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Objectives: Post-stroke depression (PSD) is a common and serious psychiatric

complication which hinders functional recovery and social participation of

stroke patients. Stroke is characterized by dynamic changes in metabolism and

hemodynamics, however, there is still a lack of metabolism-associated effective

and reliable diagnostic markers and therapeutic targets for PSD. Our study was

dedicated to the discovery of metabolism related diagnostic and therapeutic

biomarkers for PSD.

Methods: Expression profiles of GSE140275, GSE122709, and GSE180470 were

obtained from GEO database. Differentially expressed genes (DEGs) were

detected in GSE140275 and GSE122709. Functional enrichment analysis was

performed for DEGs in GSE140275. Weighted gene co-expression network

analysis (WGCNA) was constructed in GSE122709 to identify key module genes.

Moreover, correlation analysis was performed to obtain metabolism related

genes. Interaction analysis of key module genes, metabolism related genes,

and DEGs in GSE122709 was performed to obtain candidate hub genes. Two

machine learning algorithms, least absolute shrinkage and selection operator

(LASSO) and random forest, were used to identify signature genes. Expression

of signature genes was validated in GSE140275, GSE122709, and GSE180470.

Gene set enrichment analysis (GSEA) was applied on signature genes. Based on

signature genes, a nomogram model was constructed in our PSD cohort (27

PSD patients vs. 54 controls). ROC curves were performed for the estimation of

its diagnostic value. Finally, correlation analysis between expression of signature

genes and several clinical traits was performed.

Results: Functional enrichment analysis indicated that DEGs in GSE140275

enriched in metabolism pathway. A total of 8,188 metabolism associated genes

were identified by correlation analysis. WGCNA analysis was constructed to obtain

3,471 key module genes. A total of 557 candidate hub genes were identified

by interaction analysis. Furthermore, two signature genes (SDHD and FERMT3)
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were selected using LASSO and random forest analysis. GSEA analysis found that

two signature genes had major roles in depression. Subsequently, PSD cohort

was collected for constructing a PSD diagnosis. Nomogram model showed good

reliability and validity. AUC values of receiver operating characteristic (ROC) curve

of SDHD and FERMT3 were 0.896 and 0.964. ROC curves showed that two

signature genes played a significant role in diagnosis of PSD. Correlation analysis

found that SDHD (r = 0.653, P < 0.001) and FERM3 (r = 0.728, P < 0.001) were

positively related to the Hamilton Depression Rating Scale 17-item (HAMD) score.

Conclusion: A total of 557 metabolism associated candidate hub genes were

obtained by interaction with DEGs in GSE122709, key modules genes, and

metabolism related genes. Based on machine learning algorithms, two signature

genes (SDHD and FERMT3) were identified, they were proved to be valuable

therapeutic and diagnostic biomarkers for PSD. Early diagnosis and prevention

of PSD were made possible by our findings.
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Introduction

Stroke remains the second leading cause of death and may lead
to long-term disability in adults (GBD 2019 Stroke Collaborators,
2021; Sun et al., 2021). After the acute stage, most of stroke patients
suffer from physical and mental disabilities of varying degrees,
including hemiplegia, reduced energy, and disturbed sleep (Zhang
et al., 2013; Dong et al., 2021). Previous studies have shown that
about 30–40% of stroke patients develop post-stroke depression
(PSD) which is a mood disorder characterized by depression
and anhedonia, and is associated with decreased rehabilitation
motivation, reduced quality of life, poor functional outcome, as
well as increased cost of treatment and burden of family caregiver
(Li et al., 2020). One meta-analysis concluded that a hazard ratio
for post-stroke depression and all-cause mortality was 1.59 (Cai
et al., 2019). However, PSD is often concealed due to unrecognized
depressive symptoms and their decreased willingness of treatment
attendance (Klinedinst et al., 2012). Diagnosis of PSD is currently
based on clinical symptoms, and there is no reliable objective
parameter. Therefore, it is necessary to explore the new diagnostic
and therapeutic biomarkers for PSD in subacute period of stroke.

