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Background: Studies have shown an association between depression and

circulating metabolites, but the causal relationship between them has not been

elucidated. The purpose of this study was to elucidate the causal relationship

between circulating metabolites and depression and to explore the role of

circulating metabolites in depression.

Methods: In this study, the top single-nucleotide polymorphisms (SNPs)

associated with circulating metabolites (n = 24,925) and depression (n =

322,580) were obtained based on the publicly available genome-wide association

study using two-sample Mendelian randomization (MR). SNP estimates were

summarized through inverse variance weighted, MR Egger, weighted median, MR

pleiotropy residual sum and outlier, and “leave-one-out” methods.

Results: Apolipoprotein A-I (OR 0.990, 95% CI 981–0.999) and glutamine (OR

0.985, 95% CI 0.972–0.997) had protective causal e�ects on depression, whereas

acetoacetate (OR 1.021, 95% CI 1.009–1.034), glycoproteins (OR 1.005, 95% CI

1.000–1.009), isoleucine (OR 1.013, 95% CI 1.002–1.024), and urea (OR 1.020, 95%

CI 1.000–1.039) had an anti-protective e�ect on depression. ReversedMR showed

no e�ect of depression on the seven circulating metabolites.

Conclusion: In this study, MR analysis showed that apolipoprotein A-I and

glutamine had a protective e�ect on depression, and acetoacetate, glycoprotein,

isoleucine, glucose, and urea may be risk factors for depression. Therefore, further

research must be conducted to translate the findings into practice.
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circulating metabolites, depression, Mendelian randomization, instrumental variable,

bidirectional

1. Introduction

Depression is a common mental disorder. The main clinical feature of depression is

obvious and lasting despondent. Depression is associated with high rates of morbidity,

disability, and mortality, which brings serious harm to the physical and mental health of

patients (Krishnan and Nestler, 2008; Yuan et al., 2020; Chen L. et al., 2022), and ∼300

million people worldwide suffer from the disease (Herrman et al., 2019). The economic

burden of depression is ∼ $2.5 trillion, which is 10% of the total global burden of disease

(Tran et al., 2020). Depression has complex pathogenesis, involving the hypothalamic–renal

gland, the hypothalamic–pituitary–adrenal axis, genetics, body metabolism, neurotrophic

factors, and other influencing factors, and it is affected by the physiological, biochemical,

social environment, and many other aspects (Liu et al., 2015).
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Metabolomics, a branch of systems biology, is a new

omics technology developed after proteomics, genomics, and

transcriptomics. It has shown great advantages in the field of

disease diagnosis (Brindle et al., 2002; German et al., 2004).

The application of metabolomics in depression is relatively late.

Moreover, given the different instruments and equipment used and

the different experimental objects studied, the conclusions obtained

by metabolomics in the studies of depression are different, and

differences are observed on whether different metabolites play an

important role in depression. For example, studies have shown

inconsistent expression levels of valine (Liu et al., 2015; Zheng

et al., 2017), leucine (Shi et al., 2013; Li D. et al., 2020; Li Y.

et al., 2020), glutamine (Du et al., 2017; Geng et al., 2020; Li D.

et al., 2020), tryptophan (Zheng et al., 2017; Gui et al., 2018), and

tyrosine (Liu et al., 2016; Kawamura et al., 2018) in the blood of

patients or animals with depression. Based on the abovementioned

research, changes in circulating metabolites may contribute to

depression. For the clinical treatment of depression, whether the

correlation is causal must be determined, and the most important

metabolites must be identified. In addition, some metabolites that

play important roles in depression may be undetected because of

testing equipment, technology, and the sample itself.

Through a genome-wide association study (GWAS), the

causal relationship between exposure phenotype and outcome

phenotype can be powerfully and effectively established by using

Mendelian randomization (MR) (He et al., 2021; Zhao et al., 2021).

These genetic variants are fixed at conception, helping to rule

out potential confounding factors and prevent reverse causation

(Davies et al., 2018). Compared to observational studies, MR

studies can effectively make effective and accurate causal inference

(Bowden and Holmes, 2019). In this study, MR was used to explore

and clarify the causal effect of circular metabolites on depression

and tested whether the effect is bidirectional.

