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Introduction: As a biomarker of depression, speech signal has attracted the

interest of many researchers due to its characteristics of easy collection and

non-invasive. However, subjects’ speech variation under different scenes and

emotional stimuli, the insufficient amount of depression speech data for deep

learning, and the variable length of speech frame-level features have an impact

on the recognition performance.

Methods: The above problems, this study proposes a multi-task ensemble

learning method based on speaker embeddings for depression classification. First,

we extract the Mel Frequency Cepstral Coefficients (MFCC), the Perceptual Linear

Predictive Coefficients (PLP), and the Filter Bank (FBANK) from the out-domain

dataset (CN-Celeb) and train the Resnet x-vector extractor, Time delay neural

network (TDNN) x-vector extractor, and i-vector extractor. Then, we extract

the corresponding speaker embeddings of fixed length from the depression

speech database of the Gansu Provincial Key Laboratory of Wearable Computing.

Support Vector Machine (SVM) and Random Forest (RF) are used to obtain the

classification results of speaker embeddings in nine speech tasks. To make full

use of the information of speech tasks with different scenes and emotions, we

aggregate the classification results of nine tasks into new features and then obtain

the final classification results by using Multilayer Perceptron (MLP). In order to take

advantage of the complementary effects of different features, Resnet x-vectors

based on different acoustic features are fused in the ensemble learning method.

Results: Experimental results demonstrate that (1) MFCC-based Resnet x-vectors

perform best among the nine speaker embeddings for depression detection; (2)

interview speech is better than picture descriptions speech, and neutral stimulus is

the best among the three emotional valences in the depression recognition task;

(3) our multi-task ensemble learning method with MFCC-based Resnet x-vectors

can effectively identify depressed patients; (4) in all cases, the combination of

MFCC-based Resnet x-vectors and PLP-based Resnet x-vectors in our ensemble

learning method achieves the best results, outperforming other literature studies

using the depression speech database.

Discussion: Our multi-task ensemble learning method with MFCC-based Resnet

x-vectors can fuse the depression related information of different stimuli
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effectively, which provides a new approach for depression detection. The

limitation of this method is that speaker embeddings extractors were pre-trained

on the out-domain dataset. We will consider using the augmented in-domain

dataset for pre-training to improve the depression recognition performance

further.

KEYWORDS

depression detection, Resnet x-vectors, speaker embeddings, ensemble learning, speech
task stimuli

1. Introduction

Depression is a common and recurrent mood disorder
accompanied by functional disability, significantly impacting the
individual’s physical and mental health and daily activities (Spijker
et al., 2004). More than 300 million people worldwide suffer from
depression, equivalent to 4.4% of the world’s population (World
Health Organization, 2017). The latest scientific brief shows a
dramatic 25% increase in the global prevalence of anxiety and
depression in the first year of the Coronavirus 2019 (COVID-
19) pandemic (World Health Organization, 2022). At present,
the diagnostic methods for depression detection mainly rely on
psychiatrists and scales. The accuracy of diagnostic results is
affected by subjective factors such as doctors’ clinical experience
and whether patients can fully describe their physiological and
psychological conditions.

On the other hand, in China, only 7.1% of depression patients
who seek treatment in mental health institutions receive adequate
treatment (Lu J. et al., 2021). The lack of medical resources
leads to many patients being unable to see a doctor in time.
Therefore, exploring objective and effective new techniques to
identify depression has attracted much attention. Researchers have
focused on seeking objective biological markers [i.e., gut hormones
(Rajkumar, 2021)], physiological markers [i.e., EEG (Cai et al.,
2020)] and eye movement (Shen et al., 2021), and behavioral
markers [i.e., speech (Othmani et al., 2021) and facial expressions
(Guo et al., 2021)] to aid in the diagnosis of depression. Among
these markers, speech signal has become an important research
direction for auxiliary diagnosis of depression due to its advantages
of acquisition, non-invasion, non-disturbance, low cost, and a large
amount of information.

Depression patients are typically sluggish (Beck and Alford,
2009), with longer pauses (Szabadi et al., 1976; Greden and
Carroll, 1980) and a lack of rhythm (Alpert et al., 2001). The
research showed that the percentage of pause time, the standard
deviation of fundamental frequency distribution, the standard
deviation of fundamental frequency change rate, and speech speed
are correlated with the clinical status of patients with depression
(Nilsonne, 1987). There is a strong correlation between speed,
percent pause, pitch variation, and scale score (Cannizzaro et al.,
2004). Depressed people treated and improved had more significant
variation in pitch cycles, fewer pauses, and faster speech (Mundt
et al., 2007). Thus, depressed people and healthy people have
different pronunciations.

In order to make full use of the influence of speech tasks
with different scenes and different emotional stimuli on speech

of depressed patients and normal subjects, we designed a multi-
task ensemble learning method with speaker embeddings in our
depression speech dataset containing 9 speech tasks, and proved
the effectiveness of this method from the accuracy, F1-D and F1-H.

The organization of the paper is as follows. The second
section briefly reviews some related studies. The two datasets
used in this paper are introduced in the third section. Next, the
fourth section describes the multi-task ensemble learning method
using speaker embeddings for depression recognition proposed
in this study. Afterward, in the fifth section, the experimental
results are presented. Finally, the conclusions and future works are
summarized in the sixth section.

2. Related works

At present, there have been many approaches for depression
recognition based on speech processing. Searching for effective
acoustic features has always been an important research direction.
Manual features such as spectral, source, prosodic, and formant
features are commonly employed when analyzing depression and
suicidality (Cummins et al., 2015). Moreover, these features are also
regarded as inputs to deep neural networks (Lang and Cui, 2018;
Lu X. et al., 2021). Studies have shown that the advanced features
generated by MFCC feeding into the Short Long-Term Memory
(LSTM) can preserve information related to depression (Rejaibi
et al., 2022). PLP, and MFCC, called the low-level descriptors, are
used to train the multiple classifier systems (Long et al., 2017). The
input of the network model is a 3D feature made up of FBANK,
the first-order and second-order differences to use the information
in speech signals entirely (Wang et al., 2021). The findings of the
aforementioned study illustrate that MFCC, PLP, and FBANK as
front-end features can refine enough speech details.

Speaker embeddings such as i-vectors, d-vectors, and x-vectors
have shown their superiority in speaker recognition (Variani
et al., 2014; Wang et al., 2017), and depression detection (Egas-
López et al., 2022). Scholars have found that speaker embeddings
cannot only solve the variable length problem of frame-level
features but also encode the speaker identity and the speech
content to a large extent (Wang et al., 2017). In addition,
speaker embeddings we extracted are based on the pre-trained
speaker recognition model, which can be used for depression
recognition tasks. The i-vectors, the low-dimension compact
representations, were first proposed for speaker verification (Dehak
et al., 2010). Afterward, the i-vector framework was widely
applied in speaker recognition (Kanagasundaram et al., 2012),
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emotion recognition (Vekkot et al., 2019), Alzheimer’s disease
(AD) detection (Egas López et al., 2019), Parkinson’s disease
(PD) detection (Garcia et al., 2017), and depression detection
(Cummins et al., 2014; Rani, 2017; Afshan et al., 2018; Mobram
and Vali, 2022). Furthermore, the correlation between MFCC
i-vectors and MFCC features has been determined, and the
effectiveness of i-vectors has been examined in diagnosing major
depressive disorder (MDD) (Di et al., 2021). A comparison of
various i-vectors based on spectral features, prosodic features,
formants, and voice quality for clinical depression detection during
the interview discovered that spectral feature i-vectors gained
the highest accuracy in distinguishing between the speech of
depressed and control (Xing et al., 2022). I-vectors can limit
speaker and channel variability, which helps the model focus
more on depression detection. With the development of the
embedding technique, Deep Neural Network (DNN) embeddings,
fixed-dimensional speaker embeddings extracted from a feed-
forward DNN outperformed i-vectors for text-independent speaker
verification on short speech segments (Snyder et al., 2017).
X-vectors, the new state-of-the-art speaker embeddings, have been
applied in speaker recognition (Snyder et al., 2017, 2018, 2019;
Garcia-Romero et al., 2019). The encoder networks of x-vectors
include the following categories: TDNN (Waibel et al., 1989),
Extended TDNN architecture (E-TDNN) (Snyder et al., 2019),
the factorized TDNN (F-TDNN) with skip connections (Povey
et al., 2018), and Resnet 2D (He et al., 2016). Experiments show
that x-vectors can capture spoken content and channel-related
information (Raj et al., 2019). Furthermore, the TDNN x-vectors
or F-TDNN x-vectors based on MFCC have demonstrated better
performance than PLP i-vectors for the automatic detection of
PD (Moro-Velazquez et al., 2020). Besides, the x-vector technique
has been used as an advanced method for emotion recognition
(Pappagari et al., 2020b), AD detection (Pappagari et al., 2020a),
and depression detection (Dumpala et al., 2021, 2022; Egas-López
et al., 2022). Consequently, depression detection is carried out in
this study using the x-vector approach with the i-vector framework
as the baseline.

One unavoidable problem is that the amount of depression
data limits that model training. Publicly available and commonly
used depression speech datasets are the Audio-Visual Emotion
Recognition Challenge and Workshop (AVEC) 2013 (Valstar
et al., 2013), including 340 video clips from 292 subjects, and
AVEC 2014 (Valstar et al., 2014), including 150 files of 84
speakers. DNN trained on such data would lead to under-
fitting; consequently, the classification result needs to be more
convincing. One workable solution to the above problem is to
pre-train a model on extensive data followed by leveraging the
model’s knowledge to downstream tasks [e.g., speaker recognition
(Snyder et al., 2018), PD detection (Moro-Velazquez et al., 2020),
depression detection (Zhang et al., 2021)]. Primarily, results in
Zhang et al. (2021) showed that the larger out-domain (e.g., speech
recognition) dataset for audio embedding pre-training generally
improves performance better than the relatively little in-domain
(depression detection) dataset. Therefore, we pre-trained speaker
embedding extractors on CN-Celeb (Fan et al., 2020), a large-
scale Chinese speaker recognition dataset, followed by extracting
corresponding embeddings on our Chinese depression speech
dataset.