There is accumulating evidence that PSD and metabolism are
intimately related. Compared with non-PSD, stroke patients with
PSD have higher glutamate levels in the frontal lobe (Wang et al.,
2012). Previous studies found that a high level of homocysteine has
been identified as the qualifiable risk factor for ischemic stroke,
and elevated serum level of homocysteine is also significantly
associated with depression (Li et al., 2017; Zhou et al., 2018).
Jiang et al. (2021) demonstrated that gut microbiome may
participate in the development of PSD, the discriminating fecal
metabolites were mainly involved in lipid metabolism, amino acid
metabolism, carbohydrate metabolism and nucleotide metabolism.
These results indicated that metabolism plays an important role in
the pathological process of PSD.

Recently with the assistant of advanced sequencing
technologies and machine learning algorithms, intelligent hub gene

and signaling pathway detection becomes realistic. Several studies
based on weighted gene co-expression network analysis (WGCNA)
have reported changes in relevant key pathways and differential
expression of key related genes in post-stroke patients (Li et al.,
2020; Wang et al., 2020; Lin et al., 2021). Furthermore, Liu et al.
(2022) used WGCNA combined with the random forest model
and the least absolute shrinkage and selection operator (LASSO)
analysis to identify 10 key genes in patients with Alzheimer’s
Disease. However, these techniques have not been widely applied
in the investigation of metabolism biomarkers of PSD.

Upon the above concerns, this study employed multiple
bioinformatic approaches to find possible biomarkers. Firstly,
three gene expression profiles of stroke were obtained from GEO
database. Differentially expressed genes (DEGs) were detected.
WGCNA was constructed to identify disease related module genes.
Then, correlation analysis was performed to obtain metabolism
related genes. Interaction analysis was performed to obtain
candidate hub genes. Subsequently, signature genes were identified
by LASSO and random forest analysis. Gene set enrichment
analysis was applied on signature genes. Finally, a diagnosis model
was built in PSD cohort. In general, the findings of this research
may assist in the diagnosis and treatment of PSD as well as increase
our understanding of etiology of PSD.

Materials and methods

Data sources and processing

Three datasets (GSE140275, GSE122709, GSE180470) were
downloaded from Gene Expression Omnibus (GEO).1 The
GSE140275 dataset contained six patients, including three healthy
controls (HC) and three stroke patients. The GSE122709 dataset

1 http://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1

Flow chart. GEO, Gene Expression Omnibus; WGCNA, weighted gene co-expression network analysis; PSD, post-stroke depression; ROC, receiver
operating characteristic; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.

included five HC and ten stroke patients. GSE180470 dataset
included three HC and three stroke patients. Expressions of three
datasets were all derived from human blood tissue. “Limma” and
“edgeR” package in R software was used to investigate differentially
expressed genes (DEGs) (Robinson et al., 2010; Ritchie et al., 2015),
which was specified as “P-value < 0.05 and log2 (fold change) > 1
or log2 (fold change) < –1.” For visualization, the volcano plots
were generated to show DEGs, while the top 25 upregulated and
the top 25 downregulated DEGs were displayed by heatmaps.

Functional enrichment analysis

Functional enrichment analysis was conducted to evaluate
major biological attributes of DEGs, specifically including Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis using “ClusterProfiler” package in R
software. Threshold was set at P-value < 0.05. GO categories
comprised biological processes (BP), molecular functions (MF),
and cellular components (CC) (Zhu et al., 2022).

Weighted gene co-expression network
analysis (WGCNA)

Based on scale-free topology criterion, co-expression network
in GSE122709 dataset was constructed using “WGCNA” package

in R software to identify co-expression gene modules (Langfelder
and Horvath, 2008). Briefly, genes with read counts less than 10
and “NA” were filtered out, top 5,000 variant genes were selected.
Pearson’s correlations between each gene pair were calculated to
build an adjacency matrix. Afterward, a “soft” threshold power
(β) was estimated according to the criteria of scale-free topology
to construct a biologically important scale-free network. Dynamic
Tree Cut algorithm was then used to identify gene modules (Lin
et al., 2021). Module membership (MM) and gene significance (GS)
were estimated to connect modules with clinical characteristics.
Hub gene modules were designated as those with the highest
Pearson module membership correlation and P-value < 0.05 (Liu
et al., 2021).

