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Background: Temporal lobe epilepsy (TLE) is a common chronic episodic illness

of the nervous system. However, the precise mechanisms of dysfunction and

diagnostic biomarkers in the acute phase of TLE are uncertain and hard to

diagnose. Thus, we intended to qualify potential biomarkers in the acute phase

of TLE for clinical diagnostics and therapeutic purposes.

Methods: An intra-hippocampal injection of kainic acid was used to induce an

epileptic model in mice. First, with a TMT/iTRAQ quantitative labeling proteomics

approach, we screened for differentially expressed proteins (DEPs) in the acute

phase of TLE. Then, differentially expressed genes (DEGs) in the acute phase

of TLE were identified by linear modeling on microarray data (limma) and

weighted gene co-expression network analysis (WGCNA) using the publicly

available microarray dataset GSE88992. Co-expressed genes (proteins) in the

acute phase of TLE were identified by overlap analysis of DEPs and DEGs. The

least absolute shrinkage and selection operator (LASSO) regression and support

vector machine recursive feature elimination (SVM-RFE) algorithms were used to

screen Hub genes in the acute phase of TLE, and logistic regression algorithms

were applied to develop a novel diagnostic model for the acute phase of TLE,

and the sensitivity of the diagnostic model was validated using receiver operating

characteristic (ROC) curves.

Results: We screened a total of 10 co-expressed genes (proteins) from TLE-

associated DEGs and DEPs utilizing proteomic and transcriptome analysis. LASSO

and SVM-RFE algorithms for machine learning were applied to identify three

Hub genes: Ctla2a, Hapln2, and Pecam1. A logistic regression algorithm was

applied to establish and validate a novel diagnostic model for the acute phase

of TLE based on three Hub genes in the publicly accessible datasets GSE88992,

GSE49030, and GSE79129.

Conclusion: Our study establishes a reliable model for screening and diagnosing

the acute phase of TLE that provides a theoretical basis for adding diagnostic

biomarkers for TLE acute phase genes.

KEYWORDS

temporal lobe epilepsy, TMT/iTRAQ labeling quantitative proteomics, transcriptomics,
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1. Introduction

Temporal lobe epilepsy (TLE) is characterized by repeated
spontaneous seizures, cognitive impairment, and depression which
account for 36% of refractory epilepsy cases (Blumcke et al.,
2017). TLE has a diverse variety of etiologies, a multitude of
clinical features and epigenetics, and high nitrogen, and it is
difficult to diagnose and treat (Rawat et al., 2020). EEG is
presently used in conjunction with good clinical and historical
data to diagnose the acute phase of TLE. Nevertheless, it might
be problematic to establish the diagnosis when symptomatic and
history characteristics are not typical (Krumholz et al., 2015).
Consequently, a currently critical need is to identify biomarkers
related to the acute phase of TLE for early diagnosis and therapy.

Diagnostic molecular markers related to changes in biological
response can be utilized to identify the development of epileptic
disease (Banote et al., 2022). For instance, levels of S100 calcium-
binding protein B (S100B) (Liang et al., 2019; Simani et al., 2020),
Glial fibrillary acidic protein (GFAP) (Simani et al., 2018), and
Ubiquitin carboxy-terminal hydrolase L1 (UCHL-1) (Mondello
et al., 2012) can be detected in the blood of epileptic patients as
potential biomarkers. Inflammation is regarded to be an important
process in epileptogenesis (Vezzani et al., 2016), which is why
neuroinflammatory indicators may also be potential epilepsy
biomarkers.

Bioinformatics and microarray technologies are frequently
used to examine genetic changes at the transcriptional regulation
and to discover and annotate differentially expressed genes (DGEs)
(Li et al., 2017). Proteomics has already gained a great deal
of attention for the search for new biomarkers that deepen
our understanding of the molecular basis of disease (Sarkis
et al., 2017). Quantitative proteome, as opposed to genomes
and transcriptomics, is the preferred approach to a thorough
knowledge of overall proteome differences. In the realm of
epilepsy, the use of TMT/iTRAQ labeling and bioinformatics
analysis can elucidate potential biomarkers and mechanisms
through proteomics (Sun et al., 2020). Analysis based on the
combination of proteomics and transcriptomics can take full
advantage of the differences and complementarities between
transcriptomic and proteomic studies to measure the full
spectrum of gene expression levels to discover new molecules
that conventional single-omics studies fail to discover. Several
scholars have identified possible molecular mechanisms of
accidents and sudden death in epilepsy by combined proteomics
and transcriptomics analysis (Leitner et al., 2021). WGCNA
(weighted gene co-expression network analysis) has regarded as
the most widely used gene screening instrument. They were
demonstrated via constructing free proportion genes coexpression
nets under a variety of conditions to investigate the link
between clinical manifestations and coexpression pattern genes.
Furthermore, numerous methodologies for machine learning are
being increasingly adopted in the medical field. The LASSO and
SVM-RFE algorithms have been proven to be helpful in biomedical
uses. Certain authors used LASSO and SVM-RFE linkage analysis
to discover potential ferroptosis biomarkers in coronary artery
disease (Wu et al., 2022) and to validate diagnostic models for
pulmonary hypertension (Xu et al., 2022). The utilization of the
WGCNA plus machine learning to examine data on epilepsy

pathophysiology to discover epilepsy vulnerability genes may be
ground-breaking.

During this research, we obtained epilepsy brain tissue-source
datasets throughout the GEO database and utilized WGCNA plus
analysis of a differential expression to sieve DEGs from them
in the acute phase of TLE versus normal control samples. We
used TMT/iTRAQ quantitative labeling proteome study to obtain
DEGs inside the acute phase of TLE versus normal controls and
then combined proteomic and transcriptomic analysis to discover
differentially co-expressed genes (proteins) and screen for Hub
genes using LASSO and SVM-RFE algorithms. Based on the Hub
gene, a novel diagnostic model for the acute phase of TLE was
generated using a logistic regression algorithm, and the precision
of the diagnostic model was validated using three independent
data sets, providing a new perspective for TLE early diagnosis and
prevention. Figure 1 depicts the technological pathway.

2. Materials and methods

2.1. Animals

Male C57BL/6J mice, 8–10 weeks of age, weight 18–20 g, were
purchased from the Animal Laboratory of the Second Affiliated
Hospital of Harbin Medical University (Harbin, China). Mice
were housed in individual cages at 50–60% humidity and we
maintained a 12-h light/dark cycle, feeding, and watering each
mouse ad libitum. Mice fasted for 12 h before surgery. The
experimental procedure was carried out in strict accordance with
the relevant regulations of the Ethics Committee of the Second
Affiliated Hospital of Harbin Medical University (Ethical approval
No. SYDWGZR 2020-229; Harbin, Heilongjiang, China). A total of
6 mice were divided into the control group (n = 3) and the epilepsy
group (n = 3).

2.2. The model of kainic acid-induced
epilepsy in mice

Intrahippocampal injections of hippocampal kainic acid
generated epileptic mice with pathophysiology similar to those seen
in individuals with temporal lobe epilepsy. Intraperitoneal doses
of 0.01 mL/g 1% sodium pentobarbital liquid were performed to
anesthetize mice during surgery. In preparation to stereotactically
plant a 1 µL microinjector into the right hippocampus region
during intra-hippocampal injection, the relevant locations
utilized: anterior-posterior (AP) = −2.7 mm, medial-lateral
(ML) = −1.8 mm, and dorsal-ventral (DV) = −2.1 mm. Within
2 min, kainic acid (0.4 µg, mixed in 0.8 µL saline; Sigma, St.
Louis, MO, USA) was administered (Krook-Magnuson et al.,
2013). For 10 min the syringe was left in position to prevent reflux
along the administration trajectory. Pseudo-operated mice were
administered 0.8 µL saline. The Racine scale (Racine, 1972) was
adopted to evaluate seizure severity; mice having seizures more
so than or equivalent to Racine IV were deemed positive for
successful status epilepticus (SE). To reduce as far as practicable the
loss of mice caused by the persistent status epilepticus (>30 min
of Racine III-V seizures), diazepam (7.5 mg/kg) was administered
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FIGURE 1

Technology route. WGCNA, weighted gene co-expression network analysis; LASSO, least absolute shrinkage and selection operator; SVM-RFE,
support vector machine recursive feature elimination.

intraperitoneally 1 h after the first Racine V seizure. Saline-
injected mice (sham-operated controls) also accept intraperitoneal
injections of diazepam. These mice were included in the follow-up
research. Control and epileptic mice were killed by using the
cervical dislocation method on the third day after SE, and the
right hippocampus tissue was extracted. Before being handled
in proteomics-related investigations, these samples were kept at
−80◦C.

