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Brain–computer interfaces (BCIs) have garnered extensive interest and 
become a groundbreaking technology to restore movement, tactile sense, and 
communication in patients. Prior to their use in human subjects, clinical BCIs 
require rigorous validation and verification (V&V). Non-human primates (NHPs) 
are often considered the ultimate and widely used animal model for neuroscience 
studies, including BCIs V&V, due to their proximity to humans. This literature review 
summarizes 94 NHP gait analysis studies until 1 June, 2022, including seven BCI-
oriented studies. Due to technological limitations, most of these studies used 
wired neural recordings to access electrophysiological data. However, wireless 
neural recording systems for NHPs enabled neuroscience research in humans, 
and many on NHP locomotion, while posing numerous technical challenges, 
such as signal quality, data throughout, working distance, size, and power 
constraint, that have yet to be  overcome. Besides neurological data, motion 
capture (MoCap) systems are usually required in BCI and gait studies to capture 
locomotion kinematics. However, current studies have exclusively relied on image 
processing-based MoCap systems, which have insufficient accuracy (error: ≥4° 
and 9 mm). While the role of the motor cortex during locomotion is still unclear 
and worth further exploration, future BCI and gait studies require simultaneous, 
high-speed, accurate neurophysiological, and movement measures. Therefore, 
the infrared MoCap system which has high accuracy and speed, together with a 
high spatiotemporal resolution neural recording system, may expand the scope 
and improve the quality of the motor and neurophysiological analysis in NHPs.

KEYWORDS

non-human primate, gait, BCI, neurophysiological analysis, motor cortex

1. Introduction

The past decades have seen the development of the lamprey (Grillner, 2003), cat (Clarac, 
2008), rodent (McCrea and Rybak, 2008), sheep (Rizk et al., 2009), guinea pig (Sodagar et al., 
2009), pig (Borton et  al., 2011), and other animal models for locomotion. Specifically, 
non-human primates (NHPs) are critical in studying biomechanics, biodynamics, 
neurophysiology, pathophysiology, and evolution of humans, enabling the development of 
brain-computer interface (BCI) technologies.
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NHPs have been widely selected as suitable subjects in 
neuroscience, especially BCI studies (Wessberg et al., 2000; Serruya 
et al., 2003; Griffith et al., 2008; Fitzsimmons et al., 2009; Foster 
et al., 2014; Yin et al., 2014) for several reasons. One is their unique 
phylogenetic proximity to humans (Lane, 2000). Thus, they offer a 
meaningful way to functionally evaluate neurotechnologies that 
have been designed for human subjects, enabling their effective 
translation to clinical settings (Badi et al., 2021). Second, NHPs and 
humans share similarities in functional brain structures. Third, 
NHPs share a similar diagonal interlimb synergy between the 
hindlimbs (legs) and forelimbs (arms) with humans, while 
nonprimate mammals have lateral sequence gait (Hildebrand, 1967; 
Courtine et  al., 2005a,b). NHPs’ ability to walk bipedally like 
humans is of great interest in BCIs, as scientists seek to develop 
potential cures for gait deficits (Fitzsimmons et  al., 2009). Last, 
NHPs can be  trained to learn and perform more complicated 
tasksthan other animals, including reaching and grasping (Vargas-
Irwin et  al., 2010; Badi et  al., 2021). In short, NHPs enable 
researchers to decode the relationship between intracortical 
activities and animal behaviors similar to humans (Zhang 
et al., 2012).

Neuroscience research, especially BCIs, the “brain-reading 
devices,” has been described as groundbreaking technology 
producing remarkable achievements. BCIs are promising to help 
restore movement, tactile sense, and communication in patients 
with paralysis (Hochberg et al., 2006, 2012; Collinger et al., 2013; 
Aflalo et al., 2015; Lebedev and Nicolelis, 2017; Willett et al., 
2021; Drew, 2022). In 2004, BCI electrodes were embedded into 
the motor cortex of a human for the first time (Rapeaux and 
Constandinou, 2021). In 2021, a BCI that evoked tactile 
sensations and helped a patient with tetraplegia control 
prosthetic arms during reaching and grasping (Flesher et  al., 
2021), which is remarkable progress. In the same year, Willett 
et  al. (2021) developed a BCI decoder to generate attempted 
handwriting, restoring communication in patients with paralysis. 
The study participant could type about 90 characters per minute, 
a speed comparable to the smartphone typing speeds of 
non-disabled individuals in the same age group. Behind all the 
achievements in humans, dozens of pilot neurophysiological 
experiments on NHPs were conducted for decades to decode how 
the brain senses and responds. In 1966, Evarts (1966) developed 
a technique for single-unit recording of pyramidal activities of 
tract neurons from awake, active NHPs for the first time. 
Georgopoulos et  al. (1986) employed electrophysiological 
techniques to record single-neuron activities of NHPs during 
arm movements and found a strong correlation between the 
direction of reaching movement and a population of cortical 
neurons. In 2000, a population of cortical neurons in NHPs was 
processed to control a robotic arm in real-time (Wessberg 
et al., 2000).