The method of training models with classification algorithms
has occurred frequently in depression detection. SVM and RF were
used for depression classification not only on low-level descriptors
(LLD) and related functionals in Tasnim and Stroulia (2019) but
also on i-vectors in Xing et al. (2022). On the other hand, the
results of Saidi et al. (2020), comparing the baseline CNN model
with the model combining CNN and SVM, have shown that the
SVM classifier improved the classification accuracy. An exploratory
study (Espinola et al., 2021), which compared experimental
results of MLP, Logistic Regression (LR), RF, Bayes Network,
Naïve Bayes, and SVM with different kernels, concluded that
RF provided the highest accuracy among all classifiers for MDD
detection. Therefore, SVM and RF were preferred as classification
algorithms to evaluate speaker embeddings’ performance in our
study comprehensively.

There have been studies showing that there are differences
between depressed and normal subjects’ speech under different
speech task stimuli. The collection of spontaneous and read
speech from 30 depressed and 30 control subjects was
used to extract acoustic features (Alghowinem et al., 2013).
DEPression and Anxiety Crowdsourced corpus (DEPAC)
(Tasnim et al., 2022), which has a diversity of speech tasks
(Phoneme fluency, Phonemic fluency, Picture description,
Semantic fluency, and Prompted narrative), has been published
recently as a depression and anxiety detection corpus.
Furthermore, the classification results in Long et al. (2017)
based on the corpus of three speech types (reading, picture
description, and interview), each of which corresponds to three
emotional valences (negative, neutral, and positive), showed
that speaking style and mood had a significant influence on
depression recognition. From the theory of ensemble learning,
combining multiple learners makes a whole’s generalization
ability usually much more robust than a single learner
(Zhou, 2021). Also, multiple speech modes with different
affective valence are natural learners. As a result, this study
combined the information of nine speech tasks under multiple
scenes and emotional valences using the ensemble learning
method to improve the depression recognition ability of the
model.

The proposed depression detection system was based on the
speaker embedding framework and a multi-task ensemble learning
approach. The whole process was divided into two stages. The first
stage is the process of pre-training speaker embedding extractors.
Nine speaker embedding extractors that differed in the front-
end features and framework were trained on CN_Celeb. Three
front-end feature sets contained MFCC, PLP, and FBANK. Three
embedding frameworks contained i-vector, TDNN, and Resnet. In
this stage, each speaker embedding extractor could change frame-
level features of different lengths into fixed lengths and, more
importantly, overcome the challenge of insufficient depression
data volume. The second stage is to extract speaker embeddings
of the depression dataset and make further classification. The
same front-end features were extracted for the depression data
of nine tasks, and we obtained the corresponding speaker
embeddings using the pre-trained extractors. The depression
classification percentage of nine utterances from one subject
attained by the SVM classifier were aggregated into integrated
features. The final results were then obtained using MLP based on
the new features.
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The main contributions of this paper are as follows:

1. The speaker embedding extractors were pre-trained on the
large-scale out-domain dataset to alleviate the problem of
insufficient depression data for depression recognition.

2. We have proved that based on MFCC, PLP, and FBANK,
Resnet x-vectors, which are first used to detect depression,
outperform TDNN x-vectors, and i-vectors.

3. In the depression detection task, interview speech caught more
acoustic differences between depressed and normal subjects
than picture description speech. Neutral stimuli performed
better compared to positive and negative stimuli.

4. The effectiveness of our multi-task ensemble learning
approach was verified on multiple speaker embeddings.
Moreover, our multi-task ensemble learning method with
Resnet x-vectors can effectively identify depressed patients.

3. Database

Two speech corpora were employed in this study: the first,
CN-Celeb, is an extensive Chinese speaker recognition dataset
collected ‘in the wild’ for training i-vector, TDNN x-vector, and
Resnet x-vector extractors; the other, the depression speech dataset,
is a corpus containing recordings from normal and depressed
subjects and was utilized to extract speaker embeddings (i-vectors,
TDNN x-vectors, and Resnet x-vectors) and to train back-end
classifiers and multi-task ensemble learning models to evaluate
their performance in automatic depression detection.

3.1. CN-Celeb

CN-Celeb (Fan et al., 2020) contains more than 130,000
utterances from 1,000 Chinese celebrities, covering 11 different
speech scenarios. We chose CN-Celeb for three reasons: its large
quantity, which is an indispensable part of the pre-trained model;
the language of all recordings is Chinese, which is the same as
that of the depression dataset; and its rich speech genres, some
of which match the tasks of the depression dataset. Because the
task type of the depression speech dataset used in this experiment
is interview and picture description, which are all spontaneous
speech, the average length of each utterance is longer than 10 s.
Based on the comprehensive consideration of speech modes and
average duration of each utterance, we select all the speech in
the interview and speech scenes of CN-Celeb. The subset includes
67,718 utterances from 902 Chinese celebrities with a total length
of 171.99 h. The interview scenario contains 780 subjects with
59,317 utterances and lasts 135.77 h. As for the speech genre,
8,401 utterances from 122 speakers were collected, with a length
of 36.22 h. All of them were sampled at 16 kHz.

3.2. Depression speech database

We collected speech data from Beijing Anding Hospital,
Lanzhou University Second People’s Hospital, and Tianshui Third
People’s Hospital. All subjects were aged between 18 and 55,
native Chinese speakers, and had a primary school education

TABLE 1 Details of nine tasks.

Task Genres Valences Problems

Task1 Interview Positive If you have a vacation to travel, please
describe your travel plans.

Task2 Interview Positive Please share what you think is a good
memory and briefly describe the scene.

Task3 Interview Neutral How are you feeling these days? How does
this affect your life?

Task4 Interview Neutral How is your health these days? How has it
affected your life?

Task5 Interview Neutral How do you rate yourself?

Task6 Interview Negative Describe an event that caused you great
pain.

Task7 Picture
description

Positive Describe the positive facial expression, and
guess the reason for the expression.

Task8 Picture
description

Neutral Describe the neutral facial expression, and
guess the reason for the expression.

Task9 Picture
description

Negative Describe the negative facial expression, and
guess the reason for the expression.

or above. The patients were required to meet DSM-IV criteria
(American Psychiatric Association, 1994) with the Patient Health
Questionnaire-9 (PHQ-9) (Kroenke et al., 2001) score of 5 or
greater and not to have taken any psychotropic drugs during the
first 2 weeks of enrollment. In comparison, the control subjects
had no definite mental disorder diagnosis and regular mental
activity. In order to obtain high-quality speech data, the experiment
was conducted in a room with good sound insulation and no
electromagnetic interference, and the ambient noise was ensured to
be lower than 60 dB. For the purpose of avoiding the distortion of
the voice data, a high-precision sound card and microphone were
used. The recordings were saved in Waveform Audio File Format
(WAV) with a sampling rate of 44.1 kHz and a sampling width of
24 bit. The preprocessing steps of speech signal mainly included
pre-emphasis, frame segmentation, and endpoint detection.

This dataset followed two different experimental paradigms
whose intersection contained 9 identical speech tasks, including
six interview tasks and three picture description tasks with three
emotions (positive, neutral, and negative). The specific tasks are
listed in Table 1. With regard to the evaluation of the valence
of interview questions, we recruited 33 volunteers to score the
valence and arousal of these questions, respectively, and then
divided them into three types according to the degree of pleasure:
positive, neutral and negative. The face images displayed in the
picture description scene were taken from the Chinese facial
affective picture system (CAPS) (Gong et al., 2011), which contains
870 facial images of seven emotions: anger, disgust, fear, sadness,
surprise, happiness, and calm. The evaluation is conducted from
the three dimensions of pleasure, arousal, and dominance. We
selected three female face images of happiness, calm, and sadness
as the picture description materials of positive, neutral, and
negative stimuli. After Voice Activity Detection (VAD) to all
recordings, data from 536 subjects, including 226 normal subjects
and 310 depressed subjects, were preprocessed and retained.
Each participant contained nine speech segments. Details of the
depression speech dataset used in this study are shown in Table 2,
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TABLE 2 Details of subjects’ information.

Subject
type

Gender Subject
numbers

Utterance
numbers

Age mean (standard
deviation)

PHQ-9 mean (standard
deviation)

Utterance duration
mean(s)

Depression Male 142 1,278 37.03 (10.88) 14.49 (7.15) 20.74

Female 168 1,512 38.23 (12.14) 14.85 (8.24)

Normal Male 119 1,071 36.00 (10.82) 1.47 (2.31) 15.50

Female 107 963 33.36 (10.53) 1.42 (0.69)

FIGURE 1

General methodology diagram of the proposed depression detection system. The acoustic feature could be MFCC, PLP, or FBANK. The speaker
embedding extractor type can be i-vector, TDNN x-vector, and Resnet x-vector, and the speaker embedding type is derived from the extractor type.
n represents the number of training subjects. The subjects are divided into 10 folds according to the 10-fold cross-validation rule, in which nine
folds are used for training and onefold for testing.

including the subject number, utterance number, age, PHQ-9 score,
and the average duration of each utterance in the two groups.

4. Methodology

The method proposed in this paper aims to improve depression
classification performance using integrated learning combined with
a pre-trained speaker embedding system and multiple speech task
stimuli. Figure 1 shows a general block diagram of the depression
detection system used in this study.

Firstly, the speech features are extracted from the preprocessed
utterances (Section “4.1. Acoustic feature extraction”). Next, the
speaker embedding extractors are pre-trained based on acoustic
features of the out-domain dataset, and speaker embeddings of the
multi-task in-domain dataset are extracted (Section “4.2. Speaker
embedding extraction”). In order to take advantage of the effects
of nine tasks, the multi-task integrated learning approach is carried
out in Section “4.3. Multi-task ensemble learning method.” These
are described in detail below.

