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Retinal ganglion cells adapt to 
ionic stress in experimental 
glaucoma
Andrew M. Boal , Nolan R. McGrady , Joseph M. Holden , 
Michael L. Risner  and David J. Calkins *
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Introduction: Identification of early adaptive and maladaptive neuronal stress 
responses is an important step in developing targeted neuroprotective therapies 
for degenerative disease. In glaucoma, retinal ganglion cells (RGCs) and their 
axons undergo progressive degeneration resulting from stress driven by sensitivity 
to intraocular pressure (IOP). Despite therapies that can effectively manage IOP 
many patients progress to vision loss, necessitating development of neuronal-
based therapies. Evidence from experimental models of glaucoma indicates that 
early in the disease RGCs experience altered excitability and are challenged with 
dysregulated potassium (K+) homeostasis. Previously we demonstrated that certain 
RGC types have distinct excitability profiles and thresholds for depolarization 
block, which are associated with sensitivity to extracellular K+.

Methods: Here, we used our inducible mouse model of glaucoma to investigate 
how RGC sensitivity to K+ changes with exposure to elevated IOP.

Results: In controls, conditions of increased K+ enhanced membrane depolarization, 
reduced action potential generation, and widened action potentials. Consistent 
with our previous work, 4 weeks of IOP elevation diminished RGC light-and 
current-evoked responses. Compared to controls, we found that IOP elevation 
reduced the effects of increased K+ on depolarization block threshold, with IOP-
exposed cells maintaining greater excitability. Finally, IOP elevation did not alter 
axon initial segment dimensions, suggesting that structural plasticity alone cannot 
explain decreased K+ sensitivity.

Discussion: Thus, in response to prolonged IOP elevation RGCs undergo an adaptive 
process that reduces sensitivity to changes in K+ while diminishing excitability. These 
experiments give insight into the RGC response to IOP stress and lay the groundwork 
for mechanistic investigation into targets for neuroprotective therapy.
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1. Introduction

Glaucoma is the leading cause of irreversible vison loss worldwide (Tham et al., 2014). The 
disease involves progressive degeneration of retinal ganglion cells (RGCs) and their axons, which 
carry visual information from the eye to central targets in the brain. Aging is the leading risk 
factor, though sensitivity to intraocular pressure (IOP) is the only modifiable risk factor. In 
glaucoma, stress evolving from sensitivity to IOP challenges RGC axons as they pass 
unmyelinated through the optic nerve head of the retina. Many patients continue to lose vision 
despite efforts to manage IOP with topical and surgical hypotensive therapies (Heijl et al., 2002), 

OPEN ACCESS

EDITED BY

Wensi Tao,  
University of Miami Health System,  
United States

REVIEWED BY

Guy Perkins,  
University of California, San Diego,  
United States
Tonking Bastola,  
University of California, San Diego,  
United States

*CORRESPONDENCE

David J. Calkins  
 david.j.calkins@vumc.org

SPECIALTY SECTION

This article was submitted to  
Visual Neuroscience,  
a section of the journal  
Frontiers in Neuroscience

RECEIVED 11 January 2023
ACCEPTED 10 March 2023
PUBLISHED 27 March 2023

CITATION

Boal AM, McGrady NR, Holden JM, 
Risner ML and Calkins DJ (2023) Retinal 
ganglion cells adapt to ionic stress in 
experimental glaucoma.
Front. Neurosci. 17:1142668.
doi: 10.3389/fnins.2023.1142668

COPYRIGHT

© 2023 Boal, McGrady, Holden, Risner and 
Calkins. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Original Research
PUBLISHED 27 March 2023
DOI 10.3389/fnins.2023.1142668

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1142668&domain=pdf&date_stamp=2023-03-27
https://www.frontiersin.org/articles/10.3389/fnins.2023.1142668/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1142668/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1142668/full
mailto:david.j.calkins@vumc.org
https://doi.org/10.3389/fnins.2023.1142668
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1142668


Boal et al. 10.3389/fnins.2023.1142668

Frontiers in Neuroscience 02 frontiersin.org

underscoring the need to identify new therapeutics based on 
mechanistic understanding of how RGCs and their axons respond to 
glaucomatous stress.

Development of neuronal-based therapies for the treatment of 
glaucoma requires identification of targets involved in pathophysiology, 
target-specific therapeutics, and biomarkers to assay outcomes (Calkins, 
2021). Early progression in experimental glaucoma involves enhanced 
RGC excitability with a concurrent reduction in axon function (Risner 
et  al., 2018). Prolonged stress ultimately overcomes the adaptive 
mechanisms and leads to RGC degeneration (Sappington et al., 2010; 
Naguib et al., 2021; Risner et al., 2021, 2022). The RGC population is 
heterogeneous (Sanes and Masland, 2015; Baden et al., 2016; Bae et al., 
2018; Tran et  al., 2019), with RGC-intrinsic factors shaping their 
individual response properties (Emanuel et al., 2017; Werginz et al., 2020; 
Wienbar and Schwartz, 2022). Importantly, such intrinsic differences may 
predispose certain RGC types to be particularly sensitive to IOP-related 
stress (Della Santina et al., 2013; El-Danaf and Huberman, 2015; Ou et al., 
2016; Risner et al., 2021). Previously, we established that different RGC 
subtypes exhibit varied sensitivities to elevated extracellular potassium 
(Boal et al., 2022). Dysregulation of potassium ion (K+) homeostasis and 
channel expression contribute to altered excitability in neurodegenerative 
diseases, including glaucoma, and represent potential targets for early 
diagnosis and treatment (Hall et al., 2015; Frazzini et al., 2016; Cacace 
et al., 2019; Fischer et al., 2019a,b; Kim et al., 2021).