2. Materials and methods

On the basis of publicly available GWAS, summary-level data

were acquired (Chen L. et al., 2022). Data on circulatingmetabolites

provided by GWAS were carried out by the University of Oulu

(Kettunen et al., 2016), and the data on depression provided by

GWAS were primarily performed by the University of Edinburgh

(Howard et al., 2018). GWAS released the summary-level data

for further analysis, and each cohort involved in the research

acquired a consent form of participants and ethical approval.

In ensuring effective MR analysis, three important assumptions

must be demonstrated: (1) SNPs are associated with circulating

metabolites (depression); (2) SNPs affect depression (circulating

metabolites) only through circulating metabolites (depression)

and not through any other causal pathway, and (3) SNPs are

completely independent of any potential confounding factors

affecting circulating metabolites and depression (Figures 1, 2).

2.1. Circulating metabolites

Instrumental variables (IVs) for circulating metabolites were

obtained based on a large-scale study containing 14 cohorts from

Europe with a total of 24,925 participants. The sources of the

cohorts were as follows: (1) Estonian Genome Center of University

of Tartu Cohort, (2) Erasmus Rucphen Family Study, (3) A

subsample of FINRISK 1997, (4) Finnish Twin Cohort, (5) Genetics

of METabolic Syndrome, (6) Helsinki Birth Cohort Study, (7)

Cooperative Health Research in the Region of Augsburg, (8) Leiden

Longevity Study, (9) Northern Finland Birth Cohort 1966, (10)

Netherlands Twin Register, (11) FINRISK subsample of incident

cardiovascular cases and controls, (12) EGCUT sub-cohort, (13)

The Cardiovascular Risk in Young Finns Study, and (14) Genetic

Predisposition of Coronary Heart Disease in Patients Verified with

Coronary Angiogram. The included cohorts were conducted in

Estonia, Finland, Netherlands, and Germany. The mean age of

participants in the 14 cohorts ranged from 23.9 ± 2.1 to 61.3 ±

2.9, and the mean BMI ranged from 23.1 ± 3.7 to 28.2 ± 4.8. In

addition, the proportion of female subjects ranged from 37 to 64%.

Using the same platform for each cohort, metabolites that represent

a wide range of molecular features of whole-body metabolism

were quantified. A variety of metabolic pathways were covered

by the metabolite set. Most metabolomic analyses were conducted

using an integrated quantitative platform. The genomic location

used in the research is human genome construction. Analyzing

each cohort separately and in the fixed-effect meta-analysis, a two-

genome control correction was used to combine exact interpolation

with SNPs with minor allelic counts >3, that is, the individual

cohort results and the meta-analysis results were corrected for the

genome bloat factor implemented in GWAMA. After screening

and meta-analysis, the final results considered variations found

in more than seven studies. The genome-wide significance level

was set at 2.27∗10−9, correcting for 22 independent tests because

the metabolite data were correlated (the standard genome-wide

significance threshold was 5∗10−8/22, and the number of major

components accounted for more than 95% of the variance in

the metabolomics data). The number of independent tests was

derived from the number of major components that accounted

for more than 95% of the variation in the metabolite data.

The genome bloat factor for all traits in the meta-analysis was

<1.034, which indicated that there was no systematic bias in

test statistics.

2.2. Depression phenotypes

Summary statistics were obtained from large publicly available

GWAS of depression. For the depression phenotypes, the exclusion

would be applied to participants if they were identified with

schizophrenia, bipolar disorder, or personality disorder through

touchscreen responses, self-declared data, or ICD codes from

hospital admission records; participants were excluded if they

reported having a prescription for an antipsychotic medication

during a verbal interview. Control individuals would be excluded

if they had reported having a prescription for antidepressants,

had a diagnosis of a depressive mood disorder from hospital

admission records, or had self-reported depression. From the

NHS National Research Ethics Service, this study was performed

under generic approval. Full informed written consent was given

to all participants. Based on the conventional threshold of P <
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FIGURE 1

Three significant assumptions of metabolites on depression via forward MR. The three paths represent these three di�erent assumptions. Relevance

assumption: SNPs are associated with metabolites (the exposure). Independence assumption: SNPs are completely independent of any potential

confounding factors that influence metabolites and depression. Exclusivity assumption: SNPs a�ect metabolites only through metabolites (exposure)

and not via any alternative causal pathways.

