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Data harmonization is a key step widely used in multisite neuroimaging studies to 
remove inter-site heterogeneity of data distribution. However, data harmonization 
may even introduce additional inter-site differences in neuroimaging data if 
outliers are present in the data of one or more sites. It remains unclear how the 
presence of outliers could affect the effectiveness of data harmonization and 
consequently the results of analyses using harmonized data. To address this 
question, we generated a normal simulation dataset without outliers and a series 
of simulation datasets with outliers of varying properties (e.g., outlier location, 
outlier quantity, and outlier score) based on a real large-sample neuroimaging 
dataset. We first verified the effectiveness of the most commonly used ComBat 
harmonization method in the removal of inter-site heterogeneity using the normal 
simulation data, and then characterized the effects of outliers on the effectiveness 
of ComBat harmonization and on the results of association analyses between 
brain imaging-derived phenotypes and a simulated behavioral variable using the 
simulation datasets with outliers. We found that, although ComBat harmonization 
effectively removed the inter-site heterogeneity in multisite data and consequently 
improved the detection of the true brain-behavior relationships, the presence 
of outliers could damage severely the effectiveness of ComBat harmonization 
in the removal of data heterogeneity or even introduce extra heterogeneity in 
the data. Moreover, we  found that the effects of outliers on the improvement 
of the detection of brain-behavior associations by ComBat harmonization were 
dependent on how such associations were assessed (i.e., by Pearson correlation 
or Spearman correlation), and on the outlier location, quantity, and outlier score. 
These findings help us better understand the influences of outliers on data 
harmonization and highlight the importance of detecting and removing outliers 
prior to data harmonization in multisite neuroimaging studies.
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1. Introduction

With the rapid development of neuroimaging techniques and 
information technology, the utilization of big data is becoming a trend 
in neuroimaging studies in recent years for several reasons (Poline 
et al., 2012). First, large sample sizes provide higher statistical power 
and are more likely to produce reliable results. Second, large sample 
sizes are more representative of populations and thus the results are 
more generalizable and have more significant implications in real life 
(Zuo et al., 2014; Marek et al., 2022). Third, a sample size of several 
thousands or even tens of thousands is often mandatory in some 
newly emerging research fields to address important questions 
concerning small effects, such as genome-wide association studies 
(GWAS) or exposome-wide association studies (EWAS) of imaging-
derived phenotypes (IDPs; Stein et  al., 2012; Hibar et  al., 2015; 
Mulugeta et al., 2022), or studies of rare diseases (Patrick et al., 2022), 
developmental population neuroscience (Zuo et  al., 2018), and 
statistical connectomics (Chung et al., 2021).

Using data from multiple sites is often inevitable to form a large 
sample size for neuroimaging studies. For example, almost all 
currently existing big neuroimaging datasets, including Adolescent 
Brain Cognitive Development (ABCD; Casey et al., 2018), Enhancing 
NeuroImaging Genetics Through Meta-Analysis (ENIGMA; Stein 
et al., 2012), Imaging Genetics (IMAGEN; Schumann et al., 2010), UK 
Biobank (UKBB; Littlejohns et  al., 2020), Alzheimer’s Disease 
Neuroimaging Initiative (ADNI; Mueller et al., 2005), and Chinese 
Imaging Genetics (CHIMGEN; Xu et  al., 2020), are composed of 
cohorts from multiple sites.

However, due to the differences in scanning equipment and 
techniques, multisite datasets often present differences in the 
distribution of data collected from different sites, also known as site 
effect or inter-site heterogeneity of data. The problem of inter-site 
heterogeneity in multisite studies needs to be attended to carefully as 
it is an important confounding factor for statistical analyses and will 
lead to unreliable results if mishandled or disregarded (Takao et al., 
2011; Zhu et  al., 2011; Shinohara et  al., 2017). Several data 
harmonization methods have been proposed to correct the inter-site 
heterogeneity, such as ComBat (Fortin et al., 2017), LICA (Groves 
et al., 2011), RAVEL (Fortin et al., 2016), RISH (Mirzaalian et al., 
2018), and Neuroharmony (Garcia-Dias et al., 2020). Among these 
methods, ComBat (combating batch effects) has the advantages of 
estimating both additive and multiplicative site effects and is capable 
of preserving biological variances of interests while removing inter-
site heterogeneity, and thus is the most commonly used method in the 
field of neuroimaging, including the harmonization of structural MRI 
data, functional MRI data, and diffusion tensor imaging (DTI) data 
(Fortin et al., 2017, 2018; Yu et al., 2018).

Another important issue in multisite neuroimaging data with 
large sample sizes is the prevalence of outliers, defined as observations 
that dramatically deviate from the majority of the data (Tan et al., 
2006). There are mainly two sources of outliers in neuroimaging data. 
The first is imaging artifacts or noises, such as magnetic field 
inhomogeneity or head movements during scanning, resulting in 
inaccurate morphometric measures of the brain and consequently 
outliers (Van Dijk et  al., 2012; Reuter et  al., 2015). Second, some 
outliers may represent genuine abnormalities of the brain due to 
diseases; for example, a very small volume of the limbic regions may 
signal a risk of Alzheimer’s disease (Wang et al., 2015). Regardless of 

the sources, these outliers could impose detrimental effects on the 
results of statistical analyses and should be handled with care during 
data analyses.

The issue caused by the presence of outliers in data analyses becomes 
more complicated in multisite neuroimaging studies due to the inter-site 
heterogeneity in the data. It is likely that outliers may also bias the results 
of data harmonization for the removal of inter-site heterogeneity and 
even exacerbate the heterogeneity of multisite data, thus leading to 
unexpectedly erroneous results. Therefore, outlier removal has been 
considered as a regular step of the standard workflow of data 
harmonization. Nonetheless, it is worth noting that ComBat has been 
suggested to be  more robust to outliers even in small sample sizes 
compared with other data harmonization methods such as singular-
value decomposition (Alter et  al., 2000), distance weighted 
discrimination (Benito et al., 2004), and location and scale model (Li 
and Wong, 2003). So far, there has not been any systematic investigation 
of whether and how the presence of outliers would affect the effectiveness 
of ComBat harmonization in multisite neuroimaging studies.