Here, we  utilized our inducible mouse model of glaucoma 
(Sappington et  al., 2010; Calkins et  al., 2018) to investigate how 
prolonged exposure to elevated IOP changes RGC sensitivity to 
acutely elevated extracellular K+. Following 4 weeks of IOP elevation, 
alpha ON-sustained (αON-S) and alpha OFF-sustained (αOFF-S) 
RGCs had reduced responses to light and depolarizing current 
stimulation, consistent with previous results (Risner et al., 2021, 2022). 
In controls with normal IOP, challenging RGCs with high extracellular 
K+ led to membrane depolarization, blunted spike rate, and action 
potential (AP) widening in both αON-S and αOFF-S cells. IOP 
elevation reduced the effects of elevated K+ in both RGC types. 
Compared to controls, RGCs exposed to elevated IOP were less 
depolarized and maintained greater current-evoked spiking during 
acute K+ elevation. Furthermore, K+-dependent AP widening was 
decreased, though the impact of IOP on AP widths differed for αON-S 
and αOFF-S cells. Immunolabeling of the axon initial segment (AIS), 
the site of AP initiation in neurons, revealed that IOP elevation did 
not structurally alter AIS scaffolding for either RGC type.

These results suggest that, after 4 weeks of IOP elevation, RGCs 
undergo an adaptive process that reduces sensitivity to acutely elevated 
K+ while diminishing their excitability. Differences between αON-S 
and αOFF-S in how AP widths vary with IOP exposure and K+ 
conditions support evidence for cell-type specific responses to stress. 
This adaptation involves altered AP generation, indicating an axogenic 
process, but it is not solely reflective of axonal structural plasticity.

2. Materials and methods

2.1. Animals

We obtained 15 C57Bl6/J mice (8 males, 7 females, 12–20 weeks 
old) from Jackson Laboratories (Bar Harbor, ME). These numbers 
were determined, based upon our previous experience with this model 

and recording strategy (Risner et al., 2018, 2021; Boal et al., 2022), to 
provide a sufficient number of each cell type for statistical 
comparisons. Mice were housed at the Vanderbilt University Division 
of Animal Care and maintained on 12-h light/dark cycle. Animals 
were allowed water and standard rodent chow ad libitum. All animal 
experiments were reviewed and approved by the Vanderbilt University 
Medical Center Institutional Animal Care and Use Committee.

2.2. Intraocular pressure elevation and 
measurement

Mice were anesthetized with isoflurane (2.5%) and administered 
tropicamide (1%), proparacaine (0.5%), and lubricating drops in both 
eyes. For the 4 week intraocular pressure (IOP) elevation group (4wk 
IOP) we bilaterally injected 1.5 μL of 15 μm polystyrene microbeads 
(Invitrogen, Carlsbad, CA) into the anterior chamber of the eye 
(Sappington et al., 2010) using borosilicate glass pipette attached to a 
micromanipulator (M3301R, WPI, Sarasota, FL), driven by a 
microsyringe pump (DMP, WPI, Sarasota, FL). For the 4wk saline 
control group (4wk Ctrl) we bilaterally injected an equal volume of 
sterile phosphate-buffered saline (PBS) into the anterior chamber 
using the same system. Mice were injected in cohorts of five at a time. 
For 4wk Ctrl, a second cohort of five was done because an insufficient 
number of cells of interest were recorded from the first. Animals of 
both sexes were evenly split between experimental groups (p = 0.5581, 
Chi-squared test).

For IOP measurements, mice were lightly anesthetized with 
isoflurane (2%) and pressures were measured using rebound 
tonometry (iCare Tonolab; Vantaa, Finland). IOP for each eye was 
determined as the mean of 15 consecutive measurements. For the 2 
days preceding anterior chamber injections we measured IOP for each 
group and averaged these values to determine baseline IOP. Beginning 
2 days post-injection, IOP was measured three times per week for the 
duration of the 4 week experimental period.