FIGURE 2

Three significant assumptions of depression on metabolites via reverse MR. The three paths represent these three di�erent assumptions. Relevance

assumption: SNPs are associated with depression (the exposure). Independence assumption: SNPs are completely independent of any potential

confounding factors that influence depression and metabolites. Exclusivity assumption: SNPs a�ect metabolites only through depression (exposure)

and not via any alternative causal pathways.

5 × 10−8, genome-wide statistical significance was determined

(Howard et al., 2018).

2.3. Statistical analysis

Using the package twosampleMR (Yuan et al., 2022) in R
software, all analyses were conducted. According to the P-value

of 5 × 10−8, the SNPs (IVs) in the GWAS were identified. In
addition, based on a correlation index R2 ≤ 0.001 and 10,000

kilobases apart for distance cutoff, these SNPs were uncorrelated

(if there are fewer than two SNPs, then adjust the P-value of 5

× 10−6 (Wang et al., 2020) and correlation index R2 ≤ 0.01 and

5,000 kilobases apart for distance cutoff). On the basis of the GWAS

summary statistics, the effect estimates and corresponding standard

errors (SE) of these SNPs of circulating metabolites and depression

were acquired. The data for exposure (circulating metabolites) and

outcome (depression) were harmonized, and palindromic SNPs

were removed (Chen L. et al., 2022). Using simex package in R

software and the formula F = total R2 × (N – 1 – K) / [(1

– total R2) × K], where K represents the amount of IVs, N

represents the sample size, total R2 represents the proportion of

variance in the exposure explained by the genetic variants, and

by calculating the F-statistic, the strength of IVs was assessed. No

significantly weak instrumental bias (Li et al., 2022) was observed

when the F-statistic was >10. The inverse-variance weighted

(IVW) model was applied as the major statistical method (Chen

L. et al., 2022). Using sensitivity analyses, such as the weighted

median, MR-Egger (Wang et al., 2022), andMR-pleiotropy residual

sum and outlier (MR-PRESSO) (Verbanck et al., 2018; Yang

et al., 2020), the possible pleiotropy was examined. The weighted

median method assumes that more than 50% of the weight

comes from SNPs and provides a consistent estimate of causal

effects. Using the formula β = ln (OR), the estimated combined

effect β was converted into odds ratio (OR). The effect size and

corresponding SE for each circulating metabolite (depression) were

calculated through MR analysis. The results were presented as
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TABLE 1 Features of the included study population.

Exposure Methods Number of SNPs OR
(95% CI)

Beta (SE) P-value Fdr Pleiotropy Heterogeneity

P-value I2 (%) P-value

22:6, docosahexaenoic acid IVW 6 0.996 (0.982–1.010) −0.004(0.007) 0.577 0.232 0.862 38.324 0.150

3-hydroxybutyrate IVW 9 1.008 (0.989–1.028) 0.008(0.010) 0.400 0.197 0.816 45.775 0.064

Acetate IVW 13 1.013 (0.995–1.031) 0.013(0.009) 0.159 0.114 0.739 52.699 0.013

Acetoacetate IVW 12 1.021 (1.009–1.034) 0.021(0.006) 0.001 0.011 0.901 0.000 0.871

Alanine IVW 6 1.013 (0.998–1.028) 0.013(0.007) 0.079 0.086 0.930 19.326 0.287

Apolipoprotein A-I IVW 10 0.990 (0.981–0.999) −0.010(0.005) 0.036 0.069 0.666 34.134 0.135

Apolipoprotein B IVW 16 0.999 (0.993–1.006) −0.001(0.003) 0.834 0.283 0.071 15.222 0.279