4.1. Acoustic feature extraction

Three acoustic feature sets, including MFCC, PLP, and FBANK,
were extracted from each utterance of both CN-Celeb and
our depression speech dataset in this study. This process was

implemented by Kaldi Toolbox (Povey et al., 2011). We used
three kinds of frame-level representations: 60-dimensional MFCCs,
60-dimensional PLPs, and 60-dimensional FBANKs, all with a
Hamming window, a frame-length of 25 ms, and a frame-shift of
10 ms.

Mel Frequency Cepstral Coefficients was proposed based on
the acoustic characteristics of the human ear, which could be
understood as the energy distribution of speech signals in different
frequency ranges. MFCC often serves as a standard to fit i-vector
models (Di et al., 2021) or x-vector models (Egas-López et al., 2022),
or other deep network models (Rejaibi et al., 2022). The literature
results convince us that MFCC can contribute to the training of
speaker embedding systems.

PLP was proposed using the results obtained from human
auditory experiments, and it was beneficial to extract anti-noise
speech features. The results of Moro-Velazquez et al. (2020)
comparing the i-vector extractors based on PLP and the x-vector
extractors based on MFCC showed that the two systems had their
advantages in PD detection. Therefore, we extracted PLP for a
comparative study of depression recognition.

The response of the human ear to the sound spectrum is
nonlinear. FBANK is a front-end processing algorithm that can
improve speech recognition performance by processing audio
similarly to the human ear. The literature demonstrated that
FBANK was more effective than MFCC in x-vector training for the
Escalation SubChallenge (José Vicente et al., 2021) and depression
assessment (Egas-López et al., 2022). Consequently, FBANK was
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FIGURE 2

The block diagram of the Resnet x-vector extraction process.

also extracted in this study for subsequent training of speaker
embedding extractors.

4.2. Speaker embedding extraction

In this study, three frameworks were performed to train
different types of speaker embedding extractors based on the
acoustic characteristics of CN-Celeb. The task of pre-training is to
improve the performance of speaker recognition. We transferred
the knowledge learned in the pre-training process to the depression
recognition task, that is, to retain the extractors obtained in
the upstream task. We applied them to the speaker embedding
extraction on phonetic features of the depression speech database.
Note that i-vectors served as a classic baseline method without
deep learning and TDNN x-vectors served as a DNN baseline.
We focused on a new state-of-the-art speaker recognition method:
the Resnet x-vectors in depression detection. The procedure of
i-vector extraction was carried out using Kaldi. At the same
time, the extraction of TDNN x-vectors and Resnet x-vectors was
implemented on ASV-Subtools (Tong et al., 2021).

4.2.1. I-vector extraction
The i-vector framework can map speech recordings of arbitrary

duration to low dimensional space, and a compact representation
of fixed length is obtained. Acquiring the Universal Background
Model (UBM) is to train a diagonal covariance matrix and a full
matrix on all training subjects’ speech data. UBM is a speaker–and
channel-independent Gaussian Mixture Model (GMM), which can
be regarded as the unified reference coordinate space of the training
set. When initializing UBM, the number of Gaussian components,
denoted as C, must be set. The ith (i = 1, 2, ..., C) Gaussian
component includes a weight (wi), a mean vector (µi), and a
covariance matrix (6i). Thus, the Gaussian mean supervector
(m) of UBM can be obtained. Furthermore, the Gaussian mean
supervector (M) of the utterance (h) from the speaker (s) is defined
as follows:

Ms,h = m+ Tωs,h (1)

Different from the two spaces (a speaker subspace and a session
subspace) included in the Joint Factor Analysis (JFA) model,

the total variability space (T), which contains the speaker and
channel effects simultaneously, is employed in the i-vector model
(Dehak et al., 2010). ω is the total variability space factor, and its
maximum-a-posteriori (MAP) point estimate is the i-vector. After
UBM training, the Baum-Welch statistics of each speaker in the
training set are calculated, and T is iteratively estimated by the
Expectation-Maximization (EM) algorithm. Ms,h is obtained using
MAP adaptation followed by the estimation of i-vectors based on
ωs,h. More details on the calculation of Baum-Welch statistics and
i-vector estimation can be sought out in Dehak et al. (2010).

In this study, we set the number of Gaussian components as 256
and the i-vector dimension as 256.

4.2.2. TDNN x-vector extraction
The TDNN x-vector approach provides a fixed-dimensional

utterance-level representation by using a time-delay neural network
and the features of variable-length speech. Extracting TDNN
x-vectors contains several steps. Firstly, the TDNN architecture
runs at the frame level. The current time step is represented by t.
The input to the next frame-level layer is concatenated from the
current frame and its context of past and future frames. Therefore,
the next layer of frame-level representation condenses the temporal
context information. As the network deepens gradually, the scope
of the temporal context becomes wider. After three time-delay
operations, one frame in the fourth layer corresponds to 15 frames
in the context of the first layer. The stats pooling layer aggregates
all the frames of the speech segment and calculates the mean and
standard deviation. Finally, TDNN x-vectors are obtained in the
segment-level layer.

Time delay neural network x-vectors and Resnet x-vector
extractors were trained on the Pytorch framework. The speech
utterances were divided into chunks of 200 frames, and we set
the batch size as 64. Moreover, the dimension of TDNN x-vectors
and Resnet vectors was 256, the same as that of i-vectors. The
process of the Resnet x-vector extraction is detailed in Section
“4.2.3. Resnet x-vector extraction.” We used a ralamb optimizer
containing LookAhead and RAdam optimizer with Layer-wise
Adaptive Rate Scaling (LARS). The learning rate was set to 0.001,
attenuating every 400 steps and an attenuation factor of 0.7. The
number of training sessions was 18.
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TABLE 3 Resnet encoder architecture.

Layer Input Output Down sample Kernel Stride Channels Blocks

Conv1 F × T F × T False 7× 7 1 32 –

Resblock1 F × T F × T False 3× 3 1 32 3

Resblock2 F × T F
2 ×

T
2 True 3× 3 2 64 4

Resblock3 F
2 ×

T
2

F
4 ×

T
4 True 3× 3 2 128 6

Resblock4 F
4 ×

T
4

F
8 ×

T
8 True 3× 3 2 256 3

Stats pooling F
8 ×

T
8

F
4 × 1 – – – 256 –

TDNN affine F
4 × 1 1× 1 – F

4 × 1 1 256 –

F is the feature dimension (F = 60 for MFCC, PLP, and FBANK), and T is the sequence length.

4.2.3. Resnet x-vector extraction
Residual learning was proposed to simplify training for deeper

networks (He et al., 2016). We followed the Resnet34 encoder
described by Villalba et al. (2020) to train Resnet x-vector
extractors. Figure 2 shows the block diagram of the Resnet x-vector
extraction process. Specific architecture of the Resnet encoder
is listed as Table 3. The repetition times of the four residual
blocks are 3, 4, 6, and 3, respectively, and the number of residual
block channels is gradually doubled from 32 to obtain deeper
information. The dimension of acoustic features and the number
of speech frames are denoted as F and T, respectively. When the
stride is set to 2, the dimensions of F and T to the output are halved.
Due to the addition operation in residual blocks, the input needs
to be downsampled to ensure the same dimensions before adding.
Finally, each speech segment can obtain Resnet x-vectors of fixed
length after the average pooling layer.

In this study, Adam Weight Decay Regularization optimizer
was used in Resnet, and the learning rate was set to 0.001.
The attenuation factor was 1.0, and the number of training
sessions was 21.

4.3. Multi-task ensemble learning
method

In the front-end of the multi-task ensemble learning method,
nine speaker embeddings with nine task stimuli were extracted
from three acoustic features. The symbolic marks of speaker
embeddings are shown in Table 4. The acoustic features can

TABLE 4 The denotation of speaker embeddings.

Denotation Description

R_m Resnet x-vectors based on MFCC

R_p Resnet x-vectors based on PLP

R_f Resnet x-vectors based on FBANK

T_m TDNN x-vectors based on MFCC

T_p TDNN x-vectors based on PLP

T_f TDNN x-vectors based on FBANK

I_m I-vectors based on MFCC

I_p I-vectors based on PLP

I_f I-vectors based on FBANK

be MFCC, PLP, and FBANK. The types of speaker embedding
extractors in pre-training can be i-vector, TDNN x-vector, and
Resnet x-vector. Speaker embeddings are extracted according
to the speaker embedding extractors. In the back-end part,
Speaker Embeddings(j) and pi

(j) represent speaker embeddings of
the jth speech task and the SVM classification result of the jth
speech task from the ith (i = 1, 2, ..., n) subject, respectively.
Then, all the training set results are spliced and transposed into the
matrix. The same operation is performed for the testing set, and the
results of this fold are obtained by using MLP.

4.4. Combination of different Resnet
x-vectors in multi-task ensemble
learning method

This study also combined different Resnet x-vectors in our
proposed multi-task ensemble learning method. Resnet x-vectors
based on different speech features contain different acoustic
information, which may play a complementary role in depression
recognition. Figure 3 shows that the classification results of three
Resnet x-vectors (R_m, R_p, and R_f) on the training partition
using SVM are fused into new features in nine tasks, and MLP is
carried out to train the optimal model on the training set.piR_m(j),
piR_p(j), and piR_f (j) represent the SVM classification result of the
jth speech task from the ith (i = 1, 2, ..., n) subject based on R_m,
R_p, and R_f, respectively. Although Figure 3 shows the fusion
process of three Resnet x-vectors, the experiment also carries out
fusion cases of two Resnet x-vectors. Additionally, the figure only
shows the result of one test fold; the final result is the average of 100
repetitions of 10-fold cross-validation.

5. Experimental results

Our experiments have done the following work: In Section
“5.1. Results of nine speaker embeddings for depression detection,”
we use SVM and RF to compare the performance of nine
speaker embeddings in nine tasks. We analyze the performance
difference of the Resnet x-vector extractor compared with the
TDNN x-vector extractor and the i-vector extractor, the impact
of different acoustic features on the three speaker embedding
extractors, and the impact of different speech task types and
emotional valences on speaker embeddings. In Section “5.2. Results
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FIGURE 3

Resnet x-vector fusion of the proposed depression detection system. n denotes the number of the training subjects.

of multi-task ensemble learning methods with speaker embeddings
for depression detection,” we compare the performance of our
multi-task ensemble learning method and the other two literature
methods in nine speaker embeddings. Moreover, the best effect
is obtained by fusing Resnet x-vectors based on different features
in the integrated learning method and then compared with the
proposed literature studies.