2.3. Electrophysiology

Approximately 4 weeks (±2 days) following anterior chamber 
injection mice were euthanized via cervical dislocation and 
decapitation, eyes were enucleated, and the retinas were dissected out 
under long-wavelength illumination (630 nm, 800 μW/cm2, FND/FG, 
Ushio, Cypress, CA). Retinas were placed in carbogen-saturated 
Ames’ medium (US Biologic, Memphis, TN) supplemented with 
20 mM D-glucose and 22.6 mM NaHCO3 (pH 7.4, 290 Osm). Each 
retina was mounted flat onto a physiological chamber, inner retina 
facing upwards, and perfused at a rate of 2 mL/min with Ames’ 
medium maintained at 35°C (Model TC-344C, Warner Instruments, 
Hamden, CT).

Retinal ganglion cells (RGCs) were viewed under differential 
interference contrast (DIC) using an Andor CCD camera attached to 
an Olympus BX50 upright microscope at 40x magnification. RGCs 
with large somas were targeted for intracellular recording with pipettes 
pulled from borosilicate glass (I.D. 0.86 mm, O.D. 1.5 mm; Sutter 
Instruments, Novato, CA) and filled with (in mM): 125 K-gluconate, 
10 KCl, 10 HEPES, 10 EGTA, 4 Mg-ATP, 1 Na-GTP, and 0.1 ALEXA 
555 dye (Invitrogen, Carlsbad, CA). The intracellular solution pH was 
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7.35 and osmolarity was 285 Osm. Recording pipettes filled with 
intracellular solution had a resistance between 4 and 8 MΩ. Whole-
cell current-clamp signals were amplified (Multiclamp  700B, 
Molecular Devices, San Jose, CA) and digitized at 10 kHz (Digidata 
1550A, Molecular Devices, San Jose, CA). Access resistance was 
monitored periodically during recordings and maintained ≤ 30 MΩ.

We measured resting membrane potential (RMP), spontaneous 
spiking, light-evoked spike activity (full-field 365 + 460 nm, 3.4 mW/
cm2, 3-s duration, CoolLED, pE-4,000, Andover, United Kingdom), 
and current-evoked spiking while clamping the cell at 0 pA. Current-
evoked spiking was measured during stepwise application of 1 s 
depolarizing current pulses, ranging from 0 to +300 pA in 10 pA 
increments, with a 2 s inter-stimulus interval. Current was clamped at 
0 pA between pulses.

2.4. High extracellular potassium 
recordings

A second batch of Ames’ medium was prepared as described 
above, but with an additional 5 mM of KCl (i.e., high K+), bringing the 
total K+ concentration to 8 mM. Following completion of baseline 
recordings, high K+ medium was washed into the recording chamber 
while RGC membrane voltage was continuously recorded. Prior to 
high K+ experimental recordings, we allowed a wash on period of 
5–6 min, allowing RGC membrane potential to stabilize. Recordings 
(RMP, spontaneous activity, light-evoked spiking, current-evoked 
spiking) were then performed as described above. After high K+ 
experiments the extracellular medium was switched back to the 
baseline solution and RGC membrane voltage was continuously 
measured during a wash off period of 10–20 min, allowing RGCs to 
recover baseline RMP and spontaneous activity. Full recovery typically 
took 10–15 min, although it occasionally required up to 20 min. 
We limited the number of experimental protocols to reduce the time 
of high K+ exposure. Furthermore, to limit potential cumulative effects 
of K+ wash on/off, we  limited the total number of cells that were 
recorded under high K+ to no more than 3 from each retina.

2.5. RGC physiology analysis

Raw data files from electrophysiologic recordings were analyzed in 
Python 3.9 using the pyABF 2.3.5 (Harden, 2022) and SciPy 1.7.1 
modules (Virtanen et al., 2020). Action potentials (APs) were detected 
from membrane voltage data using the SciPy “find_peaks” function with 
parameters of 20 mV minimum prominence and a distance threshold of 
1.5 ms. Spike rates for current-evoked spiking protocols were reported as 
the average rate for 2 adjacent 10 pA increments of stimulation (20 pA 
bins). For AP width measurements, a cubic spline function was fit to 
each AP waveform and half-width was measured as the duration, in ms, 
where the membrane potential was above the midway point between AP 
peak and minimum after-hyperpolarization.

2.6. Immunohistochemistry and imaging

Immediately following recordings, retinas were fixed in 4% 
paraformaldehyde and incubated at 4°C for 24 h. After fixation, retinas 

were immunolabeled for choline acetyltransferase (ChAT, 1:100; 
Millipore, Burlington, MA, Cat. #AB144P) and ankyrin-G (AnkG, 
1:200; NeuroMab N106/36; Antibodies, Inc. Cat. # 75-146). Tissue was 
blocked in 5% normal donkey serum for 2 h, then incubated in 
primary antibodies for 3 d at 4°C, and finally incubated for 2 h at room 
temperature with donkey anti-goat Alexa 405 and donkey anti-mouse 
Alexa 488 secondary antibodies (Jackson ImmunoResearch, West 
Grove, PA). Z-stack images of dye-filled RGCs were obtained using an 
Olympus FV1000 inverted microscope at 40x magnification. Image 
analysis, including creating orthogonal projections used for 
visualization of dendritic stratification depth, was performed using 
ImageJ (NIH, Bethesda, MD).