2.3. Proteomics section

2.3.1. Protein extraction and tryptic enzyme
digestion

The hippocampus tissue was withdrawn from−80◦C, weighed,
and placed in a pre-cooled mortar with liquid nitrogen, where
liquid nitrogen was added until the hippocampal tissue was
powdered. Every batch of the sample was given four times the
powder volume of lysis buffer (8 M urea, 1% protease inhibitor,
and 1% phosphatase inhibitor), which could then be used to
lyse the samples using ultrasound. Cell debris was removed by
centrifugation at 12,000 g for 10 min at 4◦C. The supernatant was
transferred to a new centrifuge tube and the protein concentration
was determined using a BCA kit (Beyotime Biotechnology,
Shanghai, China). Under the circumstance of avoiding light, the

obtained proteins were reduced by 5 mM dithiothreitol at 56◦C for
30 min next and alkylated by 11 mM iodoacetamide at 25◦C for
15 min. Then, 100 mM ammonium bicarbonate was an addition
to the solutions obtained above, and these solutions were diluted
to a final urea concentration <2 M. Finally, parenzyme (Promega,
Madison, WI, USA) was administered (1:50 parenzyme-protein
quantity ratio), and the proteins were digested up overnight at 37◦C
and again for 4 h with parenzyme (parenzyme-protein amount
ratio of 1:100).

2.3.2. TMT/iTRAQ labeling and HPLC
fractionation

The solution was desalinated using a Strata X C18 SPE column
(Phenomenex, Torrance, CA, Canada) and subsequently vacuum
centrifuged for dehydration. Protein peptides were dissolved using
0.5 M triethylammonium formate (Sigma, St. Louis, MO, USA) and
marked following the TMT/ iTRAQ kit operating manual (Thermo
Fisher Scientific, Carlsbad, CA, Canada). Peptide mixes marked
with TMT/iTRAQ were dissolved and subsequently classified
utilizing the C18 column in high pH inverted HPLC (Agilent
300Extend C18 4.6 × 250 mm, 5 µm, Agilent, Santa Clara, CA,
Canada). In brief, to simplify, the peptides are subjected to a 60-
min gradient of 8–32% acetonitrile (pH 9.0), after which they are
separated into 60 fractions. Finally, the 60 fractions are lyophilized
after being integrated into 18 fractions.
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2.3.3. Liquid chromatograph mass spectrometer
(LC-MS) analysis

The TMT/iTRAQ quantified tagging proteome analysis
improves on the conventional technique in several ways (Yang
et al., 2020). The quantifying proteomics analysis system is
composed of two operational systems, the EASY-nLC 1,000 UPLC
system and the Q ExactiveTMPlus Orbitrap MS system (Thermo
Scientific, Waltham, MA, USA). Thermo EASY-SprayTM C18
LC column (2 µm, 100 A, 75 µm × 50 cm, Thermo Scientific,
Waltham, MA, USA) is to be operated at 40◦C. The mobile phase
was assembled of 90% (v/v) aqueous acetonitrile, where solvent A
was utilized to dissolve the tryptic peptide, and 2% (v/v) aqueous
acetonitrile (solvent A), both of which included 0.1% (v/v) formic
acid. The 60-min class wash was operated as described in the
following: 0 min, 9% B; 38 min, 26% B; 52 min, 35% B; 56 min,
80% B; and 60 min, 80% B. Throughout the experiment, the flow
was maintained at 500 nL/min. The peptides from the preceding
handling steps were separated with an ultra-performance liquid
chromatography system, which was pushed into an NSI ion source
for ionization and then subjected to analysis using an Orbitrap
Fusion Lumos mass spectrometer. Each peptide’s mother ion as
well as its secondary fragmentation were identified and examined
utilizing high-resolution Orbitrap, with the ion source energy
adjusted at 2.4 kV. The first mass spectrometry scanned range was
adjusted to 350–1,550 m/z, with a scan precision of 60,000, while
the secondary mass spectrometry scanned range was adjusted
to 100 m/z, with a precision of 15,000. Its data processing form
employs a data-dependent archiving (DDA) procedure, in which
20 parent peptide ions with both the greatest signal intensities are
sequentially chosen to enter the HCD crash cell for separation
utilizing 32% of the segmentation power generation that after the
primary scan and the same sequential secondary mass spectrometry
analysis is carried out. To enhance the efficient exploitation of the
mass spectrum, the automatic gain control (AGC) was set up to
5E4, the signaling limit was set up to 10,000 ions/s, the largest input
time was set up to 60 ms, as well as the mobile elimination time of
the tandem mass spectrometry scan was set up to 30 s to prevent
the repetition of the mother ion scan.

2.3.4. Database search
The approach originally provided is the foundation for the

data processing, with certain modifications (Wang et al., 2022).
The MaxQuant (v2.2.0.0)1 analysis was applied to process the mass
spectrometry data. Search input parameters included a database
for Mus musculus (16,992 sequences), an inverted library to assess
the false positive rate (FPR) owing to randomized matching,
and general contamination libraries to remove the influence of
interfering proteins in the recognition findings. The digestion mode
was designated to Trypsin/P, the amount of missed cut sites were
assigned to two, the minimum peptide length was assigned to seven
residues of amino acids, the maximum of peptide modifications
was assigned to five, the mass error tolerance of the primary
mother ion was assigned to 20 and 5 ppm for the first and main
searches, respectively, and the mass error tolerance of the second
fragment ion was assigned to 0.02 Da. The constant modification
was cysteine alkylation, while the changeable modifications were

1 https://www.maxquant.org

TABLE 1 Information derived from the GEO database.

Location ID Probe platform Number

Hippocampus GSE88992 GPL1261 9 control vs. 8 epilepsy

Hippocampus GSE49030 GPL1261 9 control vs. 15 epilepsy

Hippocampus GSE79129 GPL6887 3 control vs. 3 epilepsy

methionine oxidation, acetylation, and deamidation (NQ) of the
protein’s N-terminus. For both protein identification and PSM
identification, the quantification technique was adjusted to TMT-
6plex, and the FDR was fixed at 1%.

2.3.5. Differential protein analysis
Protein profile data were identified and variations in protein

expression were evaluated utilizing multifactorial statistical
analysis, including the principal component analysis (PCA) as well
as the Pearson correlation coefficient (PCC) using the R package.
In addition, the threshold for DEP was set at a Fold Change
(FC) > 1.20 for upregulation and FC < 0.83 for downregulation,
and p-value < 0.05. The pheatmap package (version 1.0.12)
was used to heat-treat DEPs, and ggplot2 package (version
3.3.5)’s volcano mapping was used to visualize differentially
expressed proteins.

2.4. Transcriptomics section

2.4.1. Download and processing of expression
spectrum data

The datasets GSE88992, GSE49030, and GSE79129 regarding
epilepsy profiles of gene expression used during this investigation
were downloaded from the GEO data set (Table 1).2 The soft
annotation list of the relevant platform is where microarray
probe annotation information is available. A Perl language script
(v5.36.0)3 will be used to annotate genes. When numerous probes
that shared the same gene symbol were found during data
annotation, we determined the gene expression level utilizing the
average probe expression.

