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Objective: Neurological outcome prediction in patients with ischemic stroke is

very critical in treatment strategy and post-stroke management. Machine learning

techniques with high accuracy are increasingly being developed in the medical

field. We studied the application of machine learning models to predict long-term

neurological outcomes in patients with after intravenous thrombolysis.

Methods: A retrospective cohort study was performed to review all stroke patients

with intravenous thrombolysis. Patients with modified Rankin Score (mRs) less

than two at three months post-thrombolysis were considered as good outcome.

The clinical features between stroke patients with good and with poor outcomes

were compared using three different machine learning models (Random Forest,

Support Vector Machine and Logistic Regression) to identify which performed

best. Two datasets from the other stroke center were included accordingly for

external verification and performed with explainable AI models.

Results: Of the 488 patients enrolled in this study, and 374 (76.6%) patients had

favorable outcomes. Patients with higher mRs at 3 months had increased systolic

pressure, blood glucose, cholesterol (TC), and 7-day National Institute of Health

Stroke Scale (NIHSS) score compared to those with lower mRs. The predictability

and the areas under the curves (AUC) for the random forest model was relatively

higher than support vector machine and LR models. These findings were further

validated in the external dataset and similar results were obtained. The explainable

AI model identified the risk factors as well.

Conclusion: Explainable AI model is able to identify NIHSS_Day7 is independently

efficient in predicting neurological outcomes in patients with ischemic stroke

after intravenous thrombolysis.
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Introduction

Stroke is one of the common neurological diseases, among
which ischemic stroke stays about 70–80% of adult stroke, and
its incidence rate is rising every year (Benjamin et al., 2019). The
average stroke incidence is 120–180/100,000/year, being greater for
men (Thayabaranathan et al., 2022). The traditional treatments
of ischemic stroke are mechanical thrombectomy and intravenous
thrombolysis (Berkowitz et al., 2014; Alet et al., 2020), while the
novel treatment strategy include cellular therapy and non-invasive
brain stimulation (Richards and Cramer, 2023). However, due
to the limited time window for the thrombolysis interventions,
generally within 4.5 h and extended 6 h (Qingke et al., 2021), the
early prediction of clinical outcomes in stroke patients is essential
in post-stroke management.

The prognostic prediction models have been established
thereafter (Jiang et al., 2021; Kerleroux et al., 2021). Although
object prediction systems, such as ASTRAL (Michel et al., 2010),
DRAGON (Wang et al., 2017), and THRIVE (Flint et al.,
2014), have been reported to assess the efficiency of intravenous
thrombolysis in ischemic stroke patients, most of these scales are
based on traditional algorithms with limited clinical features. With
recent developments in artificial intelligence, medical machine
learning has produced several exciting findings (Jamin et al., 2021;
Jayatilake and Ganegoda, 2021). Considering its extended impact
on ischemic stroke management, machine learning (ML) models
for outcome prediction in patients with intravenous thrombolysis
were developed based on the comparison of clinical data according
to the modified Rankin score (mRs) at 90 days after thrombolysis.
Although some ML studies have identified the risk and protective
factors in ischemic stroke (Livne et al., 2018; Heo et al., 2019;
Lee et al., 2020; Yang et al., 2020; Ramos et al., 2022), however,
the procedure of modeling is hard to be translated to the clinical
session. Therefore, in our study, the predictive p-value in each
model was further compared and validated in two external datasets.
The explainable AI model was added to identify the risk factors as
well.

Materials and methods

We enrolled 930 ischemic stroke patients with thrombolytic
therapy within 6 h of the stroke onset from July 2018 to June 2020
retrospectively in two stroke centers in the local hospital, whose age
ranged from 18 to 80 years and head computed tomography (CT)
scans showed no acute hemorrhage. Twelve patients with missing
clinical data were excluded. For stroke patients with an onset within
4.5 h, rtPA was directly delivered, and for patients whose onset
was 4.5–6 h, rtPA was not given until magnetic resonance imaging
(MRI) showing new infarction area. The comprehensive treatments
for these patients in two centers were consistent and based on both
European stroke organizations (ESO) guidelines on intravenous
thrombolysis (Berge et al., 2021) and Chinese guidelines.