To address this question, in the present study we generated a series 
of multisite simulation datasets with or without outliers based on a 
real large neuroimaging dataset (CHIMGEN; Xu et al., 2020). We first 
used the simulation dataset without outliers to verify the effectiveness 
of ComBat harmonization in the removal of inter-site heterogeneity. 
We then used the simulation datasets with outliers to test whether the 
presence of outliers could reduce the effectiveness of ComBat 
harmonization and to characterize how such detrimental effects of 
outliers on ComBat harmonization effectiveness were dependent on 
outlier properties such as their location (i.e., where the outliers are, 
e.g., which sites, unilateral or bilateral), quantity (i.e., how many 
outliers are present in the data), and deviation level (measured by 
outlier score, representing how far the outliers deviate from the 
majority of the data). Importantly, the assessments of the effectiveness 
of ComBat harmonization and the detrimental effects of outliers were 
not only performed on the multisite data distributions but also on the 
results of association analyses between brain imaging measures and 
behavioral variables using the simulated multisite data. The reason 
why we tested the effects of outliers on the effectiveness of ComBat 
harmonization using simulated data rather than real data was that the 
location, quantity, and deviation of the outliers were very limited in 
this real dataset whereas the simulated datasets with varying outlier 
location, quantity, and deviation level could allow us to better 
characterize the effects of outliers in various outlier scenarios.

2. Materials and methods

2.1. Generation of a normal simulation 
dataset

A normal simulation dataset (i.e., a simulation dataset without 
outliers) was generated according to the statistical properties (mean and 
covariance) of a real brain imaging dataset – the grey matter volume 
(GMV) computed from the T1 weighted imaging data of the 
CHIMGEN database (Xu et al., 2020). The detailed procedure is as 
follows: First, we  selected the brain imaging data from three sites 
(sample size =1743, 804, and 466 for Site 1, Site 2, and Site 3, respectively; 
3,013 samples in total) of the CHIMGEN database, which showed 
differences in data distribution between sites. Second, the images of 
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whole brain were parcellated into 273 brain regions according to the 
combined Brainnetome atlas including both cerebrum and cerebellum 
(Fan et al., 2016; available from http://atlas.brainnetome.org/download.
html). It should be noted that the original combined Brainnetome atlas 
contains 274 regions; however, one region was reduced to 0 voxels after 
downsampling the original atlas image (1.25×1.25×1.25 mm3 voxel size) 
to match with our current data (1.5×1.5×1.5 mm3 voxel size), and thus 
273 regions in total remained for subsequent analyses. Third, 
we obtained a GMV for each brain region and subject, resulting in a 
dataset consisting of 273 IDPs and 3,013 subjects in total. Fourth, for 
each site, outliers were detected and removed from the data for each 
IDP and consequently 2,894 samples in total (1731 in Site 1, 804 in Site 
2, and 359 in Site 3) remained for subsequent analyses. Here, outliers 
were defined as the values that were at least three times the interquartile 
range (IQR) below the lower quartile (Q1) or above the upper quartile 
(Q3) of the data distribution, as suggested by Tukey in 1977 (Tukey, 
1977). Fifth, we calculated the mean vectors and the covariance matrix 
of the 273 IDPs for each of the three sites. Finally, based on the mean 
vectors and the covariance matrices computed from the real data of the 
three sites, we then used the MATLAB function mvnrnd to generate 
three sets of random values (1,000 subjects and 273 IDPs for each 
subject in each set) following the normal distribution with the same 
mean and covariance as the real brain imaging dataset. The generated 
three sets of random values composed the simulated brain imaging data 
of three sites, with 1,000 samples in each site.

To generate a simulated behavioral variable that would 
be correlated with some of the 273 simulated IDPs, we selected the 
187th IDP (IDP-187) as a representative IDP (because the IDP-187 
showed correlations with many other IDPs), performed z-score 
normalization ([IDP-mean(IDP)]/std.(IDP)), and then added some 
Gaussian noises (mean = 0, variance = 0.04). The resultant variable 
served as a simulated behavioral variable without inter-site 
heterogeneity. In this way, this simulated behavioral variable would 
correlate with the IDP-187 as well as some other IDPs showing 
correlations with the IDP-187. This was performed for each site to 
generate the corresponding simulated behavioral variable for each site. 
Therefore, we  generated 273 simulated IDPs and 1 simulated 
behavioral variable for each site.

2.2. Generation of the simulation data with 
outliers

To generate the simulation datasets with outliers, we added some 
extra samples with extreme values (i.e., outliers) to the above generated 
normal simulation dataset. As aforementioned, in the present study, 
outliers were defined as the values that were at least three times the 
IQR below the lower quartile Q1 or above the upper quartile Q3. 
We further quantified the deviation of outliers for each IDP using 
outlier scores. Specifically, outlier scores were defined using the 
following Eq. (1):

 
Outlier score

IDP Q IDP Q
IQR

 
,

=
− −( )min 1 3

 
(1)

where Q1 denotes the lower quartile, Q3 denotes the upper 
quartile, and IQR denotes interquartile. To generate simulated outliers 

for a given site, we used the MATLAB function mvnrnd with a mean 
vector of [Q3 + Outlier score×IQR] (if the outlier was added to the 
upper side of the data distribution) or [Q1-Outlier score×IQR] (if the 
outlier was added to the lower side of the data distribution) and a 
covariance matrix which was 0.0032 times the correlation matrix of 
the normal real data. The simulated outliers were then added to the 
corresponding site of the normal simulation data. Here, we chose a 
relatively small standard deviation (i.e., 0.003) for generating outliers 
so that we could easily control the outlier scores.