Citrate IVW 5 0.997 (0.977–1.017) −0.003(0.010) 0.767 0.266 0.896 55.540 0.061

Creatinine IVW 6 1.000 (0.984–1.016) 0.00007(0.008) 0.993 0.319 0.997 14.615 0.321

Free cholesterol IVW 11 0.995 (0.989–1.001) −0.005(0.003) 0.095 0.090 0.347 0.000 0.923

Glutamine IVW 5 0.985 (0.972–0.997) −0.016(0.007) 0.019 0.061 0.626 26.614 0.244

Glycerol IVW 15 1.003 (0.994–1.011) 0.003(0.004) 0.537 0.226 0.367 0.000 0.972

Glycoprotein acetyls IVW 7 1.007 (0.995–1.020) 0.007(0.006) 0.248 0.152 0.706 22.283 0.259

Glycoproteins IVW 10 1.005 (1.000–1.009) 0.005(0.002) 0.038 0.070 0.511 0.000 0.944

Histidine IVW 5 0.992 (0.971–1.015) −0.008(0.011) 0.501 0.219 0.545 56.649 0.056

Isoleucine IVW 14 1.013 (1.002–1.024) 0.0132(0.005) 0.016 0.058 0.454 0.000 0.697

Lactate IVW 12 1.011 (0.998–1.023) 0.011(0.006) 0.096 0.090 0.820 0.967 0.434

Leucine IVW 3 1.005 (0.988–1.021) 0.005(0.008) 0.574 0.232 0.410 0.000 0.411

Linoleic acid IVW 14 1.002 (0.995–1.008) 0.002(0.003) 0.621 0.239 0.577 17.890 0.258

Omega-3 fatty acids IVW 6 0.997 (0.983–1.011) −0.003(0.007) 0.674 0.246 0.675 47.792 0.088

Omega-6 fatty acids IVW 12 0.995 (0.988–1.002) −0.005(0.005) 0.167 0.117 0.541 0.000 0.702

Phenylalanine IVW 3 0.994 (0.960–1.029) −0.006(0.018) 0.727 0.256 0.946 74.658 0.019

Phosphatidylcholine and
other cholines

IVW 6 0.995 (0.987–1.004) −0.005(0.004) 0.266 0.158 0.339 0.000 0.674

Total lipids in small LDL IVW 19 0.997 (0.992–1.003) −0.003(0.003) 0.314 0.174 0.123 0.000 0.526

Pyruvate IVW 19 1.009 (0.999–1.019) 0.009(0.005) 0.081 0.086 0.337 40.173 0.037

Serum total cholesterol IVW 20 0.996 (0.990–1.002) −0.004(0.003) 0.154 0.113 0.520 0.000 0.822

Serum total triglycerides IVW 12 1.008 (0.998–1.019) 0.008(0.005) 0.107 0.092 0.505 46.574 0.038

(Continued)
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OR and 95% confidence interval (CI). Thereafter, a scatter plot was

created to visually examine the potential pleiotropy by showing

the causal effects of each SNP of metabolite on depression. With

Cochran’s Q statistics, the heterogeneity of analysis results was

examined, and there was significant heterogeneity in SNP effect

estimation when P < 0.1 (Chen M. et al., 2022). Using the

“leave-one-out” method, sensitivity analysis was conducted in our

study. In other words, after establishing the causal relationship,

no heterogeneity or pleiotropy appeared during analysis, and each

relevant SNP was deleted one by one. In assessing the impact of

each SNP, the aggregate effect of the remaining SNPs was calculated

(Wang et al., 2022).

3. Results

3.1. Instrumental variables for circulating
metabolites on depression

Based on the selection criteria of IVs, a total of 330 SNPs

and 13 SNPs were used as IVs for 35 circulating metabolites and

depression, respectively. The SNP characteristics and F-statistic

for each circulating metabolite and depression are shown in

Supplementary Tables 1, 2. The strength of each circulating

metabolite has an F-statistic value between 22.33 and 250.28, and

the F-statistic value for depression is 38.63, eliminating the bias of

weak IVs.