The mRs system was used to evaluate the neurological outcome
at 3 months after the thrombolysis for these patients, and mRs < 2
was considered as a favorable neurological outcome, while mRs
2–6 was poor outcome. This study was approved by the Ethical
Board of Shanghai Pudong New Area People’s Hospital with a

waiver of informed consent due to the retrospective nature of
the study. Informed consent for intravenous thrombolysis was
obtained from all patients.

Machine learning algorithms

A total of 16 variables were included in the machine learning
models establishment, including patient basic characteristics,
time from onset to admission, history of previous diseases,
NIHSS_Baseline, and NIHSS_Day7 (Supplementary Table 1).
Hypertension, diabetes mellitus, and hyperlipidemia are all risk
factors for stroke. Patient data regarding systolic pressure; diastolic
pressure; and levels of blood glucose, triglyceride (TG), cholesterol
(TC), and low-density lipoprotein (LDL) were included.

Ten machine learning algorithms were used in this study. For
the random forest model, we calculated ROC curve with an AUC
and an AP p-value as a reference for the logistic regression, SVM,
RF and decisionTreeClassifier (DTC). Four ensemble learning
algorithms, one unsupervised K-nearest neighbor model and one
deep neural network model were applied. The predictive capability
of machine learning models with several variables (sex; age; first
onset of stroke; previous history of hypertension, diabetes, and
hyperlipidemia; baseline systolic pressure; diastolic pressure; levels
of blood glucose, TG, TC, and LDL; NIHSS score; for calculating
the prediction score was investigated. Among the patient samples,
70% (n = 341) were randomly chosen as the training group and the
remaining 30% (n = 147) were assigned to be the test group. We also
included two external validation datasets. The detailed information
of the validated sets were summarized in Supplementary Tables.

Results

A total of 488 stroke patients with intravenous thrombolysis
were included in this study. The mean age was 59.4 ± 6.2 years,
and 25.82% of the patients were female. The basic characteristics
between the stroke patients with high mRs and low mRs were
compared in Supplementary Table 1.

Patients with higher mRs at 3 months after stroke were found
to have greater systolic pressure (P = 0.034); levels of blood glucose
(P = 0.002), TC (P = 0.001), LDL (P = 0.007), NIHSS_Baseline
and NIHSS_Day7 (P < 0.001) compared to those with lower
mRs, regardless of previous history of diabetes or hyperlipidemia
(Supplementary Table 1).

Comparison of prediction models for
favorable outcomes

Favorable outcomes were found in 374 (76.6%) of the 488
patients. A total of 341 and 147 cases were separated into the
training and testing data, respectively, with 20 features. The ML
models were constructed based on the 10-fold cross validation. For
the RF model, the mean f1 score was 0.975 in the training set,
which was higher than the SVM method with 0.951 and higher
than the logistic regression model at 0.943 (Table 1). However,
for the DecisionTreeClassifier, it obtained a tree score of 0.83
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TABLE 1 Mean f1 scores in training in-house data.

Random forest mean 0.9749710144927537

SVM mean 0.951425892947632

Logistic regression mean 0.9427229437229437

TABLE 2 Mean f1 scores in testing in-house data.

RF Mean 0.824858757062147

SVM mean 0.6530612244897959

LR mean 0.7771428571428571

(Supplementary Figures 1A, B), which was much lower compared
to the RF, LR, and SVM models. The procedure for the decision
tree analysis is shown by Graphviz in Supplementary Figure 1C.
Consistently, in the testing dataset, the mean f1 score was 0.825 in
RF, 0.653 in SVM and 0.777 in LR model (Table 2).

Four ensemble learning algorithm (with cross-verification
network) was then applied and showed that the VotingClassifier,
stacking model, bagging model, and boosting model obtained
values of 0.891, 0.891, 0.884, and 0.871, respectively. An
unsupervised learning model was then applied to predict the
outcome as well. The decomposition with Kernel PCA was
clustered with K-means with two components, and a seaborn was
applied to draw the cluster map. Results showed that several clinical
features could be clustered together (Supplementary Figure 2).
The deep neural network model did not achieve higher accuracy
score with 0.900) compared to the other ML models. And,
the performance of the multiple-entry model had an accuracy
of 0.927 (95% CI, 0.910–0.941) with a p-value loss of 0.5594
(Supplementary Figure 3). Therefore, we chosed the RF, LR, and
SVM models with top three predictive score for further analysis.