2.7. Axon initial segment analysis

We evaluated 11 4wk IOP cells (5 αON-S and 6 αOFF-S) and 18 
4wk Ctrl cells (9 αON-S and 9 αOFF-S) with identifiable axon initial 
segments (AISs) as defined by a segment of ankyrin-G (AnkG) 
labeling that colocalized to a filled RGC axon. AnkG fluorescence was 
measured in ImageJ starting from the edge of the soma along the axon 
in a max-intensity Z projection limited to the extent of the axonal 
process. Background fluorescence was subtracted from AnkG 
intensity profiles using a rolling ball filter with a radius equal to 
approximately 15% of the data length. Smoothed AnkG profiles were 
generated using a Savitzky–Golay filter with a first order polynomial 
fit. Axon initial segment (AIS) bounds were algorithmically defined 
as the extent where smoothed AnkG values were greater than 50% of 
the difference between baseline and maximum intensity.

2.8. Data analysis and statistical tests

All data are reported as mean ± standard error of the mean (SEM) 
unless otherwise indicated. All statistical tests were performed in 
GraphPad Prism 9 (Graphpad Software, San Diego, CA). All data sets 
were checked for normality. Where appropriate, parametric statistical 
tests (unpaired t-test, paired t-test, 2-way ANOVA, simple linear 
regression) were performed. When data were not normally distributed, 
appropriate nonparametric tests (e.g., Mann–Whitney test) were 
performed. For ANOVA tests, p-values were corrected for multiple 
comparisons. Where noted, determination of the influence of sex on 
high K+ -induced change in RMP was determined by multiple linear 
regression modeling (∆RMP ~ Intercept + Cell Type + Experimental 
Group + Sex). We defined statistical significance as a p-value of 0.05 
or less. Exact p-values and the specific statistical test used for each 
analysis are listed in the figure legends or results text.

3. Results

3.1. Elevated IOP alters RGC 
electrophysiology

We performed bilateral injections of either polystyrene 
microbeads to occlude the anterior chamber (n = 5 animals, 10 eyes) 
or sterile phosphate-buffered saline (n = 10 animals, 20 eyes) and 
measured intraocular pressure (IOP) for 4 weeks (Figure 1). Following 
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injections, IOP in saline-injected eyes remained unchanged from 
baseline (Figure 1A). Following microbead occlusion, IOP increased 
46% above their baseline (Figure 1A), exceeding IOP in saline control 
eyes by 44% (Figure 1B, p < 0.0001). IOP elevation in microbead eyes 
was sustained for the duration of the experiment (Figure 1A).

After 4 weeks mice were sacrificed and retinas prepared for 
electrophysiologic recordings. As previously described (Risner et al., 
2018, 2020a, 2021, 2022; Boal et al., 2022), we targeted αRGCs for 
recording by identifying large cell bodies and confirmed cell types by 
characterizing soma size, dendritic stratification within the inner 
plexiform layer (Famiglietti and Kolb, 1976; Galli-Resta et al., 2000), 
and light-evoked responses (Figure 2). We focused analysis on two 
well-characterized and readily identifiable αRGC types: 
αON-Sustained (αON-S) and αOFF-Sustained (αOFF-S; Krieger et al., 
2017). In the saline (4wk Ctrl) group we recorded 10 αON-S RGCs (7 
eyes, 4 mice; 8 cells from males, 2 from females) and 10 αOFF-S RGCs 
(8 eyes, 7 mice; 5 male, 5 female). In the microbead group (4wk IOP) 
we recorded 10 αON-S RGCs (9 eyes, 5 mice; 4 male, 6 female) and 7 
αOFF-S RGCs (7 eyes, 5 mice; 3 male, 4 female). Cells from mice of 
both sexes were evenly represented among αON-S and αOFF-S for 
4wk Ctrl (p = 0.1596, Chi-squared test) and 4wk IOP (p = 0.9062, 
chi-squared test).

Four weeks of IOP elevation altered the resting membrane and 
light-evoked spiking characteristics of both RGC types. RGCs from 
the 4wk IOP group had a depolarized resting membrane potential 
(RMP) relative to controls (Figure 2C, p = 0.0572; αON-S + 2.25 mV, 
αOFF-S + 2.41 mV). Spontaneous spiking in the absence of light also 
appeared altered (Figure 2D), with αON-S cells trending toward 
greater spiking (p = 0.0507) and αOFF-S cells trending toward less 
spiking (p = 0.1613). The membrane voltage response to light 
stimulation for αON-S was significantly blunted after IOP elevation 
(Figures  2E,F), with cells from the 4wk IOP group exhibiting 
diminished mean (p = 0.0202) and peak (p = 0.0251) spike rates in 
response to light onset. Light-evoked spiking also appeared altered 
in αOFF-S cells (Figures 2G,H), although not quite as overtly as 
αON-S cells. Mean and peak spike rates were not significantly 
different between experimental groups (Figure  2H), though the 
histogram of mean spike rates (Figure 2G) appeared qualitatively 

altered by 4wk IOP, with spiking at light offset tending to 
be less sustained.