2.4.2. Differential expression analysis
Differential expression analysis was performed on the gene

expression profiling dataset GSE88992 between Epilepsy and
control using the limma package (version 3.48.3) for R language
(Ritchie et al., 2015). The criterion for the significance of DEGs
was set up as Fold Change > 1.5 and corrected p-value < 0.05.
The pheatmap package (version 1.0.12) and the ggplot2 package
(version 3.3.6) were used to construct heat maps and volcano plots
to visualize the DEGs, respectively.

2.4.3. Establishing a weighted gene co-expression
analysis network

The expression profile matrix was first read in R, and
the median absolute deviation (MAD value) of each gene was

2 https://www.ncbi.nlm.nih.gov/geo/

3 https://www.perl.org/
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determined individually, with the top 50% of genes with the least
MAD values being eliminated. The goodSampleGenes package in
R language was applied to eliminate outlier genes and samples,
as well as to further build a scale-free co-expression network.
The modules were subsequently identified using a hierarchical
clustering of genes. Pearson’s correlation analysis was used to assess
the relationship between clinical characteristics and the module
acquired. Following the criteria of gene significance (GS) > 0.1 and
module membership (MM) > 0.8, we chose the essential module
with the greatest link with control and Epilepsy as the subsequent
step in the analysis.

2.4.4. Genes associated with weighted
co-expression networks and differentially
expressed genes overlap

Differential expression analysis was obtained for 1,800
differentially expressed genes overlapping with WGCNA-related
module genes. The results were visualized using Venn diagrams
(Bardou et al., 2014).

2.4.5. Functional enrichment analysis
To reflect the biological function of 1,168 DEGs (692 up-

regulated DEGs, 476 down-regulated DEGs) and 140 DEPs (95
up-regulated DEPs, 45 down-regulated DEPs), the clusterProfiler
package (version 3.14.3) of R was used for enrichment analysis, and
the background sets for GO annotation were the gene sets from
the org.Mm.eg.db package (version 3.1.0). The genes were mapped
to the background sets, and the results of the enrichment analysis
were obtained using the clusterProfiler package. The genes were
mapped to the background set and enriched using the R package
clusterProfiler (version 3.14.3) for enrichment analysis to obtain
enrichment results. The background set was the most recent gene
annotation set for KEGG Pathway, which was downloaded from
the KEGG rest API.4 The minimum and maximum gene collections
were designated at 5 and 5,000, respectively, and a P-value of < 0.05
was deemed as statistically meaningful.

2.5. Screening on co-expressed
differential genes (proteins)

Co-expression of differential genes (proteins) was screened by
overlaying the 1,168 differential genes obtained from the above
gene overlap with 140 differentially expressed proteins. The results
were visualized using Venn diagrams.

2.6. Screening of Hub genes and
construction and validation of diagnostic
models

Least absolute shrinkage and selection operator and Support
vector machine recursive feature elimination algorithms were
applied to screen Hub genes predicated on the above transcriptome
and proteomic co-expression of differential genes (proteins).

4 https://www.kegg.jp/kegg/rest/keggapi.html

LASSO is a statistical linear regression analysis algorithm that uses
regularization to enhance regression results’ prediction accuracy.
The punishment variable (λ) of the LASSO regression model was
cross-validated ten times by using the λ values corresponding to
the lowest partial likelihood deviation. The R package “glmnet”
(Friedman et al., 2010) was applied to run the LASSO algorithm
to seek genes associated with epilepsy. Furthermore, SVM-RFE is
a sophisticated features extraction strategy that finds the optimal
factors by eliminating the feature vectors created by SVM (Wang
and Liu, 2015). The SVM-RFE algorithm shortlisted the best
variables for our investigation based on a minimal 10 CV error
value. In our research, we consolidated the genes found by the
SVM-RFE and LASSO regression algorithms to identify Hub genes.
Supported by the 3 Hub genes, a novel diagnostic model of epilepsy
was developed using a logistic regression algorithm. The precision
of our previously constructed Hub gene and novel diagnostic model
was appraised by the region under the curve (AUC). Therefore,
we calculated the AUC values of the three Hub genes and the
logistic regression model separately to evaluate the accuracy of the
diagnostic model. In the end, the qROC package (version 1.18.0)
and the ggplot2 package (version 3.3.5) in R were used, respectively,
to compute the region under the AUC curve and plot the curve.
We used three independent datasets, GSE88992, GSE49030, and
GSE79129, to validate the accuracy of the Hub gene as a diagnostic
molecule.

3. Results

3.1. General information on mass
spectrometry

The precise identification and measurement of the protein
peptides are major determinants of the mass spectrometer analysis’s
accuracy. As can be noticed from our results, most of the protein-
peptide sequences in our proteomics part of the experiments were
distributed at 7–25 amino acids, which results are very well in
line with the general regulations of trypsin digestion and HCD
segmentation (Figure 2A). We can infer from this finding that the
length of the protein peptides also complies with the standards
for quality control because the proteins isolated from cerebral
tissue were found to have high sequence overlap and that the
molecular weight of the proteins was negatively correlated with
the overlap (Figure 2B). In addition, the quality error spread
of the mass spectra tends to be close to zero, with most of the
quality errors <10 ppm (normal <70 ppm), which guarantees
the high-precision demand of the mass spectra (Figure 2C). All
of the aforementioned findings show that the mass spectrometer
we utilized is of normal accuracy and has no negative effects on
the qualitative and quantitative analysis of proteins because of
difficulties with mass spectrometry accuracy.

3.2. Protein quantification and analysis of
protein expression profile differences

Under 1% FDR, our protein peptides were identified from
a total of 5,762 proteins, of which 4,891 proteins could be
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FIGURE 2

Stability evaluation of mass spectrometry identification. (A) Length distribution of peptides identified by mass spectrometry; (B) Molecular weight
and sequence overlap of the identified proteins; (C) Mean peptide mass error.

quantified (Figure 3A). Next, PCA and PCC were performed
on 4,891 proteins. The results demonstrated that the PCA core
graphs were significantly separated at 95% confidence intervals
(Figure 3B), and there was a significant distinction between the
two groups in the PCC graphs (Figure 3C). The above results all
demonstrated that the differences in protein expression profiles
between epilepsy and control groups were statistically significant
and fully satisfied the criterion and could be used for subsequent
analysis. Finally, we obtained 140 DEPs, which included 95 DEPs
remarkably upregulated and 45 DEPs remarkably downregulated

(Supplementary Data Sheet 1). The results of DEPs are illustrated
in the volcano plot (Figure 3D) and heat map (Figure 3E).

3.3. Transcriptome differential expression
analysis

In light of the transcriptome results, we screened 1,800
differentially expressed genes (Supplementary Data Sheet 2),
encompassing 765 downregulated genes and 1,035 upregulated
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FIGURE 3

Protein identification information and multivariate statistical analysis based on proteomics analysis. (A) Basic statistics of mass spectrometry data
results; (B) PCA score plots of hippocampal tissue samples between epilepsy and control groups; (C) Pearson correlation coefficients of
hippocampal tissue samples between epilepsy and control groups; (D) Volcano plots of hippocampal tissue samples between epilepsy and control
groups, where x-axis represents log2 (fold change) and y-axis represents –log10 (p-value). Green triangles represent down-regulated genes, red
triangles represent up-regulated genes, and black dots represent proteins with no significant differential expression; (E) Heatmap of differentially
expressed proteins. Each column in the graph represents a sample, each row represents a gene, and the expression status of genes from low to high
is indicated by red to blue, respectively.

genes, after performing differential expression analysis on the
dataset GSE88992. The volcano plot (Figure 4A) and heat map
display the status of genes with differential expression (Figure 4B).