Model optimization of superparameter
with grid research

We then assess the quality of each model, and showed
the accuracy score of the RF model was 0.909 (Table 3).
After adjusting the superparameter with grid research for RF
[n_estimators = (64,100,128,200,300), max_features = (2,3,5,7,9),
bootstrap = (True, False)], we chose the bootstrap, max_features = 5
and n_estimators = 200, then we increased the accuracy score
further at 0.915 (Table 4).

For the logistic model, when the superparameter was optically
set at C with 10 and penalty at 12 [penalty = (’7’,’9’,’11’,’12’,’14’),
C = (0.001, 0.01, 0.1, 1, 10, 100)], the accuracy score could be
increased to from 0.886 to 0.900 (Tables 5, 6).

For the SVM model [“C”: (0.1, 1, 10, 100, 1,000), “gamma”: (1,
0.1, 0.01, 0.001, 0.0001), “kernel”: (“rbf”)], after optimizing with
C = 10, gamma = 0.1 and kernel = rbf, the accuracy score from
0.851 to 0.889, respectively (Tables 7, 8).

After optimizing the models with best parameters, the
prediction ability of all models in the testing dataset has been
increased a little bit as well (Figure 1A). Then we showed the
confusion matrix in the testing dataset with three ML models
(Figure 1B). We further listed the feature importance of most

TABLE 3 Random forest model quality before optimization.

Precision Recall F1-score Support

0 0.97 0.91 0.94 261

1 0.76 0.90 0.82 81

Accuracy 0.91 342

Macro avg 0.86 0.91 0.88 342

Weighted avg 0.92 0.91 0.91 342

Accuracy score: 0.9093567251461988.

TABLE 4 Random forest model quality after optimization.

Precision Recall F1-score Support

0 0.96 0.93 0.94 261

1 0.79 0.88 0.83 81

Accuracy 0.92 342

Macro avg 0.87 0.90 0.89 342

Weighted avg 0.92 0.92 0.92 342

Accuracy score: 0.9153046783625731; F1 score: 0.8304093567251462.

TABLE 5 LR model quality before optimization.

Precision Recall F1-score Support

0 0.95 0.90 0.92 261

1 0.72 0.84 0.78 81

Accuracy 0.89 342

Macro avg 0.84 0.87 0.85 342

Weighted avg 0.89 0.89 0.89 342

Accuracy score: 0.8859649122807017.

TABLE 6 LR model quality after optimization.

Precision Recall F1-score Support

0 0.95 0.91 0.93 261

1 0.75 0.85 0.80 81

Accuracy 0.90 342

Macro avg 0.85 0.88 0.86 342

Weighted avg 0.90 0.90 0.90 342

Accuracy score: 0.8976608187134503; F1 score: 0.7976878612716762.

TABLE 7 SVM model quality before optimization.

Precision Recall F1-score Support

0 0.88 0.93 0.91 261

1 0.73 0.59 0.65 81

Accuracy 0.85 342

Macro avg 0.80 0.76 0.78 342

Weighted avg 0.84 0.85 0.85 342

Accuracy score: 0.8508771929824561.

important factors in the RF model, which indicated that both
NIHSS_Day 7 and NIHSS_Baseline were the most important
factors in predicting the neurological outcome (Figures 1C, D).
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TABLE 8 SVM model quality after optimization.

Precision Recall F1-score Support

0 0.94 0.91 0.93 261

1 0.74 0.83 0.78 81

Accuracy 0.89 342

Macro avg 0.84 0.87 0.85 342

Weighted avg 0.89 0.89 0.89 342

Accuracy score: 0.8888888888888888; F1 score: 0.7790697674418605.

Explainable AI models

Next, we applied the explainable AI model and showed the
SHAP p-value of each factor to see its impact in the RF model.
Again, we found NIHSS_Day7 has the most critical impact on
outcome compared to other factors (with a distinct SHAP p-value,
Figure 2A). Meanwhile, NIHSS_Basline, TC, LDL, and DM_p-
value were also risk factors with high SHAP feature p-value, which
indicated that higher NIHSS, high expression of TC, LDL, and
blood sugar level suggested the poor outcome (Figures 2B-F).

In addition, the LIME model also demonstrated one example
with lower NIHSS_Day7, lower NIHSS_Basline, lower age, DiaP
and DM-p-value had a higher probability of good outcome
(Figure 2G).

At last, the eli5 model listed the weight of each feature in the
RF model, and both NIHSS_Day7, NIHSS_Baseline and metabolic
parameters: TC, TG, DM_p-value have a high impact on the
outcome (Figures 3A, B).