In order to fully evaluate the performance of multiple
speaker embeddings and ensemble learning methods in depression
detection, we used accuracy, F1-D, and F1-H as performance
metrics. F1-D and F1-H are F1 scores of depressed and healthy
classes, respectively. For the binary problem in this paper, the four
categories in the confusion matrix are True Positive (TP), False
Negative (FN), False Positive (FP), and True Negative (TN). The
accuracy, F1-D, and F1-H could be calculated as follows.

accuracy =
TP + TN

TP + FN + FP + TN
(2)

F1− D =
2× TP

2× TP + FP + FN
(3)

F1−H =
2× TN

2× TN + FP + FN
(4)

Besides, 100 repetitions of 10-fold cross-validation were employed
to examine the algorithm’s performance. A total of 536 subjects
(310 depressed and 226 normal) in the depression speech dataset
were divided into 10 non-overlapping folds according to the
proportions of the two classes. Six folds were 54 subjects (31
depressed and 23 normal), and the four folds were 53 subjects (31
depressed and 22 normal). We used ninefolds for training and the
remaining fold for testing. This way, the same utterance would not
appear in two different folds. The KFold function of the Scikit-
learn toolbox (Pedregosa et al., 2011) (sklearn) was performed to
partition the training and testing sets. The result of each repetition
was an average of 10 test folds. In order to assess the generalizability
of our approach, the final result was the average of 10-fold cross-
validation for 100 times with different random_state (Mobram and
Vali, 2022) has used this experimental scheme.

5.1. Results of nine speaker embeddings
for depression detection

After the implementation of the front-end part of the
experimental framework in Figure 1, nine speaker embeddings

in nine speech tasks were obtained. Two classifiers, SVM and
RF, were used to evaluate the depression recognition performance
of nine speaker embeddings comprehensively. We trained SVM
classifiers with a Gaussian kernel function and tuned the SVR
hyper-parameters. Similarly, n_estimators, which represented the
number of trees in the forest, were optimized when training RF
classifiers. Concerning the experiments of speaker embeddings on
each task, the training partition was used to train models, and the
results were calculated on the testing partition. The experiments
followed the 10-fold cross-validation rule and were repeated 100
times with different randomizations. The accuracies of nine speaker
embeddings under nine tasks using SVM and RF were reported
in Table 5. The detailed meanings of the nine speaker embedding
nicknames in this table are shown in Table 4. We also calculated the
corresponding F1-D and F1-H, but they were too long to be listed.
However, they would be used in the subsequent comparison of the
algorithm’s performance.

5.1.1. The effects of different speaker embedding
extractors on depression detection system

Figure 4 showed classification accuracy, F1-D, and F1-H of
speaker embeddings based on three extractors and the performance
differences between SVM and RF. This boxplot was drawn by
the results of speaker embeddings under different extractors, as
described in Section “5.1. Results of nine speaker embeddings for
depression detection.” For instance, the accuracy boxplot under the
i-vector extractor using SVM in Figure 4A was made based on all
results of I_m, I_p, and I_f under nine tasks in Table 5.

The accuracies shown in Figure 4A indicated that the Resnet
x-vector extractor provided the best scores, followed by the TDNN
x-vector extractor and the i-vector extractor in both SVM and RF.
In detail, regardless of whether SVM or RF was used, the upper
limit, median and lower limit of the Resnet x-vector extractor
were highest, while those of the i-vector extractor were lowest.
Although the maximum accuracy of TDNN x-vectors in SVM
reached 74.51%, this number was judged as an outlier based on the
overall distribution of the boxplot. Additionally, it clearly showed
that the box of Resnet x-vectors was overall above the other two.
Figure 4B, F1-D of Resnet x-vectors and i-vectors were close, while
TDNN x-vectors were slightly inferior. Figure 4C showed that the
ranking of F1-H of the three extractors was consistent with that of
accuracies.

As could be seen from the results of three assessment
criteria under the two classifiers, the Resnet x-vector extractor
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TABLE 5 Accuracy comparison of nine speaker embeddings under nine speech tasks using SVM or RF classifier.

SVM I_m I_p I_f T_m T_p T_f R_m R_p R_f

Task1 58.89% 57.71% 57.31% 62.06% 61.26% 62.45% 68.58% 60.67% 67.59%

Task2 61.46% 60.47% 60.67% 62.65% 59.29% 64.62% 63.83% 60.87% 62.45%

Task3 64.62% 65.81% 63.44% 66.01% 67.39% 68.38% 67.79% 62.06% 65.02%

Task4 70.36% 72.33% 67.79% 71.74% 71.34% 74.51% 70.75% 71.74% 71.34%

Task5 57.71% 58.30% 62.25% 67.39% 62.45% 62.85% 65.81% 62.65% 62.06%

Task6 57.71% 60.08% 59.68% 62.06% 61.66% 60.47% 64.82% 60.67% 60.47%

Task7 60.67% 62.25% 60.08% 61.46% 62.06% 61.07% 63.04% 59.88% 65.42%

Task8 62.85% 58.89% 58.70% 59.29% 62.25% 59.29% 64.23% 60.47% 62.06%

Task9 64.43% 61.66% 61.86% 59.68% 59.88% 59.09% 64.23% 61.26% 64.23%

RF I_m I_p I_f T_m T_p T_f R_m R_p R_f

Task1 61.07% 60.28% 58.50% 61.66% 63.04% 61.26% 66.80% 59.29% 65.81%

Task2 60.28% 61.26% 59.68% 60.67% 59.88% 59.68% 64.23% 60.47% 60.67%

Task3 63.64% 62.85% 62.45% 66.40% 67.59% 66.60% 64.43% 62.25% 64.23%

Task4 66.21% 67.98% 64.52% 70.95% 73.72% 72.33% 68.18% 67.79% 68.58%

Task5 58.89% 60.28% 60.28% 62.85% 61.07% 63.83% 63.04% 60.47% 61.07%

Task6 60.28% 59.09% 61.07% 63.44% 58.70% 58.89% 64.82% 59.68% 59.29%

Task7 61.86% 59.49% 60.08% 61.46% 63.64% 61.66% 66.40% 62.85% 66.01%

Task8 59.49% 57.31% 61.07% 59.09% 60.47% 59.49% 64.03% 59.49% 62.25%

Task9 60.67% 60.89% 62.25% 58.30% 60.47% 58.50% 64.43% 61.66% 63.24%

FIGURE 4

The result comparison of speaker embeddings based on three extractors in nine speech tasks between SVM and RF. (A) Accuracy boxplot. (B) F1-D
boxplot. (C) F1-H boxplot.

outperformed the TDNN x-vector extractor, which indicated that
the ability of upstream knowledge learned by Resnet to transfer
to depression screening was stronger than TDNN. Moreover, the
DNN embeddings (Resnet x-vectors and TDNN x-vectors) could
utilize speakers’ traits to build more effective depression models
than i-vectors. The results of Egas-López et al. (2022) comparing
the performance of DNN embeddings and i-vectors for depression
discrimination also supported the above conclusion. It was worth
noting that in the three charts of Figure 4, almost all upper
limit, upper quartile, and median of the three extractors’ whole
measurement indicators in SVM were higher than RF. This point
was consistent with the deduction of experiments that compared
classification results of SVM and RF in various i-vectors (Xing
et al., 2022). Consequently, we only contrasted the results of speaker
embeddings under SVM in the subsequent analysis. On the other

hand, we opted for SVM to train classifiers as the back-end part
of the framework displayed in Figure 1 and then integrated nine
speech tasks.

5.1.2. The effects of different acoustic features on
depression detection system

This part was to find out the most suitable phonetic features for
each speaker embedding extractor. The accuracy, F1-D, and F1-H
of three speaker embedding extractors based on MFCC, PLP, and
FBANK over nine tasks using SVM were plotted in Figure 5. In
terms of i-vectors, the medians of three evaluation indicators of
the MFCC-based systems exceeded those of systems based on PLP
or FANK, and in Figure 5A, the upper limit and upper quartile
of the accuracy of MFCC i-vectors were supreme among three
i-vector extractors based on different characteristics. Accordingly,
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FIGURE 5

The result comparison of speaker embeddings based on different acoustic features in nine speech tasks using SVM. (A) Accuracy boxplot. (B) F1-D
boxplot. (C) F1-H boxplot.

FIGURE 6

(A) The result comparison of each extractor based on the most matching feature set in nine speech tasks using SVM. (B) The result comparison of
speaker embeddings in speech tasks of different genres using SVM. (C) The result comparison of speaker embeddings in speech tasks of different
emotions using SVM. (D) The result comparison of three ensemble learning methods with speaker embeddings combined with nine tasks.

MFCC was more suitable for i-vectors. In addition, (Di et al., 2021)
demonstrated the effectiveness of MFCC i-vectors in the clinical
diagnosis of MDD. From the comprehensive analysis of the three
boxplots in Figure 5, FBANK outperformed the other feature sets
in TDNN x-vectors slightly. Although the accuracies of TDNN
x-vectors based on the three feature sets were similar, the median
of F1-D and the upper limit of F1-H of FBANK-based systems
had advantages. It could also be seen in Egas-López et al. (2022)
that TDNN x-vector extractors fitted with FBANK outperformed
MFCC, which our results supported. As for the Resnet x-vector

extractor, it could be observed that accuracy, F1-D, and F1-H of
MFCC-based systems performed better than the other two. As far
as we know, there is a lack of research on the befitting phonetic
features of these speaker embedding extractors. The results of our
experiment can provide some reference for this problem.