3.4. Construction of WGCNA and
determination of core essential modules

First, we ran the Pearson correlation matrix and the average
linkage method on all gene pairs. Then, for further modular

clustering operations, we utilized the following formula to build a
weighted adjacency matrix based on the power function.

X mn = |Y mn|β

The equation The Pearson correlation coefficient between gene
m and gene n is represented by Y mn, while the adjacency
between gene m and gene n is represented by X mn. β is a soft
threshold parameter that is used in the generation of the weighted
adjacency matrix to punish weak associations between genes. In
our research, the soft threshold parameter was determined to be 9
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FIGURE 4

(A) The results of the differential expression analysis are shown in the volcano plot. Where the x-axis represents log2 (ploidy change) and the y-axis
represents –log10 (adjusted p-value). Green triangles represent down-regulated genes, red triangles represent up-regulated genes, and black dots
represent genes with no significant differential expression. (B) Heatmap of the top 50 differentially expressed genes. Each column in the graph
represents a sample, each row represents a gene, and the expression status of genes from high to low is represented by red to blue, respectively, at
the top of the heat map, blue/red represents the control group/epilepsy group, respectively.
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FIGURE 5

WGCNA analysis of the epilepsy dataset GSE88992. (A) Scale-free indices used to analyze the potency of various soft thresholds. Horizontal
coordinates represent powers of soft thresholds, and the best soft threshold is marked with an asterisk. (B) Average connectivity of various soft
thresholds. (C) Identification of co-expressed gene modules. A dendrogram of all differentially expressed genes is clustered based on a measure of
gene similarity. Cut lines identifying modules are indicated by different colors for each module. (D) Heat map of module-clinical phenotype
correlation. Each row represents a module; each column represents a clinical feature. Each cell indicates the correlation between the module and
the clinical phenotype. The corresponding cor and p-values are marked blue and lightcyan modules have the strongest correlation with epilepsy.
(E) Correlation between module members (MM) and gene significance (GS) in blue modules. r indicates the absolute correlation coefficient between
GS and MM. (F) Correlation between module members (MM) and gene significance (GS) in lightcyan modules. r indicates the absolute correlation
coefficient between GS and MM.

(Figures 5A, B). We then turned this adjacency between genes into
a topological overlap matrix (TOM matrix), defining 1-TOM as
the difference between genes, which better depicts gene connection
and adjacency. The TOM matrix-based difference metric enables

the classification of genes with similar expression patterns into the
same modules. In the gene tree diagram, we set the minimum
number of genes included inside a module at 30. We merged some
modules with a similar association by calculating the similarity of
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module feature genes from which a suitable cut line was identified
in the gene module dendrogram (Figure 5C). We were finally able
to create 13 main modules that linked well with clinical parameters
and were shown in the form of heat maps through the computation
(Figure 5D). The gray modules in the heat map indicate that
the genes in the module cannot be attributed to any module and
should be deleted from the research as a priority. We got two
most essential modules, blue and lightcyan modules, based on the
correlation heat map of clinical characteristics and modules, where
the blue module has the biggest positive association with epilepsy
and the lightcyan module has the largest negative correlation
with epilepsy. To brief, we calculated the correlations between
modules and clinical features using two techniques. Method I:
Pearson correlation coefficients were determined between ME of
modules and clinical characteristics initially, and then modules that
were substantially correlated with clinical traits (p < 0.05) were
found. Method 2: First, the Pearson correlation coefficient [gene
significance (GS)] was determined between the expression level of
each gene and each clinical characteristic; next, the mean absolute
value GS of all genes in the module was obtained. The higher the
association between the module and the clinical characteristic, the
greater the mean absolute value GS.

Lastly, we generated scatter plots illustrating the GS and MM
correlations for each module (Figures 5E, F). When Figures 5D–F
are linked, we can find that the blue module (cor = 0.94, p = 2.5e-8)
and the lightcyan module (cor =−0.95, p = 6.6e-9) had the strongest
correlation with the epilepsy group, with a total of 3,315 genes
collected from these two modules (Supplementary Data Sheet 3).

3.5. Transcriptome differential gene
screening

We screened DEGs using two algorithms, with 3,315 genes
acquired from WGCNA (1,180 genes in the blue module and 2,135
genes in the lightcyan module) and 1,800 genes obtained through
limma package analysis. The genes identified by the two algorithms
were then overlapped to provide 1,168 DEGs, which were regarded
as transcriptome DEGs. The findings are represented by a Venn
diagram (Figure 6) and are documented in a table (Supplementary
Data Sheet 4).

3.6. Enrichment analysis of DEGs and
DEPs

To identify the functions of these differentially expressed genes
and proteins, we performed GO and KEGG enrichment analyses
on the screened up-regulated DEPs and up-regulated DEGs, and
down-regulated DEPs and down-regulated DEGs, respectively.
We found that both up-regulated DEGs (Figure 7A) and up-
regulated DEPs (Figure 7B) were mainly enriched in cellular
process, single-organism process, synapse, cell junction, catalytic
activity, and molecular function regulator; down-regulated DEGs
(Figure 7C) and down-regulated DEPs (Figure 7D) were also
enriched in cellular process, biological regulation, synapse, cell
junction, catalytic activity, and molecular function regulator. The
GO enrichment (SupplementaryData Sheet 5) results indicate that

FIGURE 6

A total of 1,168 DEGs were screened for further analysis. Orange
represents 1,800 genes obtained by limma package analysis and
blue represents 3,315 genes obtained by WGCNA analysis.

both up/down-regulated DEGs and up/down-regulated DEPs play
a role in protein synthesis and synaptic structural integrity.

The KEGG pathway (Supplementary Data Sheet 6) shows
that up-regulated DEGs are mainly involved in the “TNF
signaling pathway,” “MAPK signaling pathway,” “IL-17 signaling
pathway,” and “Apoptosis” pathway (Figure 8A); In contrast,
the up-regulated DEPs are mainly involved in the “Ribosome,”
“Valine, leucine and isoleucine biosynthesis,” and “Cysteine
and methionine metabolism” pathways (Figure 8B). Down-
regulation of DEGs was mainly involved in “Glutamatergic
synapse,” “Dopaminergic synapse,” “cAMP signaling pathway,”
and “GABAergic synapse” pathway (Figure 8C); while down-
regulated DEPs were mainly involved in “Cell adhesion molecules,”
“IL-17 signaling pathway,” and “Glycine, serine and threonine
metabolism” pathway (Figure 8D). The KEGG results suggest that
both up/down-regulated DEGs and up/down-regulated DEPs play
a role in neuroinflammatory, amino acid metabolism, and synaptic
function pathways.

3.7. Screening for co-expression of
differential genes (proteins)

We overlapped the 1,168 DEGs obtained from the above
analysis with the 140 DEPs obtained from the proteomic differential
analysis, and a total of 10 co-expressed differential genes/proteins
(genes that changed significantly at both transcriptome and
proteome levels). The findings are visualized by a Venn diagram
(Figure 9A) and documented in the table (Supplementary Data
Sheet 7).