External validation

To validate the predictive ability of these machine-learning
model in stroke after intravenous thrombolysis, the other external
datasets from the other hospital including 316 stroke patients
(control group) and 114 patients with wake-up stroke (WUS group)
were used for validation. All these stroke patients had intravenous
rt-PA as well. The demographic variables were compared between
the stroke patients with high mRs and low mRs is shown in the
Supplementary Tables 2, 3 for the two external datasets. Patients
with higher mRs at 3 months after stroke were found to have
greater levels of LDL, NIHSS_Baseline and NIHSS_Day7 compared
to those with lower mRs (BOLD with Blue color in Supplementary
Table 2) in External Data I, regardless of whether patients had
previous hyperlipidemia.

Favorable outcomes were observed in 231 (73.1%) of the 316
control patients (Supplementary Table 2). For the External I, the
predictive accuracy of the RF model was 100%. This is higher than
that of the SVM, which obtained a score of 92.3%, and LR score
at 88.5% (Figure 3C). The confusion matrix also showed that the
RF model performed best in the External I (Figure 3E). The risk
factor in External I group was baseline and NIHSS_Day7 score
(Supplementary Tables 4–6).

In addition, we did the correlational analysis between the risk
factors and found NIHSS_Day7 had the highest correlation with
mRs at 0.84 in External Data I (Supplementary Figures 4, 5).

In External data II group, we found the favorable outcomes
were observed in 76 (66.7%) of the 114 WUS patients
(Supplementary Table 3). The predictive power of the logistic
regression model was 89.5% (Figure 3D). This is equal to that of
the RF, which obtained a score of 89.5% as well, but lower than the
SVM score p-value (91.2%). The confusion matrix also indicated
that both RF and SVM performed well (Figure 3F). The risk factor
in External II group was NIHSS_Baseline and NIHSS_Day7 and
DM_p-value (Supplementary Tables 7–9).

Furthermore, we did the correlational analysis between the risk
factors and found NIHSS_Day7 had the highest correlation with
mRs at 0.96 in External Data II (Supplementary Figures 6, 7).

Comparison of the NIHSS parameters for
the prediction of outcomes

Of the 488 patients, 374 (76.6%) patients had favorable
outcomes. As NIHSS_Baseline, NIHSS_Day3, and NIHSS_Day7
were all correlated with the mRS score at 3 month, we further
compared the predicting ability among them and we found
NIHSS_Day7 has the highest AUC p-value (AUC = 0.953) to predict
the mRS p-value, followed by NIHSS_ Day3 (AUC = 0.930) and
NIHSS_Baseline (AUC = 0.687). The similar results were found in
the external verification groups (Supplementary Figures 8A–C).
Meanwhile, when we combined all NIHSS_Baseline, NIHSS_Day3,
and NIHSS_Day7, we found that the AUC p-value in three groups
were all more than 0.9, which indicated a strong prediction ability
(Supplementary Figures 8D–F).

Discussion

This study identified the benefit of explainable machine
learning models for accurately predicting neurological outcomes
in acute stroke patients treated with intravenous thrombolysis
and further validated with external datasets. Machine learning
modules have been reported to predict long-term outcomes in
stroke patients, and deep neural networks can improve the long-
term outcome prediction in patients with ischemic stroke (Heo
et al., 2019). Heo et al. (2019) have demonstrated 78% of stroke
patients had favorable outcomes and the deep neural network can
improve the prediction of long-term outcomes in ischemic stroke
patients (0.888 vs. 0.839 from ASTRAL score). In our studies, we
had 16 inputs and the accuracy of RF model reached 90.9% as
well. Among 10 ML models. We chose three for further analysis
with the top three accuracy: RF, LR, and SVM compared to DTC,
KNN, DNN, and four ensemble learning models. For simplicity,
only a few significant variables with their coefficients roughly
calculated were analyzed in the traditional machine learning model
like logistic regression. From the respect of this, it can be concluded
that prediction accuracy of the RF is better than traditional machine
learning models, such as LR Model (accuracy at 89.8% in the
testing dataset and 94.3% in the training dataset) (Yoshimura
et al., 2018). Nevertheless, some factors may influence clinical
outcomes of stroke and might have an effect on prediction as well,
which is reflected from our results and external verifications. We
therefore improved the accuracy and f1 score of these three models
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FIGURE 1

The model quality comparison among three ML models. (A) The F1 score and accuracy score in three models in the testing dataset. (B) The
confusion matrix for three ML models in the testing dataset. (C) The bar plot shows the feature importance in random forest model. (D) The bar
quantification for the feature importance in random forest model.