To test how the presence of outliers in different scenarios affect the 
effectiveness of ComBat harmonization, the outliers were added to the 
normal simulation dataset in six different ways which varied in 
quantity (i.e., how many outliers were present), outlier score (i.e., how 
far the outliers were deviated from the “normal” data), and location of 
outliers (i.e., outliers on only one side or both sides of the data median 
in only one site or two sites): (A) Scenario “one-site unilateral”: 
outliers were added to the upper side of Q3 in Site 1; (B) Scenario 
“one-site bilateral”: the same number of outliers with the same outlier 
scores were added to both sides of the data distribution (i.e., the upper 
side of Q3 and the lower side of Q1) in Site 1; (C) Scenario “one-site 
different”: the same number of outliers were added to both sides of the 
data distribution (i.e., the upper side of Q3 and the lower side of Q1) 
but with different outlier scores (the outlier score on the upper side of 
Q3 was fixed to 40, but the outlier score on the lower side varied in 
seven different values: 3, 5, 10, 15, 20, 30, and 40) in  Site 1; (D) 
Scenario “two-site unilateral”: the same number of outliers with the 
same outlier scores were added to the upper side of Q3 in both Sites 1 
and 2; (E) Scenario “two-site bilateral”: the same number of outliers 
with the same outlier scores were added to the lower side of Q1 and 
the upper side of Q3 in both Sites 1 and 2; (F) Scenario “two-site 
different”: the same number of outliers were added to the upper side 
of Q3 in Site 1 and the lower side of Q1 in Site 2 (i.e., the outliers were 
added to different sides in different sites) but with the same outlier 
scores. For each of the six scenarios, the quantity of the added outliers 
varied in five different values (0.2, 0.6, 1, 5, and 10% of the sample size 
of the normal simulation dataset) and the outlier scores varied in 
seven different values (3, 5, 10, 15, 20, 30, and 40). Note that, to 
maintain the same sample size in all sites, for the first three scenarios 
(i.e., all three “one-site” scenarios) an equal number of normal values 
as the total number of the outliers added to Site 1 were also added to 
Site 2 and 3, and for the last three scenarios (i.e., all three “two-site” 
scenarios) an equal number of normal values as the number of the 
outliers added to Site 1/2 were also added to Site 3. Then, for each site, 
an equal number of simulated values (generated using the same 
approach described in Section 2.1) were also added to the simulated 
behavioral variable to make sure that there were equal number of 
samples for the simulated IDPs and behavioral variable. Note that, no 
outliers, but only normal values, were added to the simulated 
behavioral data.

2.3. ComBat harmonization

ComBat was initially developed to eliminate batch effects in 
microarray gene expression data (Johnson et al., 2007) and is now 
widely used to correct site effects of multisite neuroimaging data 
(Fortin et al., 2017, 2018; Yu et al., 2018). The ComBat algorithm is an 
empirical Bayesian-based method for removing unwanted variations 
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associated with the scanning sites or equipment while retaining 
biologically relevant information of interest in the data, such as age, 
gender, or drug effects.

Taking voxel-wise grey matter volume (GMV) for example, 
ComBat algorithm models the raw GMV using the following Eq. (2):

 Y Xijv v ij v iv iv ijv= + + +′α β γ δ ε
  (2)

where Yijv denotes the raw GMV for Site i, Subject j, and Voxel v, 
αv denotes the average GMV of all subjects in all sites for Voxel v, Xij 
denotes a design matrix for the covariates of interest (e.g., age) and βv 
denotes a vector of regression coefficients corresponding to Xij for 
Voxel v, γ iv′  and δiv denote the additive and multiplicative site effect of 
Site i for Voxel v, respectively, and εijv  denotes the error term that 
follows a normal distribution with mean zero and variance σv

2.
As the overall differences in GMV between different voxels may 

lead to errors in the estimation of the prior distribution of site effect, 
the ComBat algorithm first standardizes the data to have comparable 
overall mean and variance across different voxels. The equation for the 
standardization is

 

ˆ

ˆ
ˆijv v ij v

ijv
v

Y X
Z

σ
α β−

=
 

(3)

Zijv denotes the standardized GMV for Site i, Subject j, and Voxel 
v. α v , β



v, and σ


v  are the estimates of αv, βv, and σv. Assuming the 
standardized data Z Nijv iv iv~ γ δ, 2( ) , in which the site effect 
parameters are assumed to have the parametric prior distributions: 
γ γ τiv i iN~ ,

2( ) , δ λ θiv i iInverse Gamma2
~  ,( )  ComBat algorithm 

subsequently estimates the site effect parameters γ iv′  and δiv  using 
conditional posterior means, and the corresponding estimates are 
denoted as γ iv∗  and δiv∗ .