3.8. Screening of Hub genes and
construction and validation of diagnostic
models

The potential hub genes in the acute phase of TLE were
filtered through the use of two different algorithms. The LASSO
regression algorithm was used to narrow down the 10 co-
expressed differential genes (proteins) mentioned above, and
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FIGURE 7

Results of GO enrichment analysis for up/down-regulated DEGs and up/down-regulated DEPs are shown. (A) GO enrichment analysis for
up-regulated DEGs. (B) GO enrichment analysis for up-regulated DEPs. (C) GO enrichment analysis for down-regulated DEGs. (D) GO enrichment
analysis for down-regulated DEPs. The red module shows Biological Process results from GO enrichment; the green module shows Cellular
Component results from GO enrichment; the blue module shows Molecular Function results from GO enrichment. The top 25 clusters for
Biological Process, Cellular Component, and Molecular Function are selected and displayed, respectively, according to the Number of Genes
ranking. DEGs, differentially expressed genes; DEPs, differentially expressed proteins; GO, gene ontology.

the 6 co-expressed differential genes most closely related to
TLE were identified (Figure 9B). The SVM-RFE algorithm was
used to identify a subset of four features from the ten co-
expressed differential genes (proteins) listed above (Figure 9C).
Consequently, three main characteristic genes (Ctla2a, Hapln2, and
Pecam1) were identified as hub genes between these two algorithms
(Figure 9D). We utilized the logistic regression algorithm to build
a novel diagnostic model based on the three Hub genes and
determined the AUC scores of the Hub genes and the model
(Figure 9E): Ctla2a (AUC = 1.000), Hapln2 (AUC = 1.000), Pecam1
(AUC = 1.000), and the model (AUC = 1.000). The findings
demonstrated that the novel diagnostic model built from the three
Hub genes could differentiate between epilepsy patients and healthy
control samples.

Furthermore, two independent datasets, GSE49030 and
GSE79129, were chosen to validate the diagnostic model’s
accuracy. Using the same manner, the AUC scores of Hub
genes and models were computed. Ctla2a (AUC = 1.000),
Hapln2 (AUC = 0.748), Pecam1 (AUC = 0.970), and the
model (AUC = 1.000) were reported in the GSE49030 dataset
(Figure 9F). Ctla2a (AUC = 0.778), Hapln2 (AUC = 0.667), Pecam1
(AUC = 1.000), and model (AUC = 1.000) in the GSE79129 dataset
(Figure 9G). In conclusion, the diagnostic model we constructed

can distinguish epileptic patients from normal individuals and is
beneficial for TLE diagnosis and screening during the acute phase.

4. Discussion

In this study, we obtained differential proteins (DEPs) and
differential genes (DEGs) in the acute phase of TLE by proteomics
and transcriptomics, respectively, and performed GO and KEGG
enrichment analyses on up/down-regulated DGEs and up/down-
regulated DEPs, respectively. Pathway enrichment analysis showed
that DEGs and DEPs were mainly involved in neuroinflammation,
amino acid metabolism, and synaptic functional pathways.
This suggests that TLE and neuroinflammatory responses are
closely linked. Previous studies have confirmed the role of
neuroinflammation response-related pathways (Mukherjee et al.,
2020; Terrone et al., 2020) in the development of TLE and it is
worth exploring further.

Following that, the LASSO and SVM-RFE algorithms were
applied to identify the following Hub genes, Ctla2a, Hapln2, and
Pecam1. Among these three hub genes, Pecam1 was significantly
increased in the acute phase of the kainic acid mice epilepsy
model and was considered a novel target for epilepsy therapies
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FIGURE 8

The results of the KEGG pathway analysis for up/down-regulated DEGs and up/down-regulated DEPs are shown as circle plots. (A) KEGG pathway
analysis for up-regulated DEGs. (B) KEGG pathway analysis for up-regulated DEPs. (C) KEGG pathway analysis for down-regulated DEGs. (D) KEGG
pathway analysis for down-regulated DEPs. For enrichment analysis of circle plots, the GO id (or pathway id) label of the first circle corresponds to
the “id” of the result data (Supplementary Data Sheet 6) and the “class” of the result data corresponds to the color of the grouping. The bar length of
the second circle corresponds to the “bg_num” of the result data, i.e., the number of background genes, while the shade of color corresponds to the
P-value (or Q-value). The third circle corresponds to “fg_num” of the resultant data, i.e., the number of foreground genes. The fourth circle (polarity
bar) shows the Rich factor, obtained by dividing by fg_num and bg_num, and corresponds to the data in the ratio column of the “Supplementary
Data Sheet 6.” DEGs, differentially expressed genes; DEPs, differentially expressed proteins; KEGG, Kyoto Encyclopedia of Genes and Genomes.

(Yan et al., 2018). The complete name of Pecam1 is platelet
endothelial cell adhesion molecule 1 (also known as CD31 antigen),
a transmembrane glycoprotein encoded by the PECAM1 gene on
chromosome 17q23.3 (Newman, 1997). It is involved in leukocyte-
endothelial interactions and leukocyte transendothelial migration
during inflammation. Several studies have shown that patients with
multiple sclerosis have significantly elevated expression of Pecam1
in serum and cerebrospinal fluid due to neuroinflammation and
disruption of the blood cerebral barrier, and Pecam1 serum
concentrations can be used as an indicator of multiple sclerosis
blood-brain barrier disruption and a reliable marker of disease
activity (Niezgoda and Losy, 2002). A study of ischemic stroke
also suggests that Pecam1 may be involved in the extent of
early ischemic brain injury mediated by inflammatory responses
(Zaremba and Losy, 2002). According to the two studies, Pecam1
gene upregulation in the brain tissue of individuals with acute
TLE is likely to cause neuroinflammation and blood-brain barrier
disruption, which ultimately contribute to the disease’s progression

in the acute phase of TLE. This increases the possibility that Pecam1
gene upregulation could be employed as a biomarker for TLE in
acute-phase screening. Ctla2a is cytotoxic T lymphocyte-associated
protein 2α, originally identified as being expressed in activating T
and mast cells in mice (Denizot et al., 1989). Ctla2a resembles the
cysteine protease pre-region structurally (Yamamoto et al., 2002).
A major member of the family of lysosomal cysteine proteases is
cathepsin L; therefore, Ctla2a demonstrated selective inhibition of
cathepsin L (Kurata et al., 2003). In research on ischemic stroke, it
was indicated that inhibition of cathepsin L expression in astrocytes
contributes to neuronal protection (Xu et al., 2014). Additionally,
previous research has revealed that astrocyte activation and
inflammation contribute a significant part to the development
of epilepsy (Devinsky et al., 2013). The above two studies both
suggest that Ctla2a may rescue neuronal death in epileptic lesions
by inhibiting the expression of cathepsin L produced by astrocyte
activation in neuroinflammation, and thus. In one of the other
studies, Ctla2a suppressed the proliferation of endothelial cells in
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FIGURE 9

Screening of Hub genes and construction and validation of diagnostic models. (A) A total of 10 co-expressed differential genes (proteins) were
screened for the next step of the analysis. Red represents 1,168 differential genes (DEGs) obtained by transcriptomic analysis and blue represents 140
differential proteins obtained by proteomic analysis. (B) Hub genes were screened using the least absolute shrinkage and selection operator (LASSO)
logistic regression method. (C) Selection of hub genes by support vector machine recursive feature elimination (SVM-RFE) algorithm of feature
selection. (D) Venn diagram showing the three hub genes common to the LASSO and SVM-RFE algorithms (Supplementary Data Sheet 8). (E) ROC
curves for the hub gene (top) and model (bottom) of the training set GSE88992 dataset. (F) ROC curves for the hub gene (top) and model (bottom)
of the validation set GSE49030 dataset. (G) ROC curves for the validation set GSE79129 dataset Hub gene (top) and model (bottom). Different color
lines in ROC curves represent different genes.