FIGURE 2

The explainable AI model in the outcome prediction in IS. (A) The SHAP p-value of each factor to differentiate the outcome in IS. (B–F) The scatter
plot between each specific factor and its SHAP p-value. (G) One example of patient shows lower NIHSS_Day 7, lower NIHSS_Basline, lower age,
DiaP and DM-p-value had a higher probability of good outcome with LIME model.

after optimization with super parameters. However, the theoretical
background underlying improved performance is unknown.

Therefore, the explainable AI model such as: SHAP model,
LIME model and eli5 model were applied to translate the AI into
clinical session. From the SHAP model, we found NIHSS_Day7
has the most critical impact on outcome compared to other
factors; meanwhile, NIHSS_Basline, TC, LDL and DM_p-value
were also risk factors with high SHAP feature p-value, which
indicated that higher NIHSS, high expression of TC, LDL, and
blood sugar level suggested the poor outcome. Most importantly,
we found NIHSS_Day7 is also an independent risk factor for
mRs at 3 months (with the highest correlational co-efficiency,
Supplementary Figure 5), which is quite consistent with a current

study published in Stroke (Mistry et al., 2021). Mistry et al. (2021)
reported that 24 h NIHSS was the strongest predictor of 90-day mRs
outcomes for stroke patients with endovascular therapy. However,
AUC p-value for 24-h NIHSS to predict the outcome in their study
is 0.855, which is less than our prediction accuracy in both RF
model (0.909) and LR model (0.898). Even so, the feasibility of
applying acute or subacute NIHSS for outcome prediction with
machine learning models in stroke patients needs to be verified in
future studies with larger populations in multi-centers.

A recent study by Monteiro et al. (2018) focused on the baseline
NIHSS score, glucose level, systolic and diastolic blood pressure,
age, and NIHSS score (7 days) to predict the neurological outcome
in stroke patients and found that the AUC of predicting models
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FIGURE 3

The external validation of the optimized three ML models. (A,B) The eli5 model shows the weight of each feature in the RF model. (C) The model
quality comparison in the external dataset I. (D) The model quality comparison in the external dataset II. (E) The confusion matrix for three models in
the external dataset I. (F) The confusion matrix for three models in the external dataset II.

increased with more clinical features. Most clinical features were
similar to those observed in this study, which indicated that the
machine learning-based prediction is largely dependent on the
number of features, however, Monteiro et al. (2018) did not include
plasma lipids in stroke patients. As regulating hyperlipidemia is a
Class IIB evidence in stroke management (Winstein et al., 2016), it
is critical to include lipid markers in the prediction model.

There are some limitations to be addressed in this study. First,
this was a two-center project with external validation from other
groups, as the variables used as inputs to the machine learning
algorithms were mostly different in most cases and different
centers. It would be hard to do an horizontal comparison directly.
However, compared to previous studies, the ASTRAL score was

0.839 (Michel et al., 2010), which is smaller compared to ours;
this prediction ability might be influenced slightly according to
the variables and be adjusted considering their availability when
incorporating data from baselines. Second, the 16 clinical features
were selected according to the shared terms in both centers.
It would be ideal to add more clinical characteristics in future
studies, such as brain radiomics, routine blood tests: such as
white blood cells counts, neutrophils counts and lymphocytes.
However, our model did not seem to provide the reference p-value
form thrombolysis time window. Future studies are required
to increase the clinical feature including time from stroke to
thrombolysis (DNT) and Onset to therapy (OTT); Last but not
least, all NIHSS_Baseline, NIHSS_Day3, and NIHSS_Day7 were
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able to predict the mRS scores at 3 months post-onset, and the
NIHSS_Day7 holds the strongest prediction ability among them.
Considering that machine learning models can be self-taught
with additional data, the aforementioned results are subject to be
improved and are promising.

Conclusion

This study demonstrated absolute NIHSS_Day7, as a
continuous variable, is an independent prediction factor
for 90-day functional outcomes and machine learning
algorithms, with explainable AI models can improve the
neurological outcome prediction for ischemic stroke patients after
intravenous thrombolysis, which provides potential targets for
clinical intervention.
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