Screening for candidate hub genes

Based on R software, “WGCNA” package was used for
correlation analysis for genes in GSE122709 and seven genes
associated with metabolism with the following parameters: |
R| > 0.5, P < 0.001. Then, we identified candidate hub genes by
the intersection of DEGs, key module genes and metabolism related
genes. Finally, results were visualized by Venn diagram via online
tool Venny 2.1.02 (He et al., 2021).

2 https://bioinfogp.cnb.csic.es/tools/venny/index.html
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Identification for signature genes in
patients with stroke

We screened candidate hub genes by the intersection of DEGs,
key module genes and metabolism related genes. Subsequently,
two machine learning algorithms, least absolute shrinkage and
selection operator (LASSO) and random forest, were used to
identify hub gene. LASSO, a dimension reduction approach, shows
superiority in evaluating high-dimensional data in comparison
to regression analysis (Kang et al., 2021). The “glmnet” package
was used to implement LASSO analysis with a turning/penalty
parameter utilizing a 10-fold cross-validation. Furthermore, the
“random forest” package was used for performing the random
forest analysis which determined the optimal number of variables
by computing average error rate of candidate hub genes
(Mantero and Ishwaran, 2021). A random forest tree model
was built and the importance scores of each candidate hub
genes were identified. Genes with importance value >0.25 were
determined. The intersection genes of LASSO and random forest
analysis were used to pick signature genes of patients with
stroke.

Establishment of nomogram

The “rms” package was applied for incorporating signature
genes to establish a nomogram. The “score” is the score of the
relevant item below, and the “total score” is the sum of all the
elements above. Calibration curves were used for assessing the
predictive power of the model. Clinical usefulness of nomogram
was evaluated by decision curve analysis, which determines clinical
practicability of nomogram by quantifying the net benefits under
different threshold probabilities in the validation set. Furthermore,
we performed clinical impact curves to evaluate clinical utility of
the model (Xu et al., 2021).

Curve analysis of receiver operating
characteristics (ROC)

The “pROC” package was applied to create Receiver Operating
Characteristic (ROC) curves to determine the area under the curve
(AUC) for screening signature genes and evaluating their diagnostic
value (Robin et al., 2011). AUCs of 0.5–0.7 were considered with
low diagnostic accuracy, 0.7–0.9 were considered with moderate
accuracy, and >0.9 indicates high accuracy.

Gene set enrichment analysis (GSEA)

To functionally investigate the biological significance of
signature genes, GSEA (version 4.1.0) was performed in different
subgroups. KEGG gene sets were chosen as the gene set database
(Subramanian et al., 2005). Normalized enrichment score (NES)
and false discovery rate (FDR) were used to determine if differences
were statistically significant and cut-off values were FDR < 0.25,
P < 0.05, and | NES| > 1.

PSD validation cohort

This was a cohort study enrolled at the First Affiliated Hospital
of Nanjing Medical University from September 2020 to April
2022. It was approved by the Committee of Institutional Ethics
(Institutional Review Board, 2018-SR-339) and all participants
provided written informed consent prior to participation. Patients
eligible for inclusion in the study were: (1) aged older than
18 years; (2) diagnosed with ischemic stroke on brain MRI; (3)
with stable vital signs (Luft et al., 2004; Upreti et al., 2019). Patients
were excluded if (1) presence of severe cognitive impairment; (2)
participated in other clinical trials within 6 months (Shi et al., 2021;
Yu et al., 2022).

All participants underwent an initial clinical assessment,
including the collection of clinical and demographic information.
Depression symptoms in post-stroke patients were evaluated by the
Hamilton Depression Rating Scale 17-item (HAMD) at 1 month
after stroke by a trained neurologist (Lin et al., 2020; Qiao et al.,
2020). A score of 0–7 was considered normal, while a HAMD
score ≥8 is indicative of depression. Stroke severity was measured
using the National Institute of Health Stroke Scale (NIHSS) (He
et al., 2020). Modified Rankin Scale (mRS) was used to estimate the
functional disability (Liu et al., 2018). Independence and level of
activities of daily life (ADL) were evaluated with the Barthel index
(Kamal et al., 2020). For research purposes, a blood sample (10 ml)
was taken from each subject for further ELISA assessment when
they completed the HAMD assessment.