Since the i-vector and Resnet x-vector extractors best matched
MFCC and the TDNN x-vector extractor best matched FBANK,
Figure 6A showed the results of three speaker embeddings
(I_m, T_f, and R_m) using SVM in nine tasks for depression
classification. It was worth noting that five characteristic values
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of the accuracy of R_m were optimal, and its data is the most
centralized. The upper limit and lower quartile of F1-D of R_m
were significantly higher, and other characteristic values were not
lower. The characteristic values of F1-H of R_m, except for the
upper limit, were obviously better than others. As a result, R_m
provided the most vital ability to recognize depression in nine tasks
among nine speaker embeddings. However, the accuracy and F1-
H of TDNN x-vectors were slightly better than those of i-vectors.
Therefore, the performance of the three speaker embeddings was
sorted from good to bad: R_m, T_f, and I_m. This conclusion
could correspond to the performance ranking of three speaker
embedding extractors in Section “5.1.1. The effects of different
speaker embedding extractors on depression detection system.”

5.1.3. The effects of different speech tasks on
depression detection system

This series of analyses were conducted to investigate the
influence of different genres and emotions of speech tasks on
depression discrimination results of speaker embeddings. As
mentioned in Table 1, there were nine tasks of the depression
speech database covering two genres and three emotional valences.
Table 6 integrated the accuracy of the same emotion in the same
scenario in Table 5. Specifically, the accuracies of Int-Pos were
the average of those of task1 and task2. The accuracies of Int-Neu
were the average of those of task3 to task5. Also, the values of
Int-Neg, Pic-Pos, Pic-Neu, and Pic-Neg corresponded to task6 to
task9, respectively. F1-D and F1-H of six task types also performed
similar operations. This operation ensured that the data volume of
the six task types was the same and that the data distribution could
be fairly compared through boxplots. Figure 6B and Figure 6C
showed the results of nine speaker embeddings in the interview or
picture description tasks and positive, neutral, or negative emotions
using SVM. Moreover, the accuracy boxplots of both figures were
plotted according to Table 6.

The results of Figure 6B presented that the interview scene had
more considerable fluctuations of accuracy and F1-D. However, the
upper limit, median, and upper quartile of the three assessment
criteria were significantly higher than the picture description scene.
Even all indexes of the F1-H boxplot of the interview were superior
to the picture description. Overall, interview speech performed
better than picture description speech using speaker embeddings in
depression detection. Although both interview speech and picture
description speech were considered as spontaneous voice, we
inferred from our experimental results that subjects were more
likely to express their true feelings in the interview scene, and
interview voice contained more information related to emotional

states than picture description. This view coincides with the
conclusion of Long et al. (2017).

It could be seen from Figure 6C that the accuracy, F1-D,
and F1-H of neutral stimulus materials were evidently superior to
positive and negative materials. Although F1-H of positive speech
had no advantage over negative speech, all indexes of its accuracy
were slightly higher than the negative, and five characteristic
values other than the upper limit of F1-D were higher than the
negative. In addition, the fluctuation of F1-D of negative speech
was also the smallest. Hence, it could be concluded that neutral
stimulus materials performed best, followed by positive materials
and negative materials. This discovery was consistent with (Liu
et al., 2017), which showed that neutral stimuli performed best
among three emotional valences when using speaker embeddings
for depression detection.

5.2. Results of multi-task ensemble
learning methods with speaker
embeddings for depression detection

The back-end part of Figure 1 was conducted on nine
speaker embeddings, and each integrated nine speech tasks. We
implemented MLP using the GridSearchCV function from sklearn,
which performed grid optimization of the parameters on the
training set and then applied the optimal model on the training
partition to the prediction of the testing partition. Note that the
result in Figure 1 was just the result of a test fold, and our method’s
final result was the average of 10 test folds across 100 times.

Our approach was compared with two other ensemble
methods. The first method (Mobram and Vali, 2022) was to classify
speaker embeddings on nine speech tasks using cosine similarity
and then a majority vote based on the results of nine tasks.
The second method (Xing et al., 2022) used SVM on speaker
embeddings over nine tasks and selected tasks with significant
accuracy differences using paired T-test. Then the results of
the different tasks were integrated into new features for SVM
classification. The final results of these two methods were also the
average of 100 repetitions of ten-fold cross-validation.

The experimental results in Table 7 indicated that three
ensemble learning methods performed best on MFCC-based
Resnet x-vectors, which were remarked as R_m among nine
speaker embeddings, which illustrated the effectiveness of R_m in
depression recognition tasks. In addition, our approach provided
the best accuracy (73.94%), F1-D (76.09%), and F1-H (71.30%) on
R_m with improvement by 2.99, 0.15, and 7.96% compared with

TABLE 6 Accuracy comparison of nine speaker embeddings under interview or picture description tasks with different emotions using SVM classifier.

Task I_m I_p I_f T_m T_p T_f R_m R_p R_f

Int-Pos 60.18% 59.09% 58.99% 62.36% 60.28% 63.54% 66.21% 60.77% 65.02%

Int-Neu 64.23% 65.48% 64.49% 68.38% 67.06% 68.58% 68.12% 65.48% 66.14%

Int-Neg 57.71% 60.08% 59.68% 62.06% 61.66% 60.47% 64.82% 60.67% 60.47%

Pic-Pos 60.67% 62.25% 60.08% 61.46% 62.06% 61.07% 63.04% 59.88% 65.42%

Pic-Neu 62.85% 58.89% 58.70% 59.29% 62.25% 59.29% 64.23% 60.47% 62.06%

Pic-Neg 64.43% 61.66% 61.86% 59.68% 59.88% 59.09% 64.23% 61.26% 64.23%
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TABLE 7 Performance comparison of three methods with speaker embeddings combined with nine tasks.

Speaker
embeddings

Accuracy F1-D F1-H

Our
approach

Mobram
and Vali,

2022

Xing et al.,
2022

Our
approach

Mobram
and Vali,

2022

Xing et al.,
2022

Our
approach

Mobram
and Vali,

2022

Xing et al.,
2022

I_m 65.04% 67.39% 65.22% 67.88% 75.91% 74.79% 61.61% 49.54% 43.95%

I_p 67.83% 65.42% 66.01% 71.25% 74.07% 76.24% 63.37% 48.07% 40.28%

I_f 67.23% 65.61% 63.45% 69.82% 74.56% 74.76% 64.07% 46.95% 33.69%

T_m 67.19% 67.00% 66.20% 73.31% 73.62% 74.21% 57.44% 55.94% 51.00%

T_p 70.36% 66.21% 67.39% 73.40% 73.73% 75.63% 66.52% 52.63% 50.75%

T_f 69.96% 69.17% 66.63% 76.03% 75.55% 74.89% 59.79% 58.29% 50.15%

R_m 73.94% 70.95% 68.99% 76.09% 75.94% 74.64% 71.30% 63.34% 60.05%

R_p 71.15% 65.42% 63.24% 74.74% 72.78% 73.12% 66.36% 52.57% 41.88%

R_f 67.25% 65.81% 65.05% 70.25% 72.05% 73.30% 63.44% 55.98% 49.28%

(Mobram and Vali, 2022) and 4.95, 1.45, and 11.25% over (Xing
et al., 2022) on three assessment criteria. Figure 6D was drawn
according to the data in Table 7, reflecting the performance of three
methods over 9 speaker embeddings. It could be seen that the upper
limit, median, and upper quartile of the accuracy of our method
were higher than those of the rest two methods. Although F1-D
of our approach was slightly lower than others, all indexes of F1-
H of our approach were far superior to others. On the whole, the
ensemble learning method we proposed performed well.

5.2.1. Combining different Resnet x-vectors in
multi-task ensemble learning method

Since the advantages of Resnet x-vector extractors compared
to TDNN x-vector and i-vector extractors had been explained in
Section “5.1.1. The effects of different speaker embedding extractors
on depression detection system,” we would fuse different Resnet
x-vectors (R_m, R_p, or R_f) in the multi-task integrated learning
method as shown in Figure 3. The experiment was to examine the
effect of this fusion on the performance of depression detection. It
was not difficult to find fromTable 8 that when R_m was eliminated
from R_m + R_p + R_f, the accuracy, F1-D, and F1-H were
reduced by 1.77, 1.19, and 3.17%, respectively. MFCC simulates
the audio system of the human ear, which can suppress high-
frequency signals, and reduce the interference of environmental
noise. Therefore, R_m (MFCC-based Resnet x-vectors) did well
in our experiment and provided a significant performance boost
during the integration process. Moreover, the results in Table 8
indicated that R_m + R_p provided the highest accuracy (74.72%),
F1-D (76.90%), and F1-H (72.05%), with the improvement of 0.78,
0.81, and 0.75% compared with R_m, and with the improvement
of 3.57, 2.16, and 5.69% compared with R_p. PLP uses a linear
prediction autoregressive model to obtain cepstrum coefficients,
which is different from the compression coefficient used by
MFCC. PLP also has good noise robustness. The combination of
R_m and R_p should have better noise robustness than speaker
embeddings before the combination. In this experiment, the
speaker embeddings for depression recognition were based on
the pre-trained model of out-domain data. It is very important

TABLE 8 Performance of ensemble fusion system of Resnet x-vectors
based on different feature sets.

Ensemble fusion Accuracy F1-D F1-H

R_m + R_p 74.72% 76.90% 72.05%

R_m + R_f 73.76% 75.42% 71.76%

R_p + R_f 69.60% 72.60% 65.78%

R_m + R_p + R_f 71.37% 73.79% 68.95%

TABLE 9 Performance comparison of other literature studies on the
depression speech dataset.

Method Accuracy F1-D F1-H

Giannakopoulos, 2015 67.98% 74.77% 56.22%

Di et al., 2021 66.40% 72.93% 55.73%

Egas-López et al., 2022 68.18% 75.42% 54.90%

Xing et al., 2022 71.89% 77.27% 63.08%

Our proposed system 74.72% 76.90% 72.05%

to alleviate the interference of noise for the performance of the
depression recognition model.

5.2.2. Comparison with other proposed methods
on the depression speech dataset

This section compares the proposed multi-tasking integrated
learning method incorporating different Resnet x-vectors with
other literature studies, as shown in Table 9. Since the depression
speech dataset used in this study was collected by the Gansu
Provincial Key Laboratory of Wearable Computing, the results
in Table 9 were obtained by implementing the methods in other
papers based on this data. Note that the depression dataset was
fairly divided into ten portions. Nine portions were for training,
and one portion was for testing, which was unseen data. The final
result of each method was the average of 100 repetitions of 10-fold
cross-validation.