The data are eventually adjusted using Eq. (4), with ZijvComBat  
representing the data with site effect removed:

 

ˆˆ
ˆ ˆijv v ij v ivComBat

ijv v ij v
iv

Z X
Z X β

α γ
α

δ

β ∗

∗
− − −

= + +
 

(4)

2.4. Assessing the effectiveness of ComBat 
harmonization

For the normal simulation data, heterogeneity among sites was 
evaluated in three ways (1) We plotted a density curve of all IDP values 
for each subject to show differences in IDP values across sites, (2) To 
visualize the IDP data distribution of all subjects for the three sites using 
a scatter plot in a two-dimensional space, we reduced the dimensionality 
of the IDP data (273 IDPs) to the first two principal components (PCs) 
using principal components analysis (PCA), (3) To test whether some 
significant IDP-behavior correlations that were not detected due to data 
heterogeneity among sites could be  recovered after ComBat 
harmonization, we calculated the Pearson correlation coefficient (r) 
between each IDP and the behavioral variable before and after ComBat 
harmonization using the subjects within each site (i.e., within-site 

correlation to avoid the effect of inter-site heterogeneity) and using the 
subjects across all sites (i.e., across-site correlation, denoted as a 
combined site, to test the effect of inter-site heterogeneity). We plotted 
these IDP-behavior correlation coefficients as violin-box plots and also 
calculated the intraclass correlation coefficients (ICCs; Shrout and 
Fleiss, 1979; Shrout, 1998) of the IDP-behavior correlation coefficients 
between each pair of single sites and between each single site and the 
combined site to assess the consistency of the IDP-behavior correlation 
coefficients between sites before and after ComBat harmonization. 
Generally, ICC ≥ 0.80 were considered as high consistency, 
0.80 > ICC ≥ 0.60 as moderate consistency, 0.60 > ICC ≥ 0.40 as good 
consistency, 0.40 > ICC ≥ 0.10 as poor consistency, and ICC < 0.1 as no 
consistency. We  also assessed the number of high IDP-behavior 
correlations (r ≥ 0.6) for each single site and the combined site.

2.5. Assessing the impact of outliers on the 
effectiveness of ComBat harmonization

Based on the normal simulation dataset and the simulation datasets 
with outliers, the impact of outliers on the effectiveness of removal of 
inter-site heterogeneity by the ComBat harmonization algorithm was 
evaluated in two ways: (1) whether the site effects were successfully 
removed after ComBat harmonization when outliers were present in 
the data, and (2) whether the estimation of the associations between 
IDPs and behavioral variables were affected by the presence of outliers 
after ComBat harmonization. For the evaluation of (1), we visualized 
the IDP values of all data samples of all sites using the first and the 
second PCs of PCA under all six outlier scenarios (i.e., “one-site 
unilateral,” “one-site bilateral,” “one-site different,” “two-site unilateral,” 
“two-site bilateral,” “two-site different,” as described in section 2.2), and 
with varying outlier quantities and outlier scores, before and after 
ComBat harmonization. We also calculated the mean and variance of 
a representative IDP (IDP-187) of normal samples under all outlier 
quantities and outlier scores. As for the evaluation of (2), we assessed 
the changes in the correlation coefficients between IDPs and behavioral 
variables (measured by both Pearson correlation coefficient r and 
Spearman rank correlation coefficient ρ) before and after ComBat 
harmonization under all six outlier scenarios compared with those 
where outliers were absent. Furthermore, to quantify the effect of 
outlier location (i.e., outliers present in one or two sites, unilaterally or 
bilaterally) on the IDP-behavior relationships, we calculated the ICCs 
of the 35 IDP-behavior correlation coefficients (5 outlier quantities and 
7 outlier scores, thus 35 in total) among the six outlier scenarios for 
each site (within-site correlations) and the combined site (across-
site correlations).

3. Results

3.1. Effectiveness of ComBat 
harmonization

Figures 1A-C illustrate the inter-site differences in the simulated 
brain imaging data of the normal simulation dataset before ComBat 
harmonization. Data density curves of all subjects, categorized by sites 
(indicated by different colors), are presented in Figure  1A. It 
demonstrates substantial inter-site differences which are much larger 
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than the data variance within sites. The inter-site heterogeneity is also 
clearly evident in the two-dimensional (2-D) data visualization of all 
subjects from different sites using the first two PCs (Figure  1B). 
Furthermore, as presented in the violin-box plots depicting the 
distribution of the Pearson correlation coefficients (r) between all IDPs 
and the behavioral variable of each site (Site 1, 2, 3) and the combined 
site (Site 1 + 2 + 3) in Figure  1C, the IDP-behavior across-sites 
correlations became much weaker (r ≈ 0.2) compared with the within-
site correlations (r  ≈  0.4). The ICC values of the IDP-behavior 
correlation coefficients between different sites and between each site 
and the combined site also showed that the IDP-behavior correlation 
coefficients changed greatly (ICCs ranged between 0.0580 and 0.0598) 
when calculated across subjects of different sites (i.e., the combined site) 
compared with those when calculated across subjects within sites (ICCs 
ranged between 0.8909 and 0.9458). Moreover, 13 high IDP-behavior 
correlations (r ≥ 0.6) were identified in all three sites for the within-site 
correlations, but none reached 0.60 for the across-site correlations.

Figures  1D-F illustrate the corresponding results after ComBat 
harmonization in terms of the data density curve plots (Figure 1D), the 
2-D data visualization using the first two PCs (Figure 1E), and the 
violin-box plots of the IDP-behavior correlation coefficients (Figure 1F). 

As shown in Figures 1D,E, the data distributions were largely overlapped 
and the data heterogeneity among sites was no longer observable after 
ComBat harmonization. Moreover, after ComBat harmonization, the 
IDP-behavior correlation coefficients obtained within each single site 
remained almost identical with before ComBat harmonization, but 
those obtained across different sites (Site 1 + 2 + 3) were improved greatly 
and at the same level as within-site correlation coefficients (Figure 1F). 
The ICCs of the IDP-behavior correlation coefficients between different 
single sites ranged between 0.8909 and 0.9458, and the ICCs between 
each single site and the combined site ranged between 0.9622 and 0.9808 
(Figure 1F). Notably, 14 high IDP-behavior correlations (r ≥ 0.6) were 
identified for the across-site correlations after ComBat harmonization 
which included all 13 high IDP-behavior correlations (r ≥ 0.6) identified 
in all three sites for the within-site correlations.