3.2. 4wk IOP RGCs are less sensitive to 
elevated extracellular potassium

Since potassium homeostasis may be altered in glaucoma (Fischer 
et al., 2019a,b), we next sought to investigate how 4 weeks of IOP 
elevation alters the sensitivity of RGCs to acutely elevated extracellular 
potassium. As previously described (Boal et al., 2022), we performed 
a within-subjects experimental design with recordings before and 
after application of extracellular medium containing additional KCl 
(extra 5 mM, high K+, Figure 3A). For both αON-S and αOFF-S high 
K+ depolarized the RMP, regardless of experimental group (Figure 3B, 
p < 0.0001 for both cell types). However, there was a statistically 
significant interaction between IOP group and potassium effect on 
RMP for both cell types (p = 0.0002, αON-S; p = 0.0063, αOFF-S). 
Comparison of the high K+-evoked depolarization of RMP (∆RMP) 
between experimental groups demonstrated that 4wk IOP RGCs were 
significantly less depolarized by the acutely elevated potassium 
(Figure 3C, p < 0.0001). The sex of the mouse from which an RGC 
came was not significantly associated with ∆RMP (p = 0.1572, multiple 
linear regression model).

αON-S and αOFF-S RGCs have distinct responses to depolarizing 
current (Twyford et al., 2014; Kameneva et al., 2016), which are in part 
related to their different sensitivities to extracellular potassium (Boal 
et  al., 2022). We  measured the spiking response of αRGCs to 1 s 
depolarizing current injections ranging from 0 to +300 pA, before and 
after washing on high K+ medium (Figure 4), to determine how 4wk 
IOP exposure alters these properties. In saline controls, high K+ 
appreciably altered the current-spiking relationship of both αON-S 
and αOFF-S cells. In baseline extracellular media control αON-S 
RGCs (Figures 4A,C) exhibited little spiking at low depolarizations but 
spike rates increased as the strength of depolarization increased. After 
high K+ wash on, spike rates were higher at small depolarizations but 
began to plateau and then slow as the strength of depolarization was 
increased. Control αOFF-S RGCs (Figures 4E,G) exhibited a different 
pattern of current-evoked spiking than αON-S, but were also 
appreciably impacted by high K+. In baseline media control αOFF-S 
cells had relatively high spike rates that initially increased with 
increasing stimulation, but reached a peak and began to subsequently 
decrease beyond about 100 pA of depolarization. High K+ considerably 
decreased spike rates, which quickly fell to 0 Hz with increasing 
magnitudes of depolarization. In 4wk IOP αRGCs, high K+ appeared 
to have a lesser effect on current-evoked spiking than in controls. For 
αON-S cells (Figures 4B,D), 4wk IOP excitability was diminished at 
baseline relative to controls, exhibiting less of an increase in spike rate 
with increasing stimulation (p < 0.001, simple linear regression). High 
K+ again blunted spike rates (p = 0.0002), though not to the same 
degree as in controls. 4wk IOP exposure likewise diminished αOFF-S 
excitability at baseline (Figures 4F,H), with peak firing rates trending 
lower (p = 0.0639, unaired t test), and lessened the impact of high K+ 
on spiking, with cells appearing to maintain the ability to fire at greater 
magnitudes of depolarization than in controls. Across both cell types, 
the absolute difference in firing rates between high K+ and baseline 
conditions was less in the 4wk IOP group than in the 4wk control 
group (p = 0.0317).

A B

FIGURE 1

IOP elevation due to microbead occlusion of the anterior chamber. 
(A) Intraocular pressure (IOP) of microbead-injected eyes (4wk IOP) 
increases rapidly following injection (vertical dotted line) and remain 
elevated for the duration of the 4 weeks. The IOP of saline-injected 
eyes (4wk Ctrl) remains unchanged from baseline. Shaded region: ± 
standard error of the mean. (B) Mean IOP for each eye across all days 
following microbead injection significantly elevates compared to Ctrl 
(p = 0.000046, unpaired t-test). Error bars: ± standard error of the 
mean. ****p < 0.0001.
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We previously found differences in excitability between αON-S 
and αOFF-S were reflected in the shape of their action potentials 
(APs), and that high K+ promoted rate-dependent AP widening (Boal 
et  al., 2022). We  measured AP half-widths in both experimental 
groups to determine if decreased potassium sensitivity in 4wk IOP 
RGCs was reflected at the level of AP generation (Figure 5). Control 
αON-S cells (Figures 5A,C) exhibited minimal AP widening with 
increased stimulation at baseline. High K+ media widened αON-S APs 
and increased rate-dependent widening. Control αOFF-S cells 
(Figures 5E,G) had a moderate degree of rate-dependent AP widening 
at baseline, and high K+ caused further widening. After 4wk IOP 
elevation, αON-S APs (Figures  5B,D) had slightly wider APs at 
baseline than controls (p = 0.0133, unpaired t test). However, 4wk IOP 
αON-S APs appeared less widened in high K+ medium relative to 

baseline. 4wk IOP αOFF-S cells (Figures  5F,H) did not have 
appreciably different AP shapes at baseline compared to controls 
(p = 0.6867). Further, they too had less K+ induced AP widening than 
control αOFF-S cells. In total, the mean change in AP half-width after 
high K+ application for all cells was significantly less for 4wk IOP 
RGCs than for controls (p = 0.0061).

