affect neurogenesis
and subsequent brain deficits. Sex-dependent variation should
also be explored in order to understand how MIA differentially
affects neurogenesis, which may be at the root of sex-specific
brain and behavioral phenotypes. Future research in the field of
neurogenesis will allow an improved mechanistic understanding
of how MIA increases the risk of NDDs and hence will assist in
therapeutic discovery.
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