ELISA analysis

Concentration of signature genes in serum of stroke patients
were measured using ELISA kit (antibodies-online, Philadelphia,
PA, USA). Briefly, 100 µL standard or sample were added to each
well and incubated for 90 min at 37◦C. After washing two times,
100 µL Biotin-labeled antibody working solution was added and
incubated for 60 min for 37◦C. After plates were washed three
times. A total of 100 µL SABC Working Solution was added and
incubated for 30 min at 37◦C. Subsequently, 90 µL TMB Substrate
Solution was added and incubated 20 min at 37◦C. After the
incubation, 50 µL stop solution was added into each well to stop the
reaction. Finally, Absorbance value at 450 nm was read immediately
and calculation (Kaida et al., 2013; Zhou et al., 2015).

Statistical analysis

All statistical analyses in our study were implemented using
R software (version 4.1.2). The difference between the two groups
was analyzed by Student’s t-test. The correlation between genes in
GSE122709 and metabolism related genes was determined using
Pearson’s correlation test. All statistical P-values were two-sided,
and statistical significance was considered with P-value < 0.05.

Results

Detailed procedure of our study is shown in Figure 1.
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FIGURE 2

DEGs screening and functional enrichment analysis. (A) Volcano plot of differentially expressed genes in GSE140275. (B) Heatmap of differentially
expressed genes in GSE140275. (C) KEGG pathway analyses of upregulated mRNAs in GSE140275. (D) GO functional analyses of upregulated mRNAs
in GSE140275. (E) Volcano plot of differentially expressed genes in GSE122709. (F) Heatmap of differentially expressed genes in GSE122709.
(G) KEGG pathway analyses of downregulated mRNAs in GSE140275. (H) GO functional analyses of downregulated mRNAs in GSE140275. (I) KEGG
pathway analyses of mRNAs in GSE122709. (J) GO functional analyses of mRNAs in GSE122709. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; DEGs, differentially expressed genes.

Identification of DEGs between HC and
stroke patients

To identify potential DEGs, expression profiles of GSE140275
and GSE122709 in GEO database were performed using “Limma”
package with P< 0.05 and | logFC| > 1 as threshold. A total of 1,724
DEGs were screened in GSE140275 including 861 upregulated
genes and 863 downregulated genes (Supplementary Table 1).
A total of 7,731 DEGs were obtained, of which 3,516 genes
presented upregulation and 4,215 genes presented downregulation
in GSE122709 (Supplementary Table 2). The volcano plots were
demonstrated in Figures 2A, E. The heatmap showed the top
25 upregulated and top 25 downregulated DEGs between healthy
control and stroke patients (Figures 2B, F).

Functional enrichment analysis of DEGs
in GSE140275

Functional enrichment analysis was carried out to investigate
the biological functions of DEGs in GSE140275. Among
upregulated DEGs, KEGG enrichment analysis demonstrated
that “autophagy,” “porphyrin metabolism,” and “glycine, serine
and threonine metabolism” were highly enriched (Figure 2C);
GO analysis showed that multiple metabolic pathways were
also significantly enriched in biological processes, such as

“monoacylglycerol metabolic process,” “acylglycerol metabolic
process,” and “glycerolipid metabolic process” (Figure 2D). The
results of KEGG showed downregulated DEGs were especially
enriched in “ribosome,” “protein export,” and “T cell receptor
signaling pathway” (Figure 2G). Additional GO analysis suggested
downregulated DEGs were significantly enriched in “structural
constituent of ribosome” in MFs, “ribosome” in CCs, and
“regulation of leukocyte mediated immunity” in BPs (Figure 2H).
Similarly, KEGG pathways analysis of GSE122709 showed that
“porphyrin metabolism”, and “glycine, serine and threonine
metabolism” were significantly enriched (Figures 2I, J), indicating
that metabolism played an important role in stroke.