3.2. Causal e�ect of circulating metabolites
on depression

The MR estimates of circulating metabolites on depression

are shown in Table 1, Figures 3, 4. Among these 35 metabolites,

seven metabolites with significant properties were screened using

IVW or weighted median. The result showed that glutamine (OR

0.985, 95% CI 0.972–0.997; P-value = 0.019) and apolipoprotein

A-I (OR 0.990, 95% CI 0.981–0.999; P-value = 0.036) were

negatively associated with depression, indicating a protective

effect on depression. Acetoacetate (OR 1.022, 95% CI 1.009–

1.034; P-value = 0.0008), isoleucine (OR 1.013, 95 % CI

1.003–1.024; P-value = 0.016), glucose (OR 1.019, 95% CI

1.001–1.036; P-value = 0.034), glycoproteins (OR 1.005, 95%

CI 1.000–1.009; P-value = 0.038), and urea (OR 1.020, 95%

CI 1.000–1.039; P-value = 0.044) were positively associated

with depression. The causal effects of each genetic variation

of each circulating metabolite on depression are shown in

Supplementary Figure 1.

3.3. Evaluation of assumptions and
sensitivity analyses

Horizontal pleiotropy was not observed in the intercept of

MR Egger regression (acetoacetate, P = 0.901; apolipoprotein

A-I, P = 0.666; glucose, P = 0.372; glutamine, P = 0.626;

glycoproteins, P = 0.511; isoleucine, P = 0.454; urea, P = 0.318),
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FIGURE 3

E�ect size of each metabolite on depression. There is a protective causal e�ect when the OR value is <1, whereas a causal pathogenic impact

appears when the value is >1. Through the IVW and weighted median analysis, the results were generated.

FIGURE 4

Scatter plots of each metabolite associated with depression. (A), Acetoacetate; (B), Apolipoprotein A-I; (C), Glucose; (D), Glutamine; (E),

Glycoproteins; (F), Isoleucine; (G), Urea.

which further showed that the causal effect was not biased by

pleiotropy. In addition, no heterogeneity was observed in our

study (acetoacetate, P = 0.871, I2 = 0.000%; apolipoprotein A-I,

P = 0.135, I2 = 34.134%; glucose, P = 0.240, I2 = 29.955%;

glutamine, P = 0.244, I2 = 26.614 %; glycoproteins, P = 0.944,

I2 = 0.000%; isoleucine, P = 0.697, I2 = 0.000%; urea, P = 0.175,

I2 = 30.467%; Table 1).

Through leave-one-out analysis, each SNP effect on the overall

causal estimate was verified. After removing each SNP, MR

analysis was systematically performed again on the remaining

SNPs (Figure 5). The results remained consistent, indicating a

significant causal relationship among the calculated results of

all SNPs. In addition, no dominant SNPs were observed in

circulating metabolite levels, and the previous MR results were

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1146613
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dong et al. 10.3389/fnins.2023.1146613

valid. Moreover, except for glucose and glutamine, funnel plots of

the remaining circulating metabolites showed roughly symmetrical

causal effects (Supplementary Figure 2).

3.4. Causal e�ect of depression on
circulating metabolites

Reverse MR analyses were performed, and the results indicated

that depression had no causal effect on acetoacetate (OR = 1.178,

95%CI= 0.534–2.599, P= 0.685), apolipoprotein A-I (OR= 0.800,

95% CI = 0.358–1.782, P = 0.585), glucose (OR = 1.028, 95%

CI = 0.497–2.127, P = 0.940), glutamine (OR = 0.569, 95%

CI = 0.276–1.170, P = 0.125), glycoproteins (OR = 1.982, 95%

CI = 0.873–4.501, P = 0.102), isoleucine (OR = 1.614, 95%

CI = 0.791–3.293, P = 0.188), and urea (OR = 1.349, 95%

CI = 0.545–3.338, P = 0.518). An MR–Egger intercept was

performed, and the test showed no horizontal pleiotropy (P >

0.05). Furthermore, Cochran’s Q statistics showed no heterogeneity

(P > 0.05), as shown in Table 2.