Our result in Table 9 is the best one of the completed outcomes:
the fusion of the MFCC-based Resnet x-vectors and the PLP-based
Resnet x-vectors in the multi-task ensemble learning method, with
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an accuracy of 74.72%, F1-D of 76.90%, and F1-H of 72.05%.
Furthermore, our system increases accuracy by 6.74%, F1-D by
2.13%, and F1-H by 15.83% compared to Giannakopoulos (2015),
which classified short-term and mid-term voice features from
depressed and normal subjects using the SVM classifier with RBF
kernel. Also, we improved accuracy by 8.32%, F1-D by 3.97%, and
F1-H by 16.32% compared to Di et al. (2021), which only used
MFCC i-vectors for depression detection and improved accuracy
by 6.54%, F1-D by 1.48%, and F1-H by 17.15% compared to
Egas-López et al. (2022) which used pre-trained DNN embeddings
based on FBANK for SVM classification. Finally, compared to
Xing et al. (2022), which was the hierarchical classification method
of combined i-vectors based on several speech features that we
published earlier, our accuracy is improved by 2.83% and F1-H by
8.97%, while F1-D is slightly lower.

In general, compared with other literature methods, the
accuracy of our method has been improved to some extent,
and F1-D, which presents the classification performance of the
depressed class, also maintains a reasonable level. Particularly, F1-
D, which shows the classification performance of the healthy class,
has been significantly improved. This impressive result shows the
effectiveness of our proposed method on the gender-independent
depressive speech dataset.

6. Conclusion and future works

In order to find the optimal speaker embeddings for depression
recognition, this paper compared the performance of three speaker
embedding extractors based on different acoustic feature sets for
depression detection in a multi-task depression speech database.
The comprehensive performance of the new state-of-art Resnet
x-vector extractor applied to depression recognition for the first
time is better than that of the TDNN x-vector extractor and
i-vector extractor, indicating that it can extract more depression-
related information than the other two. Finally, nine speaker
embeddings on three extractors (Resnet x-vector extractor, TDNN
x-vector extractor, and i-vector extractor) based on MFCC, PLP,
and FBANK were obtained. We concluded that MFCC was suitable
for the i-vector extractor, FBANK for the TDNN x-vector extractor,
and MFCC for the Resnet x-vector extractor. Moreover, MFCC-
based Resnet x-vectors provided the best recognition among nine
speaker embeddings.

Since our depression speech dataset consisted of nine speech
tasks covering two genres (interview and picture description),
and three emotional valences (positive, neutral, and negative), we
explored the effects of different scenes and different emotional
stimuli on depression recognition. The conclusion is that the
difference in speech information between the two types of subjects
in the interview task is more significant than that in the picture
description task. The effect of neutral stimulus materials is better
than that of positive and negative materials.

To make full use of the information from different scenes and
emotions, we designed a multi-task ensemble learning method
using speaker embeddings on the depression speech dataset
containing nine tasks. The accuracy and F1-H of our method
were significantly better than that of the other two literature
studies, and F1-D maintained a similar level. In addition, the

MFCC-based Resnet x-vectors among nine speaker embeddings
performed best in our proposed integration approach. Our multi-
task ensemble learning method based on R_m + R_p achieved
best results than other literature studies using the depression
speech database, indicating that MFCC-based Resnet x-vectors and
PLP-based Resnet x-vectors were complementary in depression
recognition, and information from 9 speech tasks was also utilized
in the integrated system.

In this study, we used the out-domain dataset to train the pre-
trained model to alleviate the problem of insufficient data volume
in deep learning. We are also constantly collecting the depression
speech dataset to expand the data volume. Then we will consider
using the augmented in-domain dataset for pre-training to improve
the depression recognition performance further.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: Data involves privacy and has not been
disclosed. Requests to access these datasets should be directed to
ZL, liuzhenyu@lzu.edu.cn.

Ethics statement

The studies involving human participants were reviewed
and approved by the Tianshui Third People’s Hospital. The
patients/participants provided their written informed consent to
participate in this study.

Author contributions

ZL, HY, and BH were responsible for the entire study, including
study concepts and study design. ZL and HY contributed to the
experimental paradigm design and wrote the manuscript. GL, QC,
ZD, and LF helped collect data. ZY helped perform the analysis with
constructive discussions. All authors agreed to be accountable for
the content of the work.

Funding

This work was supported in part by the National Key
Research and Development Program of China (Grant No.
2019YFA0706200), the National Natural Science Foundation of
China (Grant Nos. 61632014, 61627808, 61802159, and 61802158),
and the Fundamental Research Funds for Central Universities
(lzujbky-2019-26 and lzujbky-2021-kb26).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1141621
mailto:liuzhenyu@lzu.edu.cn
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1141621 March 18, 2023 Time: 15:17 # 14

Liu et al. 10.3389/fnins.2023.1141621

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Afshan, A., Guo, J., Park, S. J., Ravi, V., Flint, J., and Alwan, A.
(2018). Effectiveness of voice quality features in detecting depression.
Proc. Interspeech 2018, 1676–1680. doi: 10.21437/Interspeech.2018-
1399

Alghowinem, S., Goecke, R., Wagner, M., Epps, J., Breakspear, M., and Parker, G.
(2013). “Detecting depression: A comparison between spontaneous and read speech,”
in Proceedings of the 2013 IEEE international conference on acoustics, speech and
signal processing, (Vancouver, BC: IEEE), 7547–7551. doi: 10.1109/ICASSP.2013.663
9130

Alpert, M., Pouget, E. R., and Silva, R. R. (2001). Reflections of depression in acoustic
measures of the patient’s speech. J. Affect. Disord. 66, 59–69. doi: 10.1016/S0165-
0327(00)00335-9

American Psychiatric Association (1994). Diagnostic and statistical manual of
mental disorders: DSM-IV, Vol. 4. Washington, DC: American Psychiatric Association.

Beck, A. T., and Alford, B. A. (2009). Depression: Causes and treatment. Philadelphia,
PA: University of Pennsylvania Press. doi: 10.9783/9780812290882

Cai, H., Qu, Z., Li, Z., Zhang, Y., Hu, X., and Hu, B. (2020). Feature-level fusion
approaches based on multimodal EEG data for depression recognition. Inf. Fusion 59,
127–138. doi: 10.1016/j.inffus.2020.01.008

Cannizzaro, M., Harel, B., Reilly, N., Chappell, P., and Snyder, P. J. (2004). Voice
acoustical measurement of the severity of major depression. Brain Cogn. 56, 30–35.
doi: 10.1016/j.bandc.2004.05.003

Cummins, N., Epps, J., Sethu, V., and Krajewski, J. (2014). “Variability compensation
in small data: Oversampled extraction of i-vectors for the classification of depressed
speech,” in Proceedings of the 2014 IEEE international conference on acoustics, speech
and signal processing (ICASSP), (Florence: IEEE), 970–974. doi: 10.1109/ICASSP.2014.
6853741

Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., and Quatieri,
T. F. (2015). A review of depression and suicide risk assessment using
speech analysis. Speech Commun. 71, 10–49. doi: 10.1016/j.specom.2015.
03.004

Dehak, N., Kenny, P. J., Dehak, R., Dumouchel, P., and Ouellet, P. (2010). Front-
end factor analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process.
19, 788–798. doi: 10.1109/TASL.2010.2064307

Di, Y., Wang, J., Li, W., and Zhu, T. (2021). Using i-vectors from voice features to
identify major depressive disorder. J. Affect. Disord. 288, 161–166. doi: 10.1016/j.jad.
2021.04.004

Dumpala, S. H., Rempel, S., Dikaios, K., Sajjadian, M., Uher, R., and Oore, S. (2021).
“Estimating severity of depression from acoustic features and embeddings of natural
speech,” in Proceedings of the ICASSP 2021-2021 IEEE international conference on
acoustics, speech and signal processing (ICASSP), (Toronto, ON: IEEE), 7278–7282.
doi: 10.1109/ICASSP39728.2021.9414129

Dumpala, S. H., Rodriguez, S., Rempel, S., Sajjadian, M., Uher, R., and Oore, S.
(2022). Detecting depression with a temporal context of speaker embeddings. Proc.
AAAI SAS.

Egas López, J. V., Tóth, L., Hoffmann, I., Kálmán, J., Pákáski, M., and Gosztolya,
G. (2019). “Assessing Alzheimer’s disease from speech using the i-vector approach,” in
Proceedings of the international conference on speech and computer, (Berlin: Springer),
289–298. doi: 10.1007/978-3-030-26061-3_30

Egas-López, J. V., Kiss, G., Sztahó, D., and Gosztolya, G. (2022). “Automatic
assessment of the degree of clinical depression from speech using X-vectors,” in
Proceedings of the ICASSP 2022-2022 IEEE international conference on acoustics,
speech and signal processing (ICASSP), (Singapore: IEEE), 8502–8506. doi: 10.1109/
ICASSP43922.2022.9746068

Espinola, C. W., Gomes, J. C., Pereira, J. M. S., and dos Santos, W. P. (2021).
Detection of major depressive disorder using vocal acoustic analysis and machine
learning—an exploratory study. Res. Biomed. Eng. 37, 53–64. doi: 10.1007/s42600-020-
00100-9

Fan, Y., Kang, J. W., Li, L. T., Li, K. C., Chen, H. L., Cheng, S. T., et al. (2020).
“Cn-celeb: A challenging Chinese speaker recognition dataset,” in Proceedings of
the ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal
processing (ICASSP), (Piscataway, NJ: IEEE), 7604–7608. doi: 10.1109/ICASSP40776.
2020.9054017

Garcia, N., Orozco-Arroyave, J. R., D’Haro, L. F., Dehak, N., and Nöth, E.
(2017). “Evaluation of the neurological state of people with Parkinson’s disease
using i-vectors,” in Proceedings of the annual conference of the international speech
communication association, Stockholm, 299–303. doi: 10.21437/Interspeech.2017-819

Garcia-Romero, D., Snyder, D., Sell, G., McCree, A., Povey, D., and Khudanpur, S.
(2019). x-vector DNN refinement with full-length recordings for speaker recognition.
Proc. Interspeech 2019, 1493–1496. doi: 10.21437/Interspeech.2019-2205

Giannakopoulos, T. (2015). Pyaudioanalysis: An open-source python library for
audio signal analysis. PLoS One 10:e0144610. doi: 10.1371/journal.pone.0144610

Gong, X., Huang, Y. X., Wang, Y., and Luo, Y. J. (2011). Revision of the Chinese
facial affective picture system. Chin. Ment. Health J. 25, 40–46.