3.2. Impact of outliers on the effectiveness 
of ComBat harmonization

The 2-D data visualization of all subjects from different sites using 
the first two PCs of all IDPs under all six outlier scenarios with a fixed 

FIGURE 1

Visualization of data heterogeneity between sites in the normal simulation dataset before and after ComBat harmonization. (A-C) are the results before 
ComBat harmonization, and (D-F) are the results after ComBat harmonization. (A) and (D) show the IDP data density curves of each subject. (B) and 
(E) show the IDP data scatter plots presented in two dimensions of their first and second PCs. (C) and (F) show the violin-box plots of Pearson 
correlation coefficients (r) between the 273 IDPs and the behavioral variable. All the plots are color-coded by sites, with red color representing Site 1, 
green representing Site 2, blue representing Site 3, and purple representing the combined site (i.e., Site 1 + 2 + 3). PC: principal component.
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outlier quantity (1% of the normal simulation data sample size) and 
outlier score (10) before and after ComBat harmonization are shown 
in Figures  2, 3, respectively. Figure  2 demonstrated the inter-site 
heterogeneity in the data distribution (both the mean and the 
variance) in the presence of outliers before ComBat harmonization. 
Compared with Figures 2, 3 revealed that, under the condition of 
outlier quantity = 1% and outlier score = 10, the centers of the data 
distributions of the three sites were largely aligned after ComBat 
harmonization. However, Figure 3 also clearly showed that the data 
distributions became much denser for the sites with outliers (Site 1 in 
panels A-C, and Sites 1&2  in panels D-F) compared with those 
without outliers (Sites 2&3 in panels A-C, and Site 3 in panels D-F).

Figures  4, 5 show how the mean (Figure  4) and the variance 
(Figure 5) of a representative IDP (IDP-187) of the normal samples 
(y-axis) changed with the outlier scores (x-axis) and with the outlier 
quantities (lines in different colors) both before ComBat 
harmonization (black dashed lines) and after ComBat harmonization 
(colored solid lines) in the six outlier scenarios for each site and the 
combined site.

As depicted in Figure 4, in all six outlier scenarios, there was a 
clear difference in the mean value of this representative IDP (IDP-187) 
between different sites before ComBat harmonization (black dashed 

lines), but such difference in the mean value was largely eliminated 
after ComBat harmonization (colored solid lines) unless the outlier 
quantity and the outlier score were high (outlier quantity≥5% and the 
outlier score ≥ 10). When the outliers were added to only one side in 
each site (panels A, D, and F) and when the outlier quantity and the 
outlier score were high (orange and red lines), we observed that the 
mean value was shifted towards the direction opposite to the side of 
outliers for the sites with outliers (i.e., Site 1 in panel A, and Sites 
1&2 in panels D&F), but was shifted towards the same side of outliers 
or towards the side of more extreme outliers for the sites without 
outliers (i.e., Sites 2&3 in panel A and Site 3 in panels D&F). When the 
outliers were added to both sides of the data distribution in a balanced 
way (panels B&E), the mean value of each site (with or without 
outliers) did not change much with the outlier quantity and outlier 
score even when the outlier quantity and the outlier score were high. 
When the outliers were added to both sides in an unbalanced way and 
when the outlier quantity was high (orange and red lines for low 
outlier scores in panel C), the mean value was shifted towards the 
opposite side of more extreme outliers for the sites with outliers (i.e., 
Site 1  in panel C) but was shifted towards the same side of more 
extreme outliers for the sites without outliers (i.e., Sites 2&3 in panel 
C). As the shifts of mean values were in different directions in different 

FIGURE 2

Scatter plots of the first two principal components of all IDPs before ComBat harmonization. (A-F) represent the six outlier scenarios described in 
Section 2.2 with a fixed outlier quantity = 1% of the normal simulation data sample size and outlier score = 10. The principal components (PCs) were 
obtained by performing principal component analysis of all IDP values of all subjects from all sites before ComBat harmonization. Data samples from 
Sites 1, 2, and 3 are colored by red, green, and blue, respectively. Each dot represents a data sample (i.e., a subject).

https://doi.org/10.3389/fnins.2023.1146175
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Han et al. 10.3389/fnins.2023.1146175

Frontiers in Neuroscience 07 frontiersin.org

sites, they canceled each out and resulted in a much less observable 
shift of the overall mean of the combined site.

As depicted in Figure 5, when the outliers were added to only one 
site (panels A-C), the data variance of the representative IDP (IDP-
187) of the normal samples decreased greatly for the site with outliers 
(i.e., Site 1) after ComBat harmonization (colored solid lines) 
compared with before ComBat harmonization (black dashed lines), 
but opposite results were observed for the sites without outliers (i.e., 
Sites 2&3). Moreover, such changes in the data variance became bigger 
when the outlier quantity and outlier score increased. When the 
outliers were added to two sites (panels D-F), the same results were 
observed for the site with more extreme outliers (i.e., Site 1); however, 
the opposite results were observed for the site with less extreme 
outliers (i.e., Site 2), that is, the data variance of the normal samples 
increased for Site 2 after ComBat harmonization. It is also noticeable 
that, in all six outlier scenarios, the decrease of the variance in Site 1 
(i.e., the site with more extreme outliers) was much larger than the 
increase of the variance in other sites (i.e., the site without outliers or 
the site with less extreme outliers) when the outlier quantity or the 
outlier score was low after ComBat harmonization compared with 
before ComBat harmonization, and thus the total variance of all data 
samples of the combined site (Site 1 + 2 + 3) showed a decrease after 

ComBat harmonization. In contrast, as the decrease of the variance in 
the sites with outliers was much lower than the increase of the variance 
in the sites without outliers when the outlier quantity or the outlier 
score was high after ComBat harmonization compared with before 
ComBat harmonization, the total variance of all data samples of the 
combined site showed an increase after ComBat harmonization. The 
reason for all these changes in data variance was because ComBat 
harmonization would equalize the data variance of different sites, and 
thus the distribution of the normal data in the site with very large 
outliers had to be squeezed and, at the same time, the distribution of 
the normal data in other sites had to be  expanded so that the 
distributions of all data (including the outliers) in each site could have 
equal variance.