4. Discussion

The pathological process of diseases could be revealed by

conducting quantitative analysis of all metabolites in organisms,

analyzing and comparing small-molecule metabolites in vivo under

different pathophysiological states, comprehensively monitoring

multiple metabolic pathways related to diseases, and then searching

for valuable biomarkers. The in-depth study of metabolite-

level biomarkers in patients with depression can elucidate the

pathogenesis of depression and propose effective treatment plans.

However, observational studies are widely used to investigate

the relationship between phenotypes and disease, but they

cannot be used to study exposure to causation (Kou et al.,

2020). Based on extensive GWAS data on circulated metabolites

(exposure) and depression (outcomes), this study is the first

to conduct a two-sample bidirectional MR analysis as well as

explore and elucidate the causal relationship between circulating

metabolites and depression. Our research found that glutamine

and apolipoprotein A-I were negatively associated with depression,

which indicated that glutamine and apolipoprotein A-I had a

protective effect against depression. In addition, a possible positive

association of acetoacetate, isoleucine, glucose, glycoproteins, and

urea with depression was found, which indicated that these five

metabolites were risk factors for depression. Using MR-PRESSO

and leave-one-out analysis, our results were examined and showed

consistent findings.

Compared with previous studies, this study found that

docosahexaenoic acid (22:6) (Hoge et al., 2019), omega-3 fatty acids

(Hoge et al., 2019; De Sousa and dos Santos, 2022), omega-6 fatty

acids (De Sousa and dos Santos, 2022), tyrosine (Islam et al., 2020),

phenylalanine (Islam et al., 2020), valine (Baranyi et al., 2016),

leucine (Whipp et al., 2022), linoleic acid (Li D. et al., 2020), 3-

hydroxybutyrate (Saito et al., 2021) and acetate (Huang et al., 2021)

were not associated with depression probably because the research

level is different. Previous research conducted detection based on

physiological indicators of the body, but this study uses SNPs as T
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FIGURE 5

Leave-one-out plot to visualize the causal e�ect of each metabolite associated with depression when leaving one SNP out. (A), Acetoacetate; (B),

Apolipoprotein A-I; (C), Glucose; (D), Glutamine; (E), Glycoproteins; (F), Isoleucine; (G), Urea.

an IV, thereby reducing the interference of potential influencing

factors, such as instruments, equipment, operation, sampling, and

other factors.

An unbiased detection of the causal effects of circulating

metabolites on depression was provided on the basis of our

MR study. Using genetic variants as IVs, seven metabolites

associated with depression risk were observed, including

acetoacetate (P = 0.000853), isoleucine (P = 0.015693), glutamine

(P = 0.018849), glucose (P = 0.033466), apolipoprotein A-I

(P = 0.035992), glycoproteins (P = 0.037874), and urea

(P = 0.043872). As we have seen, this is the first MR research

that combined metabolomics with genomics to evaluate the causal

effects of circulating metabolites on depression. Novel insight to

uncover the functions of genetic-environmental interactions in the

occurrence and development of human diseases was proposed in

our study.

At present, the effect of acetoacetate on depression still needs

further research. The research of Hou, LJ et al. suggested that

acetoacetate was identified as a potential biomarker for diagnosing

depression in HBV-infected patients (Hou et al., 2015). In addition,

acetoacetate was associated with depressive behavior induced by

CUMS (Wu et al., 2015). The results indicated that adjusting

the level of acetoacetate in patients with depression might be an

effective method for treating depression. Research showed that

acetoacetate in the hippocampus could be significantly increased

by the intraventricular application of acetoacetate, and then the

hippocampus neural inflammationwas inhibited, and neurotrophic

factors were promoted. Apart from acting as an energy substrate,

acetoacetate can also protect neurons by promoting BDNF

expression and inhibiting hippocampal nerve inflammation

(Wu et al., 2022). Miyamoto et al. found that acetoacetate is also a

ligand for GPR43 (Miyamoto et al., 2019), and acetoacetate-GPR43

coupling can inhibit pERK and its two substrates, namely, IL-6 and

TNF-α (Wu et al., 2022). Massieu et al. demonstrated that in in

vivo and in vitro experiments, acetoacetate protected hippocampal

neurons from the neurotoxicity of glutamate after the application

of glycolysis inhibitors (Massieu et al., 2003).