Construction of the weighted gene
co-expression network

The GSE122709 dataset (five HC and 10 stroke patients)
was obtained for WGCNA analysis to identify modules of
highly correlated genes. A scale-free co-expression network was
constructed with the soft threshold to 20 and the mean connectivity
is relatively favorable (Figures 3A, B). We selected 0.25 as
clustering height limit to merge the strongly associated modules
(Figure 3C). Subsequently, 24 signature modules were identified
and labeled with different colors (Figure 3D). The correlation
between modules was computed, and the results were showed

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1146620
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1146620 March 3, 2023 Time: 12:59 # 6

Zhang et al. 10.3389/fnins.2023.1146620

FIGURE 3

Construction of WGCNA co–expression network. (A) Scale-free fit index. (B) Mean connectivity. (C) Clustered dendrograms. (D) Clustering
dendrogram of genes, various colors represent different modules. (E) Correlation heatmap between modules. Red and blue represent positive and
negative correlations, respectively. (F) Clustering dendrogram of module feature genes. (G) Heatmap of module–trait correlations. Red and green
represent positive and negative correlations, respectively. HC, healthy control; WGCNA, weighted gene co-expression network analysis.

in Figure 3E. In addition, transcription correlation analysis
was performed and demonstrated that there was no substantive
connection between modules (Figure 3F). Finally, we calculated
the correlation between each module and clinical features. Results
indicated that the MEroyalblue module was negatively correlated
with HC (r = –0.83, P = 1e–04) and positively correlated with stroke
(r = 0.83, P = 1e–04), while the Megrey module was negatively
correlated with stroke (r = –0.93, P =5e–07) and positively
correlated with healthy control (r = 0.93, P = 5e–07) (Figure 3G
and Supplementary Table 3). Therefore, Meroyalblue and Megrey
modules were identified as clinically meaningful modules.

Identification of metabolism related
candidate hub genes

Based on KEGG pathway analysis in GSE140275, we extracted
porphyrin metabolism and glycine, serine and threonine
metabolism related genes (ALAS2, FECH, COX10, GCAT,
HMBS, PGAM2, and AOC2). Correlation analysis between seven
genes and all genes in GSE122709 dataset was conducted. A total
of 8,188 metabolism related genes were identified (| r| ≥ 0.5,
P ≤ 0.001). The heatmap of correlation analysis were shown in
Figure 4A. Subsequently, we interacted DEGs in GSE122709,
genes in Meroyalblue and Megrey modules, and metabolism
related genes, 554 common genes were obtained as metabolism
related candidate hub genes (Figure 4B). Functional enrichment
analysis revealed that metabolism related candidate hub genes were
enriched in “oxidative phosphorylation,” “ATP synthesis coupled
electron transport,” “cell-substrate junction,” and “carbohydrate
transmembrane transporter activity” (Figures 4C, D).

Selection of signature genes via machine
learning algorithms

Least absolute shrinkage and selection operator and random
forest algorithms were applied to identify signature genes from
554 metabolism related candidate hub genes. For LASSO analysis,
nine signature genes were selected from statistically significant
univariate variables (Figures 5A, B and Supplementary Table 4).
For random forest analysis, we set importance value to 0.25 as the
threshold and 130 signature genes were determined (Figures 5C,
D and Supplementary Table 5). The interaction analysis of LASSO
and random forest indicated that two signature genes were finally
screened out, including succinate dehydrogenase complex subunit
D (SDHD) and fermitin family member 3 (FERMT3) (Figure 5E).
Finally, correlation analysis of two signature genes and metabolism
related genes (ALAS2, FECH, COX10, GCAT, HMBS, PGAM2, and
AOC2) demonstrated that SDHD and FERMT3 were significantly
correlated with metabolism (Figure 5F).

Validation of signature genes

We further investigated the role of SDHD and FERMT3. The
expression of SDHD and FERMT3 was verified in GSE140275
and GSE122709. The results showed that SDHD was substantially
upregulated in the stroke group, while the same trend was seen in
expression of FERMT3 (Figures 6A, B). To further confirm the
reliability of our results, validation dataset (GSE180470) was used
to validate expression of SDHD and FERMT3. SDHD and FERMT3
were highly expressed in the stroke group (Figure 6C), suggesting
that these genes may play a significant role in stroke.

Frontiers in Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1146620
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1146620 March 3, 2023 Time: 12:59 # 7

Zhang et al. 10.3389/fnins.2023.1146620

FIGURE 4

Generation of metabolism related candidate hub genes. (A) Correlation heatmap between seven metabolism related genes and DEGs in GSE122709.
Red represents positive correlations, and blue represents negative correlations. (B) Venn diagram to identify candidate hub genes between
metabolism related genes, key modules genes and DEGs. (C) KEGG analysis of candidate hub genes. (D) GO analysis of candidate hub genes.
WGCNA, weighted gene co-expression network analysis; DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes;
GO, Gene Ontology; BP, biological processes; CC, cellular components; MF, molecular functions.