Finally, we  explored a potential mechanism for the observed 
differences in RGC excitability and potassium sensitivity. Scaling of 
the axon initial segment (AIS) is implicated in mediating intrinsic 
excitability of RGCs (Raghuram et al., 2019; Werginz et al., 2020; 
Wienbar and Schwartz, 2022). The AIS, marked by labeling for 
scaffolding protein ankyrin-G (AnkG), is a complex that clusters 
voltage-gated ion channels in the proximal portion of the axon and 
serves as the site of AP generation (Zhou et al., 1998; Gasser et al., 

A

E

G

F

H

B C D

FIGURE 2

Elevated IOP alters membrane and light-evoked spiking characteristics in αON-S and αOFF-S RGCs. (A,B) Morphologic and physiologic 
characterization of retinal ganglion cells (RGCs). Patched cells were filled with Alexa-fluor 555 dye (AL555, red) and morphologically reconstructed 
with confocal microscopy. Representative maximum intensity projections of alpha ON-sustained (αON-S, A) and alpha OFF-sustained (αOFF-S, B) 
RGCs demonstrate characteristic soma size and dendritic branching patterns (upper). White arrows indicate the axonal projection. Orthogonal 
projections of representative AL555-filled cells co-labeled for choline acetyltransferase (ChAT, white) demonstrate the branching of αON-S and αOFF-S 
dendrites in the ON- and OFF-sublaminas of the inner plexiform layer, respectively (lower). (C) Resting membrane potentials (RMP) for both cell types 
from 4wk Ctrl and IOP groups. RGC RMPs in the 4wk IOP group are more depolarized than controls (p = 0.0572, 2-way ANOVA). (D) Spontaneous 
spiking rates for αON-S and αOFF-S RGCs. αON-S cells in the 4wk IOP group trend toward greater spontaneous spiking (p = 0.0507, Mann–Whitney 
test), whereas 4wk IOP αOFF-S cells trend toward less spontaneous spiking (p = 0.1613, Mann–Whitney test). (E) Mean firing rates of αON-S cells in the 
4wk Ctrl and 4wk IOP groups binned into 200 ms intervals during light stimulation (yellow). (F) Mean (left) and peak (right) light-evoked spike rates for 
αON-S cells. 4wk IOP decreases both measures (mean: p = 0.0202, unpaired t-test; peak: p = 0.0251, unpaired t-test). (G) Mean firing rates of αOFF-S 
cells in the 4wk Ctrl and 4wk IOP groups binned into 200 ms intervals during light stimulation (yellow). (H) Mean (left) and peak (right) light-evoked 
spike rates for αOFF-S cells. Error bars: ± standard error of the mean. *p < 0.05.
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2012; Huang and Rasband, 2018; Leterrier, 2018). The dimensions of 
the AIS are plastic and can change in response to stimuli, such as 
chronically elevated extracellular potassium (Grubb and Burrone, 
2010) and sustained sensory input (Jamann et al., 2021), in order to 

modulate neuronal excitability. Because changes to the AIS have been 
implicated in neurodegenerative disease (Sun et al., 2014; Marin et al., 
2016; Hatch et  al., 2017), we  investigated whether altered AIS 
dimensions were associated with the decreased RGC potassium 

A

B C

FIGURE 3

Elevated IOP reduces the influence of extracellular potassium on RGC depolarization. (A) Timeline illustrating the design of acutely elevated 
extracellular potassium (High K+) experiments. Following baseline recordings, extracellular medium with an extra 5 mM KCl is washed on for 5 min until 
membrane potentials stabilized. High K+ recordings are done, and then high K+ is washed off with regular extracellular medium until full recovery of 
membrane potential and spontaneous spiking, at least 15 min. (B) Resting membrane potentials (RMPs) for αON-S and αOFF-S cells in both 
experimental groups before and after high K+ wash on. There is a significant interaction effect between K+ and IOP for both αON-S (p = 0.0002; 2-way 
repeated measures ANOVA) and αOFF-S (0.0063) cells. (C) The change in RMP following high K+ wash on for each cell, separated by experimental 
group. Cells exposed to 4wk IOP elevation are significantly less depolarized by high K+ (p = 0.00000091, Mann–Whitney test). Error bars: ± standard 
error of the mean. ****p < 0.0001.