Isoleucine plays various physiological functions as a branched

amino acid (Zhang et al., 2017). Koochakpoor et al. observed

an inverse relationship between isoleucine intake and risk for

depression (Koochakpoor et al., 2021). In addition, a decrease in

the sum of isoleucine was observed in depression patients induced

by interferon-α (Baranyi et al., 2013). Furthermore, another study

found lower isoleucine levels in depression (Baranyi et al., 2016).

However, excessive consumption of isoleucine can cause side effects

such as diarrhea and mental disorders. A diet containing excessive

leucine can also increase the amount of ammonia in the body

and damage the liver and kidney functions. Our study shows that

isoleucine is a risk factor for depression, and the risk of depression

increases with isoleucine exposure. Therefore, in the daily diet,

attention should be paid to isoleucine intake.

Glutamine is not an essential amino acid, but it is considered

a conditionally essential amino acid, particularly under catabolic

stress. Glutamine metabolism affects the process of depression (Liu

et al., 2021). As an amino acid analog, glutamine can protect

and repair gastrointestinal mucosa as well as improve the brain

function of children with intellectual disabilities and patients with

alcoholism, mental disorders, and epilepsy. Our study indicated

that glutamine had also a protective effect on depression (OR

0.9845, 95% CI 0.9718–0.9974; P-value = 0.0188), which was
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consistent with previous studies (Özkan et al., 2021). Glutamine is

catalyzed by glutaminase in neurons to synthesize glutamate, which

is then released into synaptic gaps to exert biological effects. Under

the action of glutamate transporters, the released glutamate is taken

up by the surrounding astrocytes, re-metabolized to glutamine, and

subsequently transported to the presynaptic neurons for conversion

to glutamate. In addition, glutamic acid can be metabolized

to gamma-aminobutyric acid by glutamic acid decarboxylase.

Therefore, the glutamine–glutamine–gamma–aminobutyric acid

cycle plays a role in glial cell communication during excitatory

and inhibitory neurotransmission. Many studies have shown that

abnormal glutamine–glutamine circulation plays an important

function in the development of depression (Chen et al., 2019). The

glutamate–glutamine cycle is formed by the mutual conversion of

glutamate and glutamine under physiological conditions, which

involves a variety of receptors and transporters, and it is a

potential target for the development of novel antidepressant drugs

(Chen et al., 2019). Furthermore, glutamine has a good effect on

balancing the intestinal microbiomes. It increases the expression

of tight junction protein and the integrity of the intestinal

lining as well as minimizes the inflammatory response in the

presence of intestinal mucosal irritation. The intestinal function

is regulated by the tenth cranial nerve or the vagus nerve, which

directly affects neurotransmitter balance. Depression is associated

with suboptimal microbiomes, unhealthy intestinal permeability,

and inflammation. an inflamed gut has a direct influence on

neurotransmitter balance and brain health. Glutamine reduces

depression by maintaining intestinal health, protecting the enteric

nervous system, protecting the intestinal lining from damage, and

suppressing chronic inflammation (Deters and Saleem, 2021).

The most direct energy source of human life activity Is

glucose. Autopsy studies have found that the mitochondrial

separation of hexokinase 1 in the cerebral parietal cortex tissue

of patients with depression is significantly increased, leading to

brain tissue cell swelling and toxicity (Regenold et al., 2012).

Therefore, abnormal glucose metabolism is observed in patients

with depression. Further research shows that suicide attempts in

men and women were significantly related to the body’s blood

sugar levels (Dong et al., 2021), which is consistent with the results

of this research. At present, the association between depression

and glucose metabolism disorder has been widely studied and

recognized, but whether the two diseases co-occur or which disease

is the cause of the other remains unclear (Réus et al., 2017). Our

study found that glucose is positively associated with depression,

a risk factor for depression, and reverse MR analysis showed no

significant correlation between depression and glucose levels.