Figures 6, 7 show how the IDP-behavior relationships (y-axis) 
changed with the outlier scores (x-axis) and with the outlier quantities 
(lines in different colors) for a representative IDP (IDP-187). The 
IDP-behavior relationships were measured by Person correlation 
coefficients (r) in Figure 6 and were measured by Spearman rank 
correlation coefficients (ρ) in Figure 7. The six panels (panels A-F in 
Figures 6, 7) show the results of the six outlier scenarios.

As depicted in Figure 6 (assessing IDP-behavior relationships 
using Pearson’s correlation coefficients), in all six outlier scenarios, 

FIGURE 3

Scatter plots of the first two principal components of all IDPs after ComBat harmonization. (A-F) represent the six outlier scenarios described in Section 
2.2 with a fixed outlier quantity = 1% of the normal simulation data sample size and outlier score = 10. The principal components (PCs) were obtained 
by performing principal component analysis of all IDP values of all subjects from all sites after ComBat harmonization. Data samples from Sites 1, 2, 
and 3 are colored by red, green, and blue, respectively. Each dot represents a data sample (i.e., a subject).
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all IDP-behavior correlation coefficients obtained before ComBat 
harmonization (dashed lines) were overlapped with those obtained 
after ComBat harmonization (solid lines) for within-site 

correlations (i.e., the left three columns), confirming that ComBat 
harmonization did not change the within-site IDP-behavior 
Pearson’s correlation coefficients. However, for a mega-analysis 

FIGURE 4

The mean of a representative IDP under different outlier scores and outlier quantities before and after ComBat harmonization. (A-F) represent the six 
outlier scenarios described in Section 2.2. The four columns represent the results of Site 1, Site 2, Site 3, and Site 1 + 2 + 3 (combined site), respectively. In 
each subgraph, the y-axis represents the mean value of the representative IDP (IDP-187), the x-axis represents the outlier scores, and different colors 
represent the outlier quantities (0.2, 0.6, 1, 5, 10%). Dashed lines in black represent the mean values before ComBat harmonization and colored solid 
lines represent the mean values after ComBat harmonization.
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with cross-site correlations (i.e., the right column), the 
IDP-behavior Pearson’s correlation coefficients were very low 
before ComBat harmonization (dashed lines) but became much 

higher after ComBat harmonization (solid lines). In terms of the 
impacts of outlier scores and outlier quantities, the correlation 
coefficients remained the same for all outlier quantities and outlier 

FIGURE 5

The variance of a representative IDP under different outlier scores and outlier quantities before and after ComBat harmonization. (A-F) represent the six 
outlier scenarios described in Section 2.2. The four columns represent the results of Site 1, Site 2, Site 3, and Site 1 + 2 + 3 (combined site), respectively. In 
each subgraph, the y-axis represents the variance of the representative IDP (IDP-187), the x-axis represents the outlier scores, and different colors 
represent the outlier quantities (0.2, 0.6, 1, 5, 10%). Dashed lines in black represent the variances before ComBat harmonization and colored solid lines 
represent the variances after ComBat harmonization.
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scores in the sites without outliers (within-site correlations; Sites 
2&3 in panels A-C and Site 3 in panels D-F) but decreased with the 
increase of the outlier quantity and outlier scores in the sites with 

outliers (within-site correlations; Site 1  in panels A-C and Site 
1&2  in panels D-F) and in the combined site (across-site 
correlations; Site 1 + 2 + 3). In fact, compared with the true 

FIGURE 6

The IDP-behavior relationships measured by Pearson correlation coefficients under different outlier scores and outlier quantities before and after 
ComBat harmonization. (A-F) represent the six outlier scenarios described in Section 2.2. The four columns represent the results of Site 1, Site 2, Site 3, 
and Site 1 + 2 + 3 (combined site), respectively. In each subgraph, the y-axis represents the Pearson correlation coefficients (r) between the 
representative IDP (IDP-187) and the behavioral variable, the x-axis represents the outlier scores, and different colors represent the outlier quantities 
(0.2, 0.6, 1, 5, 10%, Normal) in which “Normal” means no outliers were added. Dashed lines represent the correlation coefficients before ComBat 
harmonization and solid lines represent the correlation coefficients after ComBat harmonization. Since within-site correlation coefficients before 
ComBat harmonization were the same as those after ComBat harmonization, dashed lines are overlapped with solid lines in Sites 1, 2, and 3.
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IDP-behavior correlation coefficient measured in the absence of 
outliers (~0.8; black lines), the correlation coefficient decreased to 
~0.6 for “one-site-only” outlier scenarios (panels A-C) and to ~0.4 

for “two-sites” outlier scenarios (panels D-F) when the outlier 
scores reached 15 and the outlier quantity reached 5% after 
ComBat harmonization in the combined site.

FIGURE 7

The IDP-behavior relationships measured by Spearman rank correlation coefficients under different outlier scores and outlier quantities before and 
after ComBat harmonization. (A-F) represent the six outlier scenarios described in Section 2.2. The four columns represent the results of Site 1, Site 2, 
Site 3, and Site 1 + 2 + 3 (combined site), respectively. In each subgraph, the y-axis represents the Spearman rank correlation coefficients (ρ) between the 
representative IDP (IDP-187) and the behavioral variable, the x-axis represents the outlier scores, and different colors represent the outlier quantities 
(0.2, 0.6, 1, 5, 10%, Normal) in which “Normal” means no outliers were added. Dashed lines represent the correlation coefficients before ComBat 
harmonization and solid lines represent the correlation coefficients after ComBat harmonization. Since within-site correlation coefficients before 
ComBat harmonization were the same as those after ComBat harmonization, dashed lines are overlapped with solid lines in Sites 1, 2, and 3.
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When using Spearman rank correlation to measure the 
IDP-behavior relationships (Figure 7), similar results were observed 
but with one exception: the Spearman correlation coefficients (ρ) did 
not change appreciably with the increase of the outlier scores in the 
sites with outliers for the within-site correlations (Site 1 in panels A-C 
and Site 1&2 in panels D-F).