A B C D

E F G H

FIGURE 4

Current-evoked spiking is less depressed by high K+ after IOP elevation. (A,B) Representative current-clamp responses of αON-S cells from both 
experimental groups to 0, 100, 200, and 300 pA pulses, before and after washing on high K+. (C,D) The spiking responses of αON-S cells to 
depolarizing current pulses ranging from 0 to 300 pA, before and after high K+. (E,F) Representative current-clamp responses of αOFF-S cells from 
both experimental groups before and after washing on high K+. (G,H) The spiking responses of αON-S cells to depolarizing current pulses, before and 
after high K+. The difference in spike rates between baseline and high K+ groups for all cells is lower in the 4wk IOP group than in the 4wk Ctrl 
(p = 0.0317, unpaired t-test). Error bars: ± standard error of the mean.
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sensitivity in our microbead model. We labeled filled RGCs for AnkG 
and measured the AIS distance from the soma and length (Figure 6A) 
for each RGC axon. There were 11 4wk IOP cells (5 αON-S and 6 
αOFF-S) and 18 4wk Ctrl cells (9 αON-S and 9 αOFF-S) with 
identifiable axon initial segments. The AIS distance (Figure 6B) and 
length (Figure 6C) from 4wk IOP RGCs was not statistically different 
than those of control RGCs.

4. Discussion

4.1. Blunted RGC excitability occurs 
alongside a reduced sensitivity to high K+ 
conditions

The data presented here support evidence of RGC excitability 
changes with prolonged exposure to elevated IOP and offer insight 
into how RGCs respond to the acute stress of elevated extracellular 
potassium. We hypothesized intrinsic differences in K+ sensitivity 
between αON-S and αOFF-S RGCs may drive a preferential 
susceptibility to elevated IOP-induced degeneration. In the present 
study we did not evaluate the degree of RGC death by counting somas 
in the retina or axons in the optic nerve. Previous work in the same 
model has established at the four-week timepoint there is some 
degeneration of axons but minimal loss of RGC somas in the retina 
(Ward et al., 2014; Bond et al., 2016; Risner et al., 2021, 2022). As in 
previous experiments at the four-week time point (Risner et al., 2021, 
2022) we observed reduced light-and current-evoked RGC spiking 
(Figures 2, 4). Though the excitabilities of both αRGC types appear 
altered in the 4wk IOP group relative to controls, there appears to be a 
marginally larger effect size on the αON-S cells. These findings could 
represent a preferential susceptibility to IOP-related stress; however, 
excitability changes may also be an adaptive response.

We challenged RCGs with acutely elevated extracellular K+ to 
determine how sensitivity to ionic stress changes with prolonged 
IOP elevation and how this impacts excitability. As expected, high 
K+ media depolarized RGC membranes for both cell types and both 
experimental groups (Figure  3). Remarkably, 4wk IOP elevation 
significantly diminished this effect, suggesting that there is decreased 
RGC sensitivity to acute ionic stress. We examined the impact of 
potassium on RGC excitability to determine if this difference was 
related to intrinsic changes, such as altered axonal K+ ion channel 
expression or function (Figure  4). Stepwise application of 
depolarizing currents reflected previously determined cell type 
(Twyford et al., 2014; Kameneva et al., 2016; Yang et al., 2018; Boal 
et al., 2022) and IOP dependent (Risner et al., 2022) differences in 
RGC excitability, and high K+ conditions significantly impacted 
spiking. Strikingly, RGCs in the 4wk IOP group were less impacted 
by high K+, maintaining sustained spiking at greater magnitudes of 
depolarizing current before reaching the threshold for depolarization 
block. These findings support the notion that decreased RGC 
excitability and altered K+ sensitivity are related to 
RGC-intrinsic changes.

To further probe these effects, we measured AP half-width during 
evoked spiking (Figure 5). Differences in this measure may reflect 
changes to the mechanisms of AP generation, as AP shape is impacted 
by K+ currents (Geiger and Jonas, 2000; Kole et al., 2007; Kuznetsov 
et al., 2012; Gonzalez Sabater et al., 2021; Alexander et al., 2022). 
Again, there was a dramatic difference in the effect of K+ between the 
4wk IOP and control groups: for both αON-S and αOFF-S, APs were 
less widened by high K+. This further supports the hypothesis that 
elevated IOP is affecting RGC-intrinsic excitability and suggests that 
there may be  altered structure or function of voltage gated K+ 
channels. Interestingly, however, there was cell type specificity in how 
AP widths differed with IOP exposure and K+ conditions. αON-S 
cells exhibited a widening of APs following 4wk IOP elevation, even 