As the main apolipoprotein of HDL cholesterol, apolipoprotein

A-I has an important function in the reversal of cholesterol

transport and phospholipid and lipoprotein metabolism (Wang

and Rader, 2007). Given its small molecular size, apolipoprotein

A-I can cross the blood–brain barrier, and it is considered a

major component of HDL (Lee et al., 2021). This study found

that apolipoprotein A-I is negatively correlated with depression,

which is a protective factor for depression, and it could be a

promising target for depression treatment Therefore, future studies

can strengthen the research on the role of apolipoprotein A-I

in depression.

As an end product of protein metabolism, the toxicity of

urea has long been considered negligible. A meta-analysis of the

association between depression and chronic kidney disease (CKD)

has shown that depression is due to damage to themedial prefrontal

cortex as found in the mice model of CKD and a cohort of CKD

patients. In the mammalian kidneys, urea plays an important role

in water conservation and urine concentration, and it is also the

end product of protein metabolism. Bypassing psychosocial stress,

the buildup of urea in the brain serves as an independent factor

that causes depression (Wang et al., 2019). Expanded cohort studies

have shown that urea is associated with depression. Urea can cause

depression, interrupt long-term potentiation, and induce synaptic

loss in mice models. Inhibition of the mTORC1-S6K pathway is

necessary for the action of urea, and cyanate, as a hydrolyzed

product of urea, is also involved in this pathophysiological process.

The results suggest that the accumulation of urea in the brain is

an independent contributor to depression. Carbamylated mTOR

with urea or cyanate inhibits Mtorc1-S6K-dependent dendrite

protein synthesis, causing damage to mPFC synaptic plasticity and

depressive behavior (Wang et al., 2019). Urea accumulation in

the hippocampus induced by the loss of the urea transporter also

causes depression-like behavior (Li et al., 2012). Furthermore, the

increase of urea concentration in the body can activate NF-κ and

AMPK-related signaling pathways and then induce inflammation

in human microvascular endothelial cells. The expression of NOS

in endothelial cells is also affected by the stimulation of high-

urea concentration, which leads to the change of NO content

in cells, thereby affecting the function of endothelial cells. This

study found that urea is positively correlated with depression.

Thus, it is considered a risk factor for depression. Therefore,

urea accumulation in the brain should be prevented to prevent

and treat depression, promote the timely discharge of urea, and

avoid the occurrence of urea metabolism disorders. In addition,

the glycoprotein is a risk factor for depression, but few studies

have been conducted on glycoprotein in depression. Future studies

on the function and mechanism of glycoprotein in depression

should be strengthened, which may be a potential target for anti-

depression.

The cohorts in genome-wide studies of circulating metabolites

included 37–64% of women in the sample demographics, and

genome-wide studies of depression phenotypes included 53–

56% of women in the sample population, which indicated that

women are evenly represented. Thus, our findings are also

applicable to women with depression. This study also has several

limitations. First, important covariates such as diet, drug use,

and environmental impact could not be adjusted although the

use of MR-excluded confounding factors increased the accuracy

and reliability of the study as well as yielded interesting results.

Second, the two GWASs adopted the meta-analytic method by

pooling data from several cohorts. This approach performs well in

obtaining genetic characteristics of the general population, but it

may lead to the deviation of sample overlap. Third, MR analyses

typically reveal lifetime exposure, thus a further study should

be carried out in randomized controlled trials on the effects of

exposure. Finally, participants involved in the two GWASs were

primarily of European descent; thus, our results may be applicable

to populations of European descent. It should be cautious to
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generalize the findings to other ethnic groups, and further research

is needed.

Collectively, our MR study suggests a protective causal effect of

glutamine and apolipoprotein A-I on depression. In addition, our

study found that acetoacetate, isoleucine, glucose, glycoproteins,

and urea are risk factors for depression. Reverse MR analysis

showed that depression had no effect on these seven metabolites.

Compared with previous studies, this study found no significant

causal relationship between alanine, histidine, tyrosine, creatinine,

etc., and depression, and these findings are worthy of an in-

depth study.
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