As for the quantification of the effect of outlier location (i.e., 
outliers were unilateral or bilateral) on the IDP-behavior relationships, 
the ICCs of the 35 IDP-behavior correlation coefficients between the 
“unilateral” scenario and the “bilateral” scenario, calculated for the 
scenarios of “one-site outliers” (i.e., ICC was calculated between “one-
site unilateral” and “one-site bilateral”) and for the scenarios of “two-
site outliers” (i.e., ICC was calculated between “two-site unilateral,” 
“two-site bilateral” and “two-site different”) separately, are summarized 
in Table  1. It appeared that IDP-behavior relationships were not 
influenced much by outlier location – all ICCs were above 0.90 except 
for the ICC calculated based on the Spearman rank correlation 
coefficients for the scenarios of “two-site outliers” after ComBat 
harmonization (ICC = 0.77). Note that, the scenario of “one-site 
different” was not considered in this analysis because it was different 
from the other two “one-site” scenarios not only in outlier location but 
also in outlier score.

4. Discussion

In the present study, we tested whether and how the presence of 
outliers could affect the effectiveness of ComBat harmonization in the 
removal of inter-site heterogeneity using simulated multisite 
neuroimaging data. Importantly, the simulated dataset was generated 
based on a real large neuroimaging dataset, and different outlier 
properties such as the outlier location (i.e., where the outliers are, e.g., 
which sites, unilateral or bilateral), the outlier quantity (i.e., how many 
outliers are present) and the outlier score (how far the outliers deviate 
from the majority of the data) were modulated in the simulated data. 
With this design, we were able to test how these outlier properties 
could affect the effectiveness of ComBat harmonization using 
simulation data while maintaining a good representation of real data 
scenarios. We found that, although ComBat harmonization effectively 
removed the inter-site heterogeneity in multisite data which further 
improved greatly the detection of the true relationships between IDPs 
and behavioral variables in the absence of outliers, the presence of 
outliers could damage severely the performance of ComBat 
harmonization in the removal of data heterogeneity; instead, the 
presence of outliers might even introduce additional inter-site 

differences in the data. Such outlier effects were dependent on the 
quantity and deviation level of outliers – the effectiveness of ComBat 
harmonization was severely biased when the outlier quantity was 
greater than 5% or the outlier score exceeded 10; only moderate effects 
were observed otherwise. Moreover, we found that the degree of the 
impact of the outliers on the improvement of the detection of 
IDP-behavior relationships was dependent on how the IDP-behavior 
relationships were assessed (i.e., by Pearson correlation or Spearman 
correlation) – the degree of the impact was generally larger when 
Pearson correlation was used than when Spearman correlation was 
used, and was also dependent on outlier quantity and outlier score.

4.1. Presence of outliers reduces the 
effectiveness of ComBat harmonization in 
the removal of inter-site heterogeneity of 
data distribution

Although we  have demonstrated the effectiveness of ComBat 
harmonization in the removal of inter-site heterogeneity in the 
absence of outliers, the results of our present study clearly showed that 
such effectiveness could be much reduced or even eliminated by the 
presence of outliers. We found that, after ComBat harmonization, the 
data distributions of the sites with outliers were no longer aligned with 
those of the sites without outliers in terms of the space covered by data 
samples (i.e., data variances); instead, the distribution of data majority 
became much denser for the sites with outliers. This is because the 
means and variances of multiple sites are supposed to be similar after 
ComBat harmonization, and the exaggerated variance caused by 
outliers would result in a decrease in the variance of normal values. In 
other words, due to the presence of outliers, the data variance would 
be overestimated and thus the variance of the data majority (i.e., the 
non-outlier samples) would shrink after ComBat harmonization even 
if there had been no differences in the mean or variance of non-outlier 
samples between this site and other sites before harmonization.

We also manipulated the location, the quantity, and the deviation 
level of outliers to test their impact on the data distribution (mean and 
variance of normal samples) of each site after ComBat harmonization. 
We  found that the mean of normal samples was affected to an 
increasing extent, as the outlier quantity and outlier score increased. 
As for outlier location, when outliers were added to only one side of 
the data distribution, the mean of normal samples would shift opposite 
to where outliers were added. In the scenarios where outliers were 
added to both sides of the data distribution with different outlier 
scores, the mean of normal samples would shift opposite to where the 

TABLE 1 ICCs of the 35 IDP-behavior correlation coefficients among different outlier scenarios.

ICC (r) ICC (ρ)

Figures 6A,B Figures 6D–F Figures 7A,B Figures 7D–F

Before

ComBat

Site 1 0.9951 0.9967 0.9876 0.9915

Site 2 – 0.9968 – 0.9923

combined data 0.9829 0.9842 0.9070 0.9951

After

ComBat

Site 1 0.9951 0.9967 0.9876 0.9915

Site 2 – 0.9968 – 0.9923

combined data 0.9951 0.9981 0.9959 0.7723

r denotes Pearson correlation coefficient, ρ denotes Spearman rank correlation coefficient.
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outlier score was greater. We also found that the variances of normal 
samples decreased with the increase of outlier score and outlier 
quantity in the sites with outliers, resulting in a denser distribution of 
normal samples due to the existence of outliers.