FIGURE 5

Selection of signature genes. (A) Parameter selection was performed through LASSO regression. (B) Elucidation of LASSO coefficient profiles for
selected factors. (C) Random forest error rate versus the number of classification trees. (D) The top 20 relatively important genes. (E) Venn diagram
to identify signature genes between LASSO and random forest. (F) Heatmap of correlation analysis between two signature genes and metabolism
related genes (ALAS2, FECH, COX10, GCAT, HMBS, PGAM2, and AOC2). LASSO, the least absolute shrinkage and selection operator.

GSEA analysis of signature genes

Gene set enrichment analysis was performed for evaluating
signaling pathways involved in the signature genes. The
results showed that SDHD was significantly correlated

with “emotional lability,” “depression,” and “abnormal
fear anxiety related behavior” (Figure 6D). Meanwhile,
“depression,” “emotional blunting,” and “abnormal fear
anxiety related behavior” were detected for FERMT3
(Figure 6E). The results indicated that SDHD and FERMT3
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FIGURE 6

Validation and GSEA analysis of signature genes. (A) Expression level of SDHD and FERMT3 in GSE122709. (B) Expression level of SDHD and FERMT3
in GSE140275. (C) Expression level of SDHD and FERMT3 in GSE180470. (D) GSEA analysis of SDHD. (E) GSEA analysis of FERMT3. ∗P < 0.05;
∗∗∗P < 0.001. HC, healthy control; GSEA, gene set enrichment analysis.

played a key role for diagnosis of psychosocial state in
stroke patients.

Diagnostic efficacy of signature genes in
PSD patients

Based on GSEA analysis of two signature genes (SDHD and
FERMT3), we found that they have a significant correlation with
depression. Therefore, we collected 81 stroke patients who were
assigned into the PSD group (mean HAMD score = 14.74) and non-
PSD group (mean HAMD score = 3.41). There was no difference in
baseline clinical features between groups (Supplementary Table 6).
Meanwhile, expression of serum SDHD and FERMT3 in all patients
were detected by ELISA kit. SDHD and FERMT3 presented higher
expression in the PSD group than the non-PSD group (Figures 7A,
B), indicating their potential roles in diagnosis of depression in
stroke patients. To predict diagnostic performance of signature
genes in stroke patients with depression, the nomogram model
for the signature genes (SDHD and FERMT3) was built using
“rms” package (Figure 7C). Calibration curves demonstrated that
the difference between the real and predicted depression risks
was very minimal, indicating the nomogram model enabled an
accurate estimation (Figure 7D). In addition, decision curves
analysis demonstrated that the nomogram provided a greater
clinical benefit (Figure 7E). The ROC curve also showed that the
model was able to help clinicians accurately diagnose depression
of stroke patients (Figure 7F). Additionally, correlation analysis
between two signature genes and several clinical traits (HAMD,

NIHSS, BI, and mRS) indicated that SDHD (r = 0.653, P < 0.001)
and FERM3 (r = 0.728, P < 0.001) were positively related HAMD,
while SDHD also displayed a negative association with Barthel
index (r = –0.224, P = 0.044) (Figures 7G, H).

Discussion

In this study, we included three datasets (GSE140275,
GSE122709, GSE180470) with 27 patients for data analysis.
We first screened 1,724 DEGs in GSE140275 including 861
upregulated genes and 863 downregulated genes. Subsequent
KEGG enrichment analysis showed “porphyrin metabolism” and
“glycine, serine and threonine metabolism” were highly enriched.
Recent research reveals that stroke causes systemic complications,
including hyperlipemia, high blood viscosity, dysfunctional gut
microbiota, and a leaky gut (Yamashiro et al., 2017; Chen et al.,
2019a). Chen et al. (2019b) demonstrated that stroke would cause
gut microbiota dysbiosis, translocation of gut microbiota, and
disruption to the gut barrier. And supplementation of short chain
fatty acids (SCFAs), especially butyric acid, could remodel the gut
microbiota and treat stroke (Chen et al., 2019a). Moreover, with
the development of biology, metabolomics was applied to explore
biomarkers and mechanisms of stroke by identifying metabolic
alterations. Several studies reported the increase in ketone bodies
levels in rats with stroke compared with sham group (Chen et al.,
2019c; Wang et al., 2019). Fu et al. (2019) reported a decrease
in β-hydroxybutyric acid level in serum but an increase in brain
tissue in stroke rats, providing more energy for brain. These
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FIGURE 7