Greden, J. F., and Carroll, B. J. (1980). Decrease in speech pause times with treatment
of endogenous depression. Biol. Psychiatry 15, 575–587. doi: 10.1007/BF00344257

Guo, W., Yang, H., Liu, Z., Xu, Y., and Hu, B. (2021). Deep neural networks
for depression recognition based on 2d and 3d facial expressions under emotional
stimulus tasks. Front. Neurosci. 342:609760. doi: 10.3389/fnins.2021.609760

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, (Las Vegas, NV: IEEE), 770–778. doi: 10.1109/CVPR.2016.90

José Vicente, E. L., Kiss-Vetráb, M., Tóth, L., and Gosztolya, G. (2021). Identifying
conflict escalation and primates by using ensemble x-vectors and Fisher vector features.
Brno: ISCA.

Kanagasundaram, A., Vogt, R., Dean, D., and Sridharan, S. (2012). “PLDA based
speaker recognition on short utterances,” in Proceedings of the speaker and language
recognition workshop, Singapore, 28–33. doi: 10.21437/Interspeech.2011-58

Kroenke, K., Spitzer, R. L., and Williams, J. B. W. (2001). The PHQ-9: Validity of
a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613. doi: 10.1046/j.
1525-1497.2001.016009606.x

Lang, H., and Cui, C. (2018). Automated depression analysis using convolutional
neural networks from speech. J. Biomed. Inform. 83, 103–111. doi: 10.1016/j.jbi.2018.
05.007

Liu, Z., Hu, B., Li, X., Liu, F., Wang, G., and Yang, J. (2017). “Detecting depression
in speech under different speaking styles and emotional valences,” in Proceedings of
the international conference on brain informatics, (Berlin: Springer), 261–271. doi:
10.1007/978-3-319-70772-3_25

Long, H., Guo, Z., Wu, X., Hu, B., Liu, Z., and Cai, H. (2017). “Detecting
depression in speech: Comparison and combination between different speech types,”
in Proceedings of the 2017 IEEE international conference on bioinformatics and
biomedicine (BIBM), (Kansas City, MO: IEEE), 1052–1058. doi: 10.1109/BIBM.2017.
8217802

Lu, J., Xu, X., Huang, Y., Li, T., Ma, C., Xu, G., et al. (2021). Prevalence of depressive
disorders and treatment in China: A cross-sectional epidemiological study. Lancet
Psychiatry 8, 981–990. doi: 10.1016/S2215-0366(21)00251-0

Lu, X., Shi, D., Liu, Y., and Yuan, J. (2021). Speech depression recognition based on
attentional residual network. Front. Biosci. 26:1746–1759. doi: 10.52586/5066

Mobram, S., and Vali, M. (2022). Depression detection based on linear and nonlinear
speech features in I-vector/SVDA framework. Comput. Biol. Med. 149:105926. doi:
10.1016/j.compbiomed.2022.105926

Moro-Velazquez, L., Villalba, J., and Dehak, N. (2020). “Using x-vectors to
automatically detect Parkinson’s disease from speech,” in Proceedings of the ICASSP
2020-2020 IEEE international conference on acoustics, speech and signal processing
(ICASSP), (Barcelona: IEEE), 1155–1159. doi: 10.1109/ICASSP40776.2020.9053770

Mundt, J. C., Snyder, P. J., Cannizzaro, M. S., Chappie, K., and Geralts, D. S. (2007).
Voice acoustic measures of depression severity and treatment response collected via
interactive voice response (IVR) technology. J. Neurolinguistics 20, 50–64. doi: 10.
1016/j.jneuroling.2006.04.001

Nilsonne, Å. (1987). Acoustic analysis of speech variables during depression and
after improvement. Acta Psychiatr. Scand. 76, 235–245. doi: 10.1111/j.1600-0447.1987.
tb02891.x

Othmani, A., Kadoch, D., Bentounes, K., Rejaibi, E., Alfred, R., and Hadid, A.
(2021). “Towards robust deep neural networks for affect and depression recognition
from speech,” in Proceedings of the international conference on pattern recognition,

Frontiers in Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1141621
https://doi.org/10.21437/Interspeech.2018-1399
https://doi.org/10.21437/Interspeech.2018-1399
https://doi.org/10.1109/ICASSP.2013.6639130
https://doi.org/10.1109/ICASSP.2013.6639130
https://doi.org/10.1016/S0165-0327(00)00335-9
https://doi.org/10.1016/S0165-0327(00)00335-9
https://doi.org/10.9783/9780812290882
https://doi.org/10.1016/j.inffus.2020.01.008
https://doi.org/10.1016/j.bandc.2004.05.003
https://doi.org/10.1109/ICASSP.2014.6853741
https://doi.org/10.1109/ICASSP.2014.6853741
https://doi.org/10.1016/j.specom.2015.03.004
https://doi.org/10.1016/j.specom.2015.03.004
https://doi.org/10.1109/TASL.2010.2064307
https://doi.org/10.1016/j.jad.2021.04.004
https://doi.org/10.1016/j.jad.2021.04.004
https://doi.org/10.1109/ICASSP39728.2021.9414129
https://doi.org/10.1007/978-3-030-26061-3_30
https://doi.org/10.1109/ICASSP43922.2022.9746068
https://doi.org/10.1109/ICASSP43922.2022.9746068
https://doi.org/10.1007/s42600-020-00100-9
https://doi.org/10.1007/s42600-020-00100-9
https://doi.org/10.1109/ICASSP40776.2020.9054017
https://doi.org/10.1109/ICASSP40776.2020.9054017
https://doi.org/10.21437/Interspeech.2017-819
https://doi.org/10.21437/Interspeech.2019-2205
https://doi.org/10.1371/journal.pone.0144610
https://doi.org/10.1007/BF00344257
https://doi.org/10.3389/fnins.2021.609760
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.21437/Interspeech.2011-58
https://doi.org/10.1046/j.1525-1497.2001.016009606.x
https://doi.org/10.1046/j.1525-1497.2001.016009606.x
https://doi.org/10.1016/j.jbi.2018.05.007
https://doi.org/10.1016/j.jbi.2018.05.007
https://doi.org/10.1007/978-3-319-70772-3_25
https://doi.org/10.1007/978-3-319-70772-3_25
https://doi.org/10.1109/BIBM.2017.8217802
https://doi.org/10.1109/BIBM.2017.8217802
https://doi.org/10.1016/S2215-0366(21)00251-0
https://doi.org/10.52586/5066
https://doi.org/10.1016/j.compbiomed.2022.105926
https://doi.org/10.1016/j.compbiomed.2022.105926
https://doi.org/10.1109/ICASSP40776.2020.9053770
https://doi.org/10.1016/j.jneuroling.2006.04.001
https://doi.org/10.1016/j.jneuroling.2006.04.001
https://doi.org/10.1111/j.1600-0447.1987.tb02891.x
https://doi.org/10.1111/j.1600-0447.1987.tb02891.x
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1141621 March 18, 2023 Time: 15:17 # 15

Liu et al. 10.3389/fnins.2023.1141621

(New York, NY: Springer International Publishing), 5–19. doi: 10.1007/978-3-030-
68790-8_1

Pappagari, R., Wang, T., Villalba, J., Chen, N., and Dehak, N. (2020b). “x-vectors
meet emotions: A study on dependencies between emotion and speaker recognition,”
in Proceedings of the ICASSP 2020-2020 IEEE international conference on acoustics,
speech and signal processing (ICASSP), (Piscataway, NJ: IEEE), 7169–7173. doi: 10.
1109/ICASSP40776.2020.9054317

Pappagari, R., Cho, J., Moro-Velazquez, L., and Dehak, N. (2020a). Using state
of the art speaker recognition and natural language processing technologies to detect
Alzheimer’s disease and assess its severity. Shanghai: INTERSPEECH, 2177–2181. doi:
10.21437/Interspeech.2020-2587

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Povey, D., Cheng, G., Wang, Y., Li, K., Xu, H., Yarmohamadi, M., et al.
(2018). “Semi-orthogonal low-rank matrix factorization for deep neural networks,”
in Proceedings of the annual conference of the international speech communication
association, Hyberabad, 3743–3747. doi: 10.21437/Interspeech.2018-1417

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., et al. (2011).
“The kaldi speech recognition toolkit,” in Proceedings of the IEEE 2011 workshop on
automatic speech recognition and understanding, (Waikoloa Village, HI: IEEE Signal
Processing Society).