4.2. Presence of outliers hampers the 
improvement of IDP-behavior correlation 
analyses by ComBat harmonization

As the presence of outliers reduces the effectiveness of ComBat 
harmonization in the removal of inter-site heterogeneity, they would 
thereby lead to erroneous assessment of IDP-behavior relationships, 
which were confirmed by the results of our present study. Furthermore, 
we found that the degree of the confounding effect of the outliers on 
IDP-behavior correlation coefficients was dependent on the outlier 
quantity and outlier score (Figures 6, 7) but was not affected much by 
the outlier location (Table 1). For across-site correlations in a multisite 
mega-analysis, the measurement of IDP-behavior relationships was 
affected by outlier quantities and outlier scores in all six outlier 
scenarios and for both correlation methods – both the Pearson 
correlation coefficients and the Spearman correlation coefficients 
decreased when the number of outliers and/or the outlier scores 
increased. However, it is worth noting that the impact of the outlier 
quantity and the outlier score on the correlation coefficients was 
greater for Pearson correlation than for Spearman correlation. This is 
because Spearman correlation utilized the rankings instead of original 
values to calculate correlation coefficients, which lessened the 
influence of extreme values on the estimation of correlation coefficients.

Although what we were mainly interested in here was the impacts 
of these outlier properties (i.e., quantity, outlier score, and location) 
on the assessment of across-site correlations between IDPs and 
behavioral variables in a mega-analysis after ComBat harmonization, 
we also examined the impacts on the within-site correlations to see 
whether and how ComBat harmonization could affect the assessment 
of IDP-behavior correlations in the presence of outliers within each 
site. For within-site correlations, the assessment of IDP-behavior 
relationships was unaffected for the sites without outliers which is 
expected given that it has been demonstrated using the normal 
simulation data in the present study that ComBat harmonization did 
not affect the correlation coefficients in the absence of outliers. 
However, the assessment of IDP-behavior relationships was affected 
by both outlier quantities and outlier scores for the sites with outliers 
in all six outlier scenarios especially when Pearson correlation was 
used – the Pearson correlation coefficients decreased gradually when 
the number of outliers and/or the outlier scores increased. Moreover, 
the impact of the outliers on the assessment of IDP-behavior 
relationships was also dependent on how such relationships were 
assessed. Pearson correlation coefficients were affected more badly 
than Spearman rank correlation coefficients. As the data samples were 
replaced with their rankings before the calculations of the correlation 
coefficient, the resultant correlation coefficient was more robust to the 
change of the actual IDP values caused by the change of outlier scores, 
although it still decreased with the increase of the number of outliers.

Compared with the impact of the outlier locations (i.e., outliers 
present unilaterally or bilaterally) on multisite data distribution, the 
IDP-behavior correlation coefficients measured either by Pearson 
correlation or Spearman rank correlation did not seem to be affected 

much by the outlier locations, except that the impact on the Spearman 
correlation coefficients seems smaller when the outliers were present 
only in one site than when they were present in two sites, especially 
when a relatively large number of outliers (≥5%) were added to 
different sides of data distribution on two sites. This is because a larger 
number of outliers, which was twice of the outliers added on single 
site, were added to two sites, and thus may disturb more badly the 
rankings and consequently the estimation of correlation coefficients.

Now that the presence of outliers could reduce the effectiveness of 
ComBat harmonization in the removal of inter-site heterogeneity of 
data distribution and in the detection of IDP-behavior correlations, 
we recommend, consistent with the workflow commonly used in most 
multisite studies, that outliers should be  removed before ComBat 
harmonization. However, there might also be cases where outliers 
represent genuine biological variability (e.g., brain abnormalities due 
to diseases) and thus are of interest to be included in the study, it is 
possible to “harmonize” the outliers using the ComBat parameters 
generated from the data excluding outliers using the following 
procedure: remove the outliers first before ComBat harmonization, 
then estimate the batch-specific overall mean and variance parameters 
only using the normal data, and finally “harmonize” all data (including 
outliers) using the above-estimated parameters.

4.3. Limitations

There are a few limitations in the present study. First, although 
we were trying to be comprehensive by creating six outlier scenarios 
and modulating both outlier quantity and outlier score in each scenario, 
outliers in real data may be more complicated than all the scenarios 
simulated in the present study, and thus the impact of outliers on the 
effectiveness of ComBat harmonization may be more complex than 
what we demonstrated here. Second, we only focused on the ComBat 
harmonization method in the present study and thus how the presence 
of outliers affects the effectiveness of other harmonization methods 
remains unclear and needs to be addressed in the future. Third, we only 
demonstrated the effects of outliers on the effectiveness of ComBat 
harmonization using simulated data rather than real data because a 
meticulous quality control procedure was used during data acquisition 
of the CHIMGEN database and the quantity and deviation level of the 
outliers were very low in this particular real dataset (the outlier 
quantities were less than 0.64% and the outlier scores were less than 
7.83 across all the IDPs), thus resulting in a minimal effect of outliers 
on the effectiveness of ComBat harmonization. Other real data with 
large and severe outliers may be tested for the effects of outliers on 
ComBat harmonization in future studies.

4.4. Conclusion

In summary, our present study systematically characterized the 
impact of outliers on the effectiveness of ComBat harmonization 
in the removal of inter-site heterogeneity of data distribution in 
multisite neuroimaging studies, and demonstrated that the 
presence of outliers may affect or even eliminate the effectiveness 
of ComBat harmonization and thus lead to erroneous results for 
the across-site analyses of brain-behavior associations. The findings 
deepen our understanding of the mechanisms by which outliers 
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may affect the performance of ComBat harmonization and the 
results of subsequent brain-behavior association analyses 
according to their location, quantity, and deviation level, and 
highlight that the influence of outliers is not negligible and they 
must be  detected and removed carefully prior to ComBat 
harmonization in multisite neuroimaging studies.
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