Performance of signature genes in PSD patients. (A) Expression level of SDHD in PSD and non-PSD groups. (B) Expression level of FERMT3 in PSD
and non-PSD groups. (C) Nomograms for the prediction of the PSD risk. (D) Scatter diagram of calibration plot for internal verification of the
nomogram model. (F) DCA curves of the nomogram model. (E) ROC curves of the nomogram model. (G) Correlation between expression of SDHD
and four clinical traits (HAMD, NIHSS, BI, and mRS). (H) Correlation between expression of FERMT3 and four clinical traits (HAMD, NIHSS, BI, and
mRS). PSD, post-stroke depression; DCA, decision curve analysis; ROC, receiver operating characteristic; AUC, area under the curve; HAMD,
Hamilton Depression Rating Scale 17-item; NIHSS, National Institute of Health Stroke Scale; BI, Barthel index; mRS, Modified Rankin Scale. ∗P < 0.05.

studies suggest that metabolism features strongly correlate with
prevention, diagnosis and treatment of stroke. Based on the role
of metabolism in stroke, we extracted seven genes related to
the “porphyrin metabolism” and “glycine, serine and threonine
metabolism” pathways, including ALAS2, FECH, COX10, GCAT,
HMBS, PGAM2, and AOC2. We then performed correlation
analysis between these genes enriched in these two pathways in
GSE140275 and all genes in GSE122709 to identify metabolism
related genes. A total of 8,188 metabolism related genes were
identified. Nevertheless, with the help of advanced bioinformatic
approaches genetic information could be further derived.

Weighted gene co-expression network analysis (WGCNA) is
a frequently applied method to identify co-expression pattern
at whole transcriptome level. Wang et al. (2019) performed
WGCNA analysis to investigate co-expression modules related with
osteosarcoma and found genes in brown module might be related
with carcinogenesis of osteosarcoma. In addition, there were several
studies screened key module genes related to stroke by WGCNA

analysis (Fan et al., 2022; Zheng et al., 2022). However, metabolism
related pathways and key genes in stroke are seldomly identified.
Therefore, we performed WGCNA analysis of GSE122709 to
identify 24 gene modules. No significant correlation between
dividing modules was found. Module-traits relationship analysis
indicated that Meroyalblue and Megrey modules were significantly
associated with stroke disease. After this step, we interacted DEGs
in GSE122709, genes in Meroyalblue and MEgrey modules, and
metabolism related gene and showed 554 metabolism related
candidate hub genes. Nonetheless, a single WGCNA analysis
had significant limitations and inaccuracies (Tzimas et al., 2019).
Currently, studies applied WGCNA were normally combined with
multiple machine learning algorithms to identify biomarkers for
disease prognosis and diagnosis. Zhao et al. (2022) identified four
core genes (BTN3A2, CYFIP2, ST8SIA1, and TYMS) as biomarker
for diagnosis of rheumatoid arthritis via comprehensive analysis
of WGCNA, LASSO, random forest, and support vector machine
analysis. By WGCNA, LASSO, and random forest algorithms,
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Fan et al. (2022) obtained five signature genes (UPP1, S100A9,
KIF1B, S100A12, SLC26A8) and emerged remarkable diagnostic
performance in pediatric septic shock. In the current study,
LASSO regression analysis and random forest algorithms found
two signature genes, then three validation datasets, including
GSE140275, GSE122709, and GSE180470, confirmed that SDHD
and FERMT3 were highly expressed in the stroke group.