Raj, D., Snyder, D., Povey, D., and Khudanpur, S. (2019). “Probing the information
encoded in x-vectors,” in Proceedings of the 2019 IEEE automatic speech recognition
and understanding workshop (ASRU), (Singapore: IEEE), 726–733. doi: 10.1109/
ASRU46091.2019.9003979

Rajkumar, R. P. (2021). Gut hormones as potential therapeutic targets or biomarkers
of response in depression: The case of motilin. Life 11:892. doi: 10.3390/life11090892

Rani, B. (2017). “I-vector based depression level estimation technique,” in
Proceedings of the 2016 IEEE international conference on recent trends in electronics,
information and communication technology (RTEICT), (Bangalore: IEEE), 2067–2071.
doi: 10.1109/RTEICT.2016.7808203

Rejaibi, E., Komaty, A., Meriaudeau, F., Agrebi, S., and Othmani, A. (2022). MFCC-
based recurrent neural network for automatic clinical depression recognition and
assessment from speech. Biomed. Signal Process. Control 71:103107. doi: 10.1016/j.
bspc.2021.103107

Saidi, A., Othman, S. B., and Ben, S. S. (2020). “Hybrid CNN-SVM classifier for
efficient depression detection system,” in Proceedings of the international conference on
advanced systems and emergent technologies, IC_ASET, (Hammamet: IEEE), 229–234.
doi: 10.1109/IC_ASET49463.2020.9318302

Shen, R., Zhan, Q., Wang, Y., and Ma, H. (2021). “Depression detection by analysing
eye movements on emotional images,” in Proceedings of the ICASSP 2021-2021 IEEE
international conference on acoustics, speech and signal processing (ICASSP), (Toronto,
ON: IEEE), 7973–7977. doi: 10.1109/ICASSP39728.2021.9414663

Snyder, D., Garcia-Romero, D., Povey, D., and Khudanpur, S. (2017). “Deep
neural network embeddings for text-independent speaker verification,” in Proceedings
of the annual conference of the international speech communication association,
INTERSPEECH, Vol. 2017-Augus (Stockholm: International Speech Communication
Association (ISCA)), 999–1003. doi: 10.21437/Interspeech.2017-620

Snyder, D., Garcia-Romero, D., Sell, G., McCree, A., Povey, D., and Khudanpur,
S. (2019). “Speaker recognition for multi-speaker conversations using x-vectors,”
in ICASSP 2019-2019 IEEE International conference on acoustics, speech and signal
processing (ICASSP) (Brighton: IEEE), 5796–5800. doi: 10.1109/ICASSP.2019.8683760

Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., and Khudanpur, S. (2018). “X-
vectors: Robust dnn embeddings for speaker recognition,” in 2018 IEEE International
conference on acoustics, speech and signal processing (ICASSP) (New York, NY: IEEE),
5329–5333.

Spijker, J., De Graaf, R., Bijl, R. V., Beekman, A. T. F., Ormel, J., and Nolen, W. A.
(2004). Functional disability and depression in the general population. Results from

the Netherlands mental health survey and incidence study (NEMESIS). Acta Psychiatr.
Scand. 110, 208–214. doi: 10.1111/j.1600-0447.2004.00335.x

Szabadi, E., Bradshaw, C. M., and Besson, J. A. O. (1976). Elongation of pause-
time in speech: A simple, objective measure of motor retardation in depression. Br.
J. Psychiatry 129, 592–597. doi: 10.1192/bjp.129.6.592

Tasnim, M., and Stroulia, E. (2019). “Detecting depression from voice,” in
Proceedings of the Canadian conference on artificial intelligence, (Kingston, ON:
Springer), 472–478. doi: 10.1007/978-3-030-18305-9_47

Tasnim, M., Ehghaghi, M., Diep, B., and Novikova, J. (2022). “Depac: A corpus for
depression and anxiety detection from speech,” in Proceedings of the eighth workshop
on computational linguistics and clinical psychology, Seattle, WA, 1–16. doi: 10.18653/
v1/2022.clpsych-1.1

Tong, F., Zhao, M., Zhou, J., Lu, H., Li, Z., Li, L., et al. (2021). “ASV-subtools: Open
source toolkit for automatic speaker verification,” in Proceedings of the ICASSP 2021-
2021 IEEE international conference on acoustics, speech and signal processing (ICASSP),
(Toronto, ON: IEEE), 6184–6188. doi: 10.1109/ICASSP39728.2021.9414676

Valstar, M., Schuller, B. W., Krajewski, J., Cowie, R., and Pantic, M. (2014).
“AVEC 2014: The 4th international audio/visual emotion challenge and workshop,” in
Proceedings of the 22nd ACM international conference on multimedia, Brisbane, QLD,
1243–1244. doi: 10.1145/2647868.2647869

Valstar, M., Schuller, B., Smith, K., Eyben, F., Jiang, B., Bilakhia, S., et al.
(2013). “Avec 2013: The continuous audio/visual emotion and depression recognition
challenge,” in Proceedings of the 3rd ACM international workshop on Audio/visual
emotion challenge, Barcelona, 3–10. doi: 10.1145/2512530.2512533

Variani, E., Lei, X., McDermott, E., Moreno, I. L., and Gonzalez-Dominguez,
J. (2014). “Deep neural networks for small footprint text-dependent speaker
verification,” in Proceedings of the 2014 IEEE international conference on acoustics,
speech and signal processing (ICASSP), (Florence: IEEE), 4052–4056. doi: 10.1109/
ICASSP.2014.6854363

Vekkot, S., Gupta, D., Zakariah, M., and Alotaibi, Y. A. (2019). Hybrid framework
for speaker-independent emotion conversion using i-vector PLDA and neural
network. IEEE Access 7, 81883–81902. doi: 10.1109/ACCESS.2019.2923003

Villalba, J., Chen, N., Snyder, D., Garcia-Romero, D., McCree, A., Sell, G., et al.
(2020). State-of-the-art speaker recognition with neural network embeddings in NIST
SRE18 and speakers in the wild evaluations. Comput. Speech Lang. 60:101026. doi:
10.1016/j.csl.2019.101026

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. (1989). Phoneme
recognition using time-delay neural networks. IEEE Trans. Acoust. Speech Signal
Process. 37, 328–339. doi: 10.1109/29.21701

Wang, H., Liu, Y., Zhen, X., and Tu, X. (2021). Depression speech recognition
with a three-dimensional convolutional network. Front. Hum. Neurosci. 15:713823.
doi: 10.3389/fnhum.2021.713823

Wang, S., Qian, Y., and Yu, K. (2017). “What does the speaker embedding encode?,”
in Proceedings of the annual conference of the international speech communication
association, Stockholm, 1497–1501. doi: 10.21437/Interspeech.2017-1125

World Health Organization (2017). Depression and other common mental disorders:
Global health estimates. Geneva: World Health Organization.

World Health Organization (2022). Mental health and COVID-19: Early evidence of
the pandemic’s impact. Geneva: World Health Organization.

Xing, Y., Liu, Z., Li, G., Ding, Z., and Hu, B. (2022). 2-level hierarchical depression
recognition method based on task-stimulated and integrated speech features. Biomed.
Signal Process. Control 72:103287. doi: 10.1016/j.bspc.2021.103287

Zhang, P., Wu, M., Dinkel, H., and Yu, K. (2021). “Depa: Self-supervised audio
embedding for depression detection,” in Proceedings of the 29th ACM international
conference on multimedia, New York, NY, 135–143. doi: 10.1145/3474085.3479236

Zhou, Z. (2021). “Ensemble learning,” in Machine learning, (Berlin: Springer),
181–210. doi: 10.1007/978-981-15-1967-3_8

Frontiers in Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1141621
https://doi.org/10.1007/978-3-030-68790-8_1
https://doi.org/10.1007/978-3-030-68790-8_1
https://doi.org/10.1109/ICASSP40776.2020.9054317
https://doi.org/10.1109/ICASSP40776.2020.9054317
https://doi.org/10.21437/Interspeech.2020-2587
https://doi.org/10.21437/Interspeech.2020-2587
https://doi.org/10.21437/Interspeech.2018-1417
https://doi.org/10.1109/ASRU46091.2019.9003979
https://doi.org/10.1109/ASRU46091.2019.9003979
https://doi.org/10.3390/life11090892
https://doi.org/10.1109/RTEICT.2016.7808203
https://doi.org/10.1016/j.bspc.2021.103107
https://doi.org/10.1016/j.bspc.2021.103107
https://doi.org/10.1109/IC_ASET49463.2020.9318302
https://doi.org/10.1109/ICASSP39728.2021.9414663
https://doi.org/10.21437/Interspeech.2017-620
https://doi.org/10.1109/ICASSP.2019.8683760
https://doi.org/10.1111/j.1600-0447.2004.00335.x
https://doi.org/10.1192/bjp.129.6.592
https://doi.org/10.1007/978-3-030-18305-9_47
https://doi.org/10.18653/v1/2022.clpsych-1.1
https://doi.org/10.18653/v1/2022.clpsych-1.1
https://doi.org/10.1109/ICASSP39728.2021.9414676
https://doi.org/10.1145/2647868.2647869
https://doi.org/10.1145/2512530.2512533
https://doi.org/10.1109/ICASSP.2014.6854363
https://doi.org/10.1109/ICASSP.2014.6854363
https://doi.org/10.1109/ACCESS.2019.2923003
https://doi.org/10.1016/j.csl.2019.101026
https://doi.org/10.1016/j.csl.2019.101026
https://doi.org/10.1109/29.21701
https://doi.org/10.3389/fnhum.2021.713823
https://doi.org/10.21437/Interspeech.2017-1125
https://doi.org/10.1016/j.bspc.2021.103287
https://doi.org/10.1145/3474085.3479236
https://doi.org/10.1007/978-981-15-1967-3_8
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Ensemble learning with speaker embeddings in multiple speech task stimuli for depression detection
	1. Introduction
	2. Related works
	3. Database
	3.1. CN-Celeb
	3.2. Depression speech database

	4. Methodology
	4.1. Acoustic feature extraction
	4.2. Speaker embedding extraction
	4.2.1. I-vector extraction
	4.2.2. TDNN x-vector extraction
	4.2.3. Resnet x-vector extraction

	4.3. Multi-task ensemble learning method
	4.4. Combination of different Resnet x-vectors in multi-task ensemble learning method

	5. Experimental results
	5.1. Results of nine speaker embeddings for depression detection
	5.1.1. The effects of different speaker embedding extractors on depression detection system
	5.1.2. The effects of different acoustic features on depression detection system
	5.1.3. The effects of different speech tasks on depression detection system

	5.2. Results of multi-task ensemble learning methods with speaker embeddings for depression detection
	5.2.1. Combining different Resnet x-vectors in multi-task ensemble learning method
	5.2.2. Comparison with other proposed methods on the depression speech dataset


	6. Conclusion and future works
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