FIGURE 5

IOP elevation reduces the influence of high K+ on action potential shape. (A,B) Mean action potential (AP) shapes of αON-S cells in baseline and high K+ 
conditions at each current step, for 4wk Ctrl (A) and 4wk IOP (B) groups. (C,D) Action potential half-widths of αON-S cells in baseline and high K+ 
conditions at each current step, for 4wk Ctrl (C) and 4wk IOP (D) groups. (E,F) Mean action potential (AP) shapes of αOFF-S cells in baseline and high 
K+ conditions at each current step, for 4wk Ctrl (E) and 4wk IOP (F) groups. (G,H) Action potential half-widths of αOFF-S cells in baseline and high K+ 
conditions at each current step, for 4wk Ctrl (C) and 4wk IOP (D) groups. The potassium-induced widening of action potentials is lessened after 4wks 
IOP elevation (p = 0.0061, unpaired t-test). Shaded regions: ± standard error of the mean.
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in baseline, normal K+ conditions. On the contrary, αOFF-S AP 
widths were similar for both the 4wk IOP and the control groups 
under normal K+. Both cell types had less change in AP width 
following high K+ wash on, but this difference was driven largely by 
the IOP-induced baseline shift for the αON-S RGCs. This is perhaps 
a function of cell type-specific responses to stress, paralleling the 
differences seen in Figure  2. αON-S RGCs had significantly 
diminished light-evoked spiking, while αOFF-S light spiking was 
mostly preserved. It remains to be determined whether these changes 
prove to be  protective or maladaptive for the RGCs with 
continued stress.

4.2. Retinal ganglion cell adaptation to 
prolonged stress

The significant differences in the impact of high K+ conditions 
on RGC responses are suggestive of an adaptive process, whereby 
RGCs alter their physiology to preserve function and/or mitigate 
further degenerative stress. Hyperexcitability at 2 weeks following 
IOP elevation is driven by axogenic processes (Risner et al., 2018, 
2020b), and these studies further support evidence of axonal 
changes at 4 weeks. RGC axonal excitability and AP generation is 
dependent upon and shaped by the AIS, a dynamic structure, 
thus we focused our mechanistic exploration on alterations to the 
AIS dimensions. We hypothesized that, similar to in vitro chronic 
depolarization (Grubb and Burrone, 2010), prolonged 
glaucomatous stress from K+ dysregulation and early 
hyperexcitability would lead to a distal shift in the AIS away from 
the soma. Yet, the results shown in Figure 6 do not demonstrate 
any differences in AIS dimensions between 4wk IOP cells and 
controls. Though this interpretation is limited by sample size and 
the lack of topographic location of cells, since AIS dimensions 
scale with retinal topography (Raghuram et  al., 2019), this 
finding indicates that our observed differences in excitability and 
K+ sensitivity are likely not solely reflective of AIS 
structural plasticity.

Rather, changes in voltage-gated ion channel and interacting 
protein expression, alongside larger scale alterations in glial regulation 

of the extracellular milieu (Nwaobi et al., 2016; Murphy-Royal et al., 
2017; Fischer et al., 2019b; Theparambil et al., 2020; Boal et al., 2021), 
may underly a multifactorial adaptive process to minimize metabolic 
and excitotoxic stress. Retinal regulation of extracellular K+ is largely 
accomplished by Müller glia (Newman et al., 1984; Karwoski et al., 
1989; Kofuji and Newman, 2004), which undergo reactive changes in 
glaucoma and exhibit physiologic deficits in K+ buffering capacity 
(Bolz et al., 2008; Fischer et al., 2019b). RGC hyperexcitability driving 
increased K+ flux may compound with impaired glial buffering 
capacity, amplifying axonal stress. Furthermore, depressed excitability 
may reflect interactions between dysregulated potassium and 
alterations in other ions, such as calcium, which modulates neuronal 
excitability and can contribute to cell death (Jones and Smith, 2016; 
Segal, 2018). Investigation of changes to expression and function of 
calcium-activated potassium channels in this model may further 
elucidate ion-mediated mechanisms of glaucomatous degeneration 
(Stirling and Stys, 2010; Crish and Calkins, 2011; Van Hook 
et al., 2019).

Glaucoma is a chronic and insidious disease, where the 
interaction between vulnerable RGCs and physiologic stress can 
lead to dysfunction and cell death over the course of many years. 
It often takes a significant degree of axon degeneration for many 
patients notice the resultant vision changes (Hu et  al., 2014). 
While this emphasizes the importance of early diagnosis, it also 
suggests a resilience of visual function in the face of prolonged 
stress. Discoveries in animal models of glaucoma have illuminated 
the variety of adaptive responses that RGCs undergo in the face 
of oxidative, metabolic, and inflammatory challenges (Calkins, 
2021). The experiments presented here explore an important 
facet of RGC adaptation, giving insight into the modulation of 
RGC excitability, and lay the groundwork for mechanistic 
investigation into potential diagnostic and therapeutic targets in 
early glaucomatous neurodegeneration.
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FIGURE 6

Axon initial segment dimensions are unchanged by IOP elevation. (A) Representative image of Alexa 555 (AL555, red) dye-filled RGC labeled for the 
axon initial segment (AIS) scaffolding protein ankyrin-G (AnkG, green). Annotations demonstrate the dimensions of AIS distance from soma and length 
which are quantified. (B,C) The AIS distance from the soma (B) and length (C) for all RGCs with AnkG-labeled axons. 4wk IOP does not significantly 
alter either of these dimensions (Distance: p = 0.3194, unpaired t-test; Length: p = 0.6007, unpaired t-test). Error bars: ± standard error of the mean.
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