models of experimental choroidal neovascularization and ocular
inflammation (Maruyama et al., 2021). In the brains of epileptic
patients, blood-brain barrier dysfunction promotes seizures, and
sustained seizure activity exacerbates blood-brain barrier damage
and angiogenesis, further promoting recurrent seizures (Marchi
and Lerner-Natoli, 2013). In conclusion, the pathophysiology

of the acute phase of TLE may be suppressed by Ctla2a. On
the one hand, it may protect neurons from apoptosis and thus
reduce seizures by inhibiting the release of cathepsin L in TLE
lesions, and on the other hand, by decreasing endothelial cell
growth, it may prevent angiogenesis, lessen the blood-brain barrier
damage caused by inflammation in epileptic lesions, and help
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stop recurring seizures from progressing to chronic seizures.
Hapln2, a hyaluronan and proteoglycan link protein 2, also known
as brain-derived connexin 1 (Bral1), is essential for neuronal
conductivity and extracellular matrix (ECM) formation and has
been identified to be involved in a variety of neurological disease
pathologies, such as schizophrenia (Martins-de-Souza et al., 2009)
and Alzheimer’s disease (Minjarez et al., 2013). Previous work
has shown that deletion of Hapln2 decreases the expression of
ECM-related proteins (Billingsley et al., 2018). In contrast, an
essential part in neuronal death, neuroinflammation, blood-brain
barrier disruption, the development of perineuronal networks,
and synaptic plasticity-induced epileptic damage is played by the
extracellular structural scaffold known as ECM (Pitkänen and
Sutula, 2002; Pitkänen et al., 2014; Gorter et al., 2015; Sacks et al.,
2018). Thus, Hapln2 regulates the development of epilepsy by
affecting the expression of ECM-related proteins. Nevertheless,
the Ctla2a and Hapln2 genes have not been adequately studied
in epilepsy, and further research is required to determine their
possible significance to epilepsy. We next utilized the logistic
regression algorithm to build a novel epilepsy diagnosis model
incorporating the three hub genes mentioned above. We verified
the model’s accuracy utilizing three available public sets of data.
Our research’s most remarkable innovation is the use of proteomics,
transcriptomics, and machine learning algorithms in the field of
epilepsy, with promising results. LASSO and SVM-RFE algorithms
are emerging high-accuracy mechanical learned algorithms that
have been adopted extensively in many domains, though of course,
their usefulness in the medical domain is precisely the same. The
LASSO linkage SVM-RFE algorithm has been widely used in the
study of clinical diseases, such as using LASSO linkage SVM-
RFE to identify biomarkers in patients with acute myocardial
infarction to find potential targets for treatment (Zhao et al., 2020)
and constructing a new stem cell-related classifier to predict the
prognostic of hepatocellular carcinoma patients (Chen et al., 2022),
as well as to forecast the evolution for atherosclerotic plaques (Yang
et al., 2022) with good results. The combined proteomics and
transcriptomics analysis are now also commonly used in the field of
epilepsy. Several academics have identified key regulators involved
in epilepsy-induced cardiac injury via combined proteomics and
transcriptomics analysis (Sharma et al., 2021). Nevertheless, there
is no research to apply this combination of both in the field of
epilepsy (Shan et al., 2021). Thus, the epilepsy diagnosis model
developed by integrated proteomics and transcriptomics analysis
using LASSO and SVM-RFE algorithms is a daring endeavor and
a good supplement to existing diagnostic approaches. Meanwhile,
our study reveals epilepsy vulnerability genes that might be
participating in the regulating neuroinflammatory response of the
pathway. It is our wish that their essential worth will be mirrored in
forthcoming research.

Nonetheless, there were certain limits to our research. First,
the experimental data of proteomics and transcriptomics were
from different experimental platforms and there were some errors.
The results obtained from association analysis still need to be
validated in experimental studies to confirm our conclusions.
Second, the data samples used in this study were all brain tissue
samples, lacking the validation of blood or cerebrospinal fluid
samples, and the sample size was relatively inadequate, which
warranted an additional sample amount and further research and
optimization. Third, the applicability of our conclusions to people

with epilepsy is uncertain owing to a dearth of relevant data on
epileptic individuals.

5. Conclusion

We used joint proteomics and transcriptomics analysis
combined with both LASSO and SVM-RFE algorithms to
determine the Hub genes connected with the acute phase of TLE
onset and construct an epilepsy classification diagnostic model
based on a logistic regression algorithm. Finally, we demonstrated
its superb categorization properties in three separate data sets. In
this study, we complemented the available screening and diagnostic
instruments in the acute phase of TLE and revealed epilepsy
vulnerability genes that might be participating in the regulation
of neuroinflammation; it also provided a new perspective to better
find drug targets.

Data availability statement

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD040967 (http://www.ebi.
ac.uk/pride).

Ethics statement

The animal study was reviewed and approved by the
Ethics Committee of the Second Affiliated Hospital of Harbin
Medical University.

Author contributions

CH and ZY completed the design of this study and wrote the
manuscript. ZL, JL, and YL completed the construction of the
epilepsy model used in this study as well as protein extraction and
mass spectrometry analysis. XL and CP provided the suggestions
for data analysis. YH critically revised the manuscript and provided
the suggestions for data analysis. JS provided the constructive
suggestions for this study. All authors contributed to the article and
approved the submitted version.

Funding

This study was supported by the National Natural Science
Foundation of China (No. 81871016) and the Heilongjiang
Province Post-doctoral Research Starting Grant (No. LBH-
Q20045).

Acknowledgments

We would like to thank the GEO database for data support.

Frontiers in Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1145805
http://www.ebi.ac.uk/pride
http://www.ebi.ac.uk/pride
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1145805 March 24, 2023 Time: 15:18 # 15

Huang et al. 10.3389/fnins.2023.1145805

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.2023.
1145805/full#supplementary-material

References

Banote, R., Akel, S., and Zelano, J. (2022). Blood biomarkers in epilepsy. Acta Neurol.
Scand. 146, 362–368. doi: 10.1111/ane.13616

Bardou, P., Mariette, J., Escudié, F., Djemiel, C., and Klopp, C. (2014). jvenn: An
interactive Venn diagram viewer. BMC Bioinformatics 15:293. doi: 10.1186/1471-
2105-15-293

Billingsley, K., Bandres-Ciga, S., Saez-Atienzar, S., and Singleton, A. (2018). Genetic
risk factors in Parkinson’s disease. Cell Tissue Res. 373, 9–20. doi: 10.1007/s00441-018-
2817-y

Blumcke, I., Spreafico, R., Haaker, G., Coras, R., Kobow, K., Bien, C. G., et al. (2017).
Histopathological findings in brain tissue obtained during epilepsy surgery. N. Engl. J.
Med. 377, 1648–1656. doi: 10.1056/NEJMoa1703784

Chen, D., Liu, J., Zang, L., Xiao, T., Zhang, X., Li, Z., et al. (2022). Integrated machine
learning and bioinformatic analyses constructed a novel stemness-related classifier
to predict prognosis and immunotherapy responses for hepatocellular carcinoma
patients. Int. J. Biol. Sci. 18, 360–373. doi: 10.7150/ijbs.66913

Denizot, F., Brunet, J. F., Roustan, P., Harper, K., Suzan, M., Luciani, M. F., et al.
(1989). Novel structures CTLA-2 alpha and CTLA-2 beta expressed in mouse activated
T cells and mast cells and homologous to cysteine proteinase proregions. Eur. J.
Immunol. 19, 631–635. doi: 10.1002/eji.1830190409

Devinsky, O., Vezzani, A., Najjar, S., De Lanerolle, N., and Rogawski, M. (2013).
Glia and epilepsy: Excitability and inflammation. Trends Neurosci. 36, 174–184. doi:
10.1016/j.tins.2012.11.008

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22. doi: 10.
18637/jss.v033.i01

Gorter, J., van Vliet, E., and Aronica, E. (2015). Status epilepticus, blood-brain
barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav. 49, 13–16. doi:
10.1016/j.yebeh.2015.04.047

Krook-Magnuson, E., Armstrong, C., Oijala, M., and Soltesz, I. (2013). On-demand
optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun.
4:1376. doi: 10.1038/ncomms2376