SDHD, one subunit of succinate dehydrogenase (SDH), dual
roles in respiration by transferring electrons from succinate
to ubiquinone in the mitochondrial electron transport chain
(ETC) and catalyzing oxidation of succinate to fumarate in
the mitochondrial Krebs cycle (Cecchini, 2003; Sun et al.,
2005). Researchers reported mutations of SDHD in patients with
hereditary pheochromocytomas and hereditary paragangliomas
(Baysal et al., 2000). In vitro experiment performed by Bandara et al.
(2021) demonstrated that mutation of SDHD via CRISPR/Cas9
approach could suppress glycolysis and overall ATP synthesis in
HEK293. Overexpression of SDHD could significantly suppressed
cell proliferation in vitro and tumor growth of HCC cells
in vivo (Yuan et al., 2022). FERMT3 is a member of the
kindlin family of binding proteins containing the FERM domain
(Rognoni et al., 2016). FERMT3 mediates integrin activation and
integrin-ligand binding. Therefore, FERMT3 is closely related to
various biological activities, including cell adhesion, spreading,
cell survival, proliferation and differentiation (Rognoni et al.,
2016). Mutations of FERMT3 gene could cause leukocyte adhesion
deficiency type III (LAD III) (Kuijpers et al., 2009). Liu et al.
(2021) performed RNA sequencing in patients with triple-negative
breast cancer and identified FERMT3 as protective gene in
compound kushen injection treatment. Nonetheless, correlations
of FERMT3 and SDHD with stroke have not been previously
reported.

Post-stroke depression (PSD), the most common psychiatric
problem after stroke, is an independent risk factor of stroke
mortality (D’Anci et al., 2019). PSD is closely associated with worse
outcomes of physical and cognitive recovery, functioning, and
health related quality of life (Villa et al., 2018). It is worth noting
that PSD might halt or impede rehabilitation treatments. However,
the complex pathophysiology of PSD is still only partly known
till now. The current evidence indicates genetic factors as major
aetiopathological predictors for PSD. Yang et al. (2010) reported
that IL-18 level in serum on day 7 after admission might predict the
risk of PSD. Plasma levels of glutamate and glutamate oxaloacetate
transaminase at admission were also reported to be closely related
PSD within 3 months (Cheng et al., 2014). To further probe the role
of hub genes in stroke, we performed a GSEA analysis of signature
genes. The results demonstrated that SDHD and FERMT3 were
significantly enriched in depression. Then we validated our findings
in stroke patients with and without depression. We found increase
expression levels of SDHD and FERMT3 in stroke patients with
depression, compatible with our previous research inferences. In
addition, based on the two signature genes (SDHD and FERMT3)
that we identified, we successfully established a PSD diagnosis
for evaluating diagnosis value of SDHD and FERMT3 in our
PSD cohort. Nomogram model showed great predictive ability
and clinical usefulness. Meanwhile, AUC values of SDHD and
FERMT3 were 0.896 and 0.964. Our results suggested that SDHD
and FERMT3 might play essential roles in diagnosis of PSD.
Finally, we performed correlation analysis of two signature genes

and several clinical traits. We found that the SDHD and FERM3
were positively correlated with depression, which suggested that
SDHD and FERMT3 had certain therapeutic predictive value in
PSD. Moreover, SDHD was also found a negative correlation with
activities of daily living in this study. Considering the feature of this
parameters, it suggested that these two signature genes may also
serve as biomarkers to monitor the mental functional prognosis in
patients with PSD (van Hulsteijn et al., 2013).

The present study also has certain shortcomings. Firstly, we
collected data from public databases with small samples. There
could have been a selection bias. Large datasets of stroke patients
are limited, so we tried to minimize the bias of our results
by validating signature genes across multiple datasets. Secondly,
the metabolism related-pathways and -hub genes in stroke lack
literature support and required further confirmation. Thirdly,
although two metabolism related signature genes were identified
as potential predictors for PSD, larger patient cohorts should be
examined in the future to validate the correlation between two
signature genes (SDHD and FERMT3) with PSD. Then further
in vivo or in vitro studies should be carried out to validate diagnostic
value and potential therapeutic value.

Conclusion

In conclusion, we identified two signature genes (SDHD and
FERMT3) in peripheral blood of stroke patients by machine
learning. SDHD and FERMT3 were found to be significantly
associated with depression, and were identified as diagnostic and
therapeutic signatures by our stroke cohorts with and without PSD,
which could be a valuable reference for future clinical practice.
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