Krumholz, A., Wiebe, S., Gronseth, G., Gloss, D. S., Sanchez, A. M., Kabir, A. A.,
et al. (2015). Evidence-based guideline: Management of an unprovoked first seizure in
adults: Report of the guideline development subcommittee of the American Academy
of neurology and the American epilepsy society. Epilepsy Curr. 15, 144–152. doi:
10.5698/1535-7597-15.3.144

Kurata, M., Hirata, M., Watabe, S., Miyake, M., Takahashi, S., and Yamamoto,
Y. (2003). Expression, purification, and inhibitory activities of mouse cytotoxic
T-lymphocyte antigen-2alpha. Protein Express. Purif. 32, 119–125. doi: 10.1016/
S1046-5928(03)00222-5

Leitner, D. F., Mills, J. D., Pires, G., Faustin, A., Drummond, E., Kanshin, E.,
et al. (2021). Proteomics and transcriptomics of the hippocampus and cortex in
SUDEP and high-risk SUDEP patients. Neurology 96, e2639–e2652. doi: 10.1212/
WNL.0000000000011999

Li, L., Lei, Q., Zhang, S., Kong, L., and Qin, B. (2017). Screening and identification
of key biomarkers in hepatocellular carcinoma: Evidence from bioinformatic analysis.
Oncol. Rep. 38, 2607–2618. doi: 10.3892/or.2017.5946

Liang, K., Mu, R., Liu, Y., Jiang, D., Jia, T., and Huang, Y. (2019). Increased serum
S100B levels in patients with epilepsy: A systematic review and meta-analysis study.
Front. Neurosci. 13:456. doi: 10.3389/fnins.2019.00456

Marchi, N., and Lerner-Natoli, M. (2013). Cerebrovascular remodeling and epilepsy.
Neuroscientist 19, 304–312. doi: 10.1177/1073858412462747

Martins-de-Souza, D., Gattaz, W. F., Schmitt, A., Rewerts, C., Marangoni, S.,
Novello, J. C., et al. (2009). Alterations in oligodendrocyte proteins, calcium

homeostasis and new potential markers in schizophrenia anterior temporal lobe are
revealed by shotgun proteome analysis. J. Neural Transm. 116, 275–289. doi: 10.1007/
s00702-008-0156-y

Maruyama, K., Yoneda, K., Sugita, S., Yamamoto, Y., Koike, M., Peters, C., et al.
(2021). CTLA-2 alpha is a potent inhibitor of angiogenesis in murine ocular tissue.
Antioxidants 10:456. doi: 10.3390/antiox10030456

Minjarez, B., Valero Rustarazo, M., Sanchez del Pino, M., González-Robles, A.,
Sosa-Melgarejo, J., Luna-Muñoz, J., et al. (2013). Identification of polypeptides in
neurofibrillary tangles and total homogenates of brains with Alzheimer’s disease by
tandem mass spectrometry. J. Alzheimers Dis. 34, 239–262. doi: 10.3233/JAD-12
1480

Mondello, S., Palmio, J., Streeter, J., Hayes, R., Peltola, J., and Jeromin, A. (2012).
Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is increased in cerebrospinal fluid
and plasma of patients after epileptic seizure. BMC Neurol. 12:85. doi: 10.1186/1471-
2377-12-85

Mukherjee, S., Arisi, G., Mims, K., Hollingsworth, G., O’Neil, K., and Shapiro, L.
(2020). Neuroinflammatory mechanisms of post-traumatic epilepsy. J. Neuroinflamm.
17:193. doi: 10.1186/s12974-020-01854-w

Newman, P. (1997). The biology of PECAM-1. J. Clin. Investig. 99, 3–8. doi: 10.1172/
JCI119129

Niezgoda, A., and Losy, J. (2002). Pecam-1 expression in patients with relapsing-
remitting multiple sclerosis. Folia Morphol. 61, 143–145.

Pitkänen, A., and Sutula, T. (2002). Is epilepsy a progressive disorder? Prospects
for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol. 1, 173–181.
doi: 10.1016/S1474-4422(02)00073-X

Pitkänen, A., Ndode-Ekane, X. E., Łukasiuk, K., Wilczynski, G. M., Dityatev, A.,
Walker, M. C., et al. (2014). Neural ECM and epilepsy. Prog. Brain Res. 214, 229–262.
doi: 10.1016/B978-0-444-63486-3.00011-6

Racine, R. (1972). Modification of seizure activity by electrical stimulation. II.
Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32, 281–294. doi: 10.1016/0013-
4694(72)90177-0

Rawat, C., Kushwaha, S., Srivastava, A., and Kukreti, R. (2020). Peripheral blood
gene expression signatures associated with epilepsy and its etiologic classification.
Genomics 112, 218–224. doi: 10.1016/j.ygeno.2019.01.017

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Sacks, D., Baxter, B., Campbell, B., Carpenter, J., Cognard, C., Dippel, D., et al.
(2018). Multisociety consensus quality improvement revised consensus statement for
endovascular therapy of acute ischemic stroke. Int. J. Stroke 13, 612–632. doi: 10.1016/
j.jvir.2017.11.026

Sarkis, G. A., Mangaonkar, M. D., Moghieb, A., Lelling, B., Guertin, M., Yadikar, H.,
et al. (2017). The application of proteomics to traumatic brain and spinal cord injuries.
Curr. Neurol. Neurosci. Rep. 17:23. doi: 10.1007/s11910-017-0736-z

Shan, Z., Luo, D., Liu, Q., Cai, S., Wang, R., Ma, Y., et al. (2021). Proteomic profiling
reveals a signature for optimizing prognostic prediction in Colon cancer. J. Cancer 12,
2199–2205. doi: 10.7150/jca.50630

Sharma, S., Sharma, M., Rana, A. K., Joshi, R., Swarnkar, M. K., Acharya, V.,
et al. (2021). Deciphering key regulators involved in epilepsy-induced cardiac damage
through whole transcriptome and proteome analysis in a rat model. Epilepsia 62,
504–516. doi: 10.1111/epi.16794

Simani, L., Elmi, M., and Asadollahi, M. (2018). Serum GFAP level: A novel
adjunctive diagnostic test in differentiate epileptic seizures from psychogenic attacks.
Seizure 61, 41–44. doi: 10.1016/j.seizure.2018.07.010

Frontiers in Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1145805
https://www.frontiersin.org/articles/10.3389/fnins.2023.1145805/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2023.1145805/full#supplementary-material
https://doi.org/10.1111/ane.13616
https://doi.org/10.1186/1471-2105-15-293
https://doi.org/10.1186/1471-2105-15-293
https://doi.org/10.1007/s00441-018-2817-y
https://doi.org/10.1007/s00441-018-2817-y
https://doi.org/10.1056/NEJMoa1703784
https://doi.org/10.7150/ijbs.66913
https://doi.org/10.1002/eji.1830190409
https://doi.org/10.1016/j.tins.2012.11.008
https://doi.org/10.1016/j.tins.2012.11.008
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1016/j.yebeh.2015.04.047
https://doi.org/10.1016/j.yebeh.2015.04.047
https://doi.org/10.1038/ncomms2376
https://doi.org/10.5698/1535-7597-15.3.144
https://doi.org/10.5698/1535-7597-15.3.144
https://doi.org/10.1016/S1046-5928(03)00222-5
https://doi.org/10.1016/S1046-5928(03)00222-5
https://doi.org/10.1212/WNL.0000000000011999
https://doi.org/10.1212/WNL.0000000000011999
https://doi.org/10.3892/or.2017.5946
https://doi.org/10.3389/fnins.2019.00456
https://doi.org/10.1177/1073858412462747
https://doi.org/10.1007/s00702-008-0156-y
https://doi.org/10.1007/s00702-008-0156-y
https://doi.org/10.3390/antiox10030456
https://doi.org/10.3233/JAD-121480
https://doi.org/10.3233/JAD-121480
https://doi.org/10.1186/1471-2377-12-85
https://doi.org/10.1186/1471-2377-12-85
https://doi.org/10.1186/s12974-020-01854-w
https://doi.org/10.1172/JCI119129
https://doi.org/10.1172/JCI119129
https://doi.org/10.1016/S1474-4422(02)00073-X
https://doi.org/10.1016/B978-0-444-63486-3.00011-6
https://doi.org/10.1016/0013-4694(72)90177-0
https://doi.org/10.1016/0013-4694(72)90177-0
https://doi.org/10.1016/j.ygeno.2019.01.017
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.jvir.2017.11.026
https://doi.org/10.1016/j.jvir.2017.11.026
https://doi.org/10.1007/s11910-017-0736-z
https://doi.org/10.7150/jca.50630
https://doi.org/10.1111/epi.16794
https://doi.org/10.1016/j.seizure.2018.07.010
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1145805 March 24, 2023 Time: 15:18 # 16

Huang et al. 10.3389/fnins.2023.1145805

Simani, L., Sadeghi, M., Ryan, F., Dehghani, M., and Niknazar, S. (2020). Elevated
blood-based brain biomarker levels in patients with epileptic seizures: A systematic
review and meta-analysis. ACS Chem. Neurosci. 11, 4048–4059. doi: 10.1021/
acschemneuro.0c00492

Sun, J., Jiang, T., Gu, F., Ma, D., and Liang, J. T. M. T. - (2020). TMT-based
proteomic analysis of plasma from children with rolandic epilepsy. Dis. Mark.
2020:8840482. doi: 10.1155/2020/8840482

Terrone, G., Balosso, S., Pauletti, A., Ravizza, T., and Vezzani, A. (2020).
Inflammation and reactive oxygen species as disease modifiers in epilepsy.
Neuropharmacology 167:107742. doi: 10.1016/j.neuropharm.2019.107742

Vezzani, A., Fujinami, R. S., White, H. S., Preux, P., Blümcke, I., Sander, J. W.,
et al. (2016). Infections, inflammation and epilepsy. Acta Neuropathol. 131, 211–234.
doi: 10.1007/s00401-015-1481-5

Wang, Q., and Liu, X. (2015). Screening of feature genes in distinguishing different
types of breast cancer using support vector machine. OncoTargets Ther. 8, 2311–2317.
doi: 10.2147/OTT.S85271

Wang, Y., Wang, J., Shi, Y., Ye, H., Luo, W., and Geng, F. (2022). Quantitative
proteomic analyses during formation of chicken egg yolk. Food Chem. 374:131828.
doi: 10.1016/j.foodchem.2021.131828

Wu, X., Qin, K., Iroegbu, C. D., Xiang, K., Peng, J., Guo, J., et al. (2022).
Genetic analysis of potential biomarkers and therapeutic targets in ferroptosis from
coronary artery disease. J. Cell. Mol. Med. 26, 2177–2190. doi: 10.1111/jcmm.1
7239

Xu, J., Liang, C., and Li, J. (2022). A signal recognition particle-related joint model
of LASSO regression, SVM-RFE and artificial neural network for the diagnosis of

systemic sclerosis-associated pulmonary hypertension. Front. Genet. 13:1078200. doi:
10.3389/fgene.2022.1078200

Xu, M., Yang, L., Rong, J., Ni, Y., Gu, W., Luo, Y., et al. (2014). Inhibition of cysteine
cathepsin B and L activation in astrocytes contributes to neuroprotection against
cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway.
Glia 62, 855–880. doi: 10.1002/glia.22645

Yamamoto, Y., Kurata, M., Watabe, S., Murakami, R., and Takahashi, S. (2002).
Novel cysteine proteinase inhibitors homologous to the proregions of cysteine
proteinases. Curr. Protein Peptide Sci. 3, 231–238. doi: 10.2174/1389203024605331

Yan, B. C., Xu, P., Gao, M., Wang, J., Jiang, D., Zhu, X., et al. (2018). Changes in the
blood-brain barrier function are associated with hippocampal neuron death in a kainic
acid mouse model of epilepsy. Front .Neurol. 9:775. doi: 10.3389/fneur.2018.00775

Yang, P., Hu, J., Liu, J., Zhang, Y., Gao, B., Wang, T. T., et al. (2020). Ninety-day
nephrotoxicity evaluation of 3-MCPD 1-monooleate and 1-monostearate exposures in
male sprague dawley rats using proteomic analysis. J. Agric. Food Chem. 68, 2765–2772.
doi: 10.1021/acs.jafc.0c00281

Yang, Y., Yi, X., Cai, Y., Zhang, Y., and Xu, Z. (2022). Immune-associated gene
signatures and subtypes to predict the progression of atherosclerotic plaques based
on machine learning. Front. Pharmacol. 13:865624. doi: 10.3389/fphar.2022.865624

Zaremba, J., and Losy, J. (2002). sPECAM-1 in serum and CSF of acute ischaemic
stroke patients. Acta Neurol. Scand. 106, 292–298. doi: 10.1034/j.1600-0404.2002.
01339.x

Zhao, E., Xie, H., and Zhang, Y. (2020). Predicting diagnostic gene biomarkers
associated with immune infiltration in patients with acute myocardial infarction.
Front. Cardiovasc. Med. 7:586871. doi: 10.3389/fcvm.2020.586871

Frontiers in Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2023.1145805
https://doi.org/10.1021/acschemneuro.0c00492
https://doi.org/10.1021/acschemneuro.0c00492
https://doi.org/10.1155/2020/8840482
https://doi.org/10.1016/j.neuropharm.2019.107742
https://doi.org/10.1007/s00401-015-1481-5
https://doi.org/10.2147/OTT.S85271
https://doi.org/10.1016/j.foodchem.2021.131828
https://doi.org/10.1111/jcmm.17239
https://doi.org/10.1111/jcmm.17239
https://doi.org/10.3389/fgene.2022.1078200
https://doi.org/10.3389/fgene.2022.1078200
https://doi.org/10.1002/glia.22645
https://doi.org/10.2174/1389203024605331
https://doi.org/10.3389/fneur.2018.00775
https://doi.org/10.1021/acs.jafc.0c00281
https://doi.org/10.3389/fphar.2022.865624
https://doi.org/10.1034/j.1600-0404.2002.01339.x
https://doi.org/10.1034/j.1600-0404.2002.01339.x
https://doi.org/10.3389/fcvm.2020.586871
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Combined transcriptomics and proteomics forecast analysis for potential biomarker in the acute phase of temporal lobe epilepsy
	1. Introduction
	2. Materials and methods
	2.1. Animals
	2.2. The model of kainic acid-induced epilepsy in mice
	2.3. Proteomics section
	2.3.1. Protein extraction and tryptic enzyme digestion
	2.3.2. TMT/iTRAQ labeling and HPLC fractionation
	2.3.3. Liquid chromatograph mass spectrometer (LC-MS) analysis
	2.3.4. Database search
	2.3.5. Differential protein analysis

	2.4. Transcriptomics section
	2.4.1. Download and processing of expression spectrum data
	2.4.2. Differential expression analysis
	2.4.3. Establishing a weighted gene co-expression analysis network
	2.4.4. Genes associated with weighted co-expression networks and differentially expressed genes overlap
	2.4.5. Functional enrichment analysis

	2.5. Screening on co-expressed differential genes (proteins)
	2.6. Screening of Hub genes and construction and validation of diagnostic models

	3. Results
	3.1. General information on mass spectrometry
	3.2. Protein quantification and analysis of protein expression profile differences
	3.3. Transcriptome differential expression analysis
	3.4. Construction of WGCNA and determination of core essential modules
	3.5. Transcriptome differential gene screening
	3.6. Enrichment analysis of DEGs and DEPs
	3.7. Screening for co-expression of differential genes (proteins)
	3.8. Screening of Hub genes and construction and validation of diagnostic models

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