Due to technological limitations, most NHP models for neural 
recordings are wired or tethered. The NHP is refined to a chair with 
its head and body fixed to protect the wire. Thus, only a few instructed 
arm movements can be  studied. These models or paradigms are 
termed “head-fixed models” (Foster et  al., 2014). However, arm 
movements are only a small subset of natural behaviors in NHPs. How 
the brain acts during other natural behaviors is still unclear and 
needs exploring.

The advent of wireless neural recording systems for NHPs has 
expanded motor and neurophysiological analysis, enabling 
challenging setups requiring large or total freedom, such as 
locomotion. In 2004, Wise et  al. (2004) pioneered a wireless 
implantable electronic interface to record cortical neural information. 
In 2007, Santhanam et al. (2007) presented a dual-channel neural 
recording system named HermesB for NHPs and humans. Since 
2008, researchers, including our group, have continuously designed 
wireless neurosensors for full-spectrum neural recordings to expand 
brain research (Chestek et al., 2008; Harrison et al., 2008; Yin and 
Ghovanloo, 2009; Miranda et al., 2010; Rouse et al., 2011; Borton 
et al., 2013; Schwarz et al., 2014; Yin et al., 2014). Wireless neural 
recordings enable freely-moving NHP models or paradigms (e.g., 
Figure  1). A freely-moving monkey’s motion is recorded 
synchronously by a fast-speed MoCap system along with a high 
spatiotemporal resolution neural recording system. However, the first 
three studies to design freely-moving NHP models to analyze cortical 
neurons and locomotion comprehensively were all until 2014 (Foster 
et al., 2014; Schwarz et al., 2014; Yin et al., 2014).

Understanding the role of the motor cortex during locomotion 
has been a main research focus in the past decades. But it is unclear 
and needs to be further explored. There are two views on the neural 
control of movement (Shenoy et al., 2013). On the one hand, some 
believe that the motor cortex codes higher-level movement 
parameters, such as the position of the end-effector. On the other 
hand, the motor cortex was believed to code muscle action. In NHP 
arm movement, a population of cortical neurons is found to strongly 
correlate with movement direction (Georgopoulos et  al., 1986). 
Wessberg et al. (2000) supported this finding and used a population 
of cortical neurons to control a prosthetic limb. After that, dozens of 
methods were proposed to decode or model the relationship between 
motor functions and recorded neural activity, including linear 
Wiener filters (Wessberg et al., 2000; Carmena et al., 2003), principal 
component analysis (PCA, Churchland et al., 2012), the Kalman 
filters (Wu et al., 2002; Li et al., 2009) and long short-term memory 
neural network (LSTM, a commonly-used recurrent neural networks, 
Tseng et al., 2019; Glaser et al., 2020). However, locomotion differs 
from arm movements regarding autonomy. It is found that the 
contributions of the motor cortex to locomotion and reaching 
movements are different (Xing et al., 2019). Drew (1988) found that 
the motor cortical neurons adjust the flexor muscle in cats during 
quadrupedal walking. In 2017, recent findings in a mouse model 
suggested that the role of motor cortical output in treadmill walking 
is significantly different from that in reaching movements (Miri et al., 
2017). However, Yakovenko and Drew (2015) proposed that the 
motor cortex of cats plays a similar role in reaching and walking 
movements. These contradictory conclusions show a gap remains in 
understanding the role of the motor cortex during locomotion 
because of the need for more evidence from NHP models.

NHP models or paradigms designed in neuroscience studies 
require simultaneous, high-speed, accurate neurophysiological and 
movement measurements (Foster et al., 2014). There are already 
several methods or sensors proposed for human motion capture 
(MoCap), including ultrasound (Akaka and Houck, 1980), infrared 
beam arrays (Clarke et al., 1985), Doppler radar (Martin and Unwin, 
1980), gyroscopes (Giansanti et al., 2005), and accelerometers (Van 
der Kruk and Reijne, 2018). Based on their physics principle, 
nowadays, commercially available MoCap systems can 
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be categorized into five classes: optoelectronic systems (OS), image 
processing systems (IPS), electromagnetic systems (EMS), ultrasonic 
localization systems (ULS), and inertial sensory systems (ISS). These 
MoCap systems have been widely used in sports, neuroscience, 
computer vision, and robotics. The OS, including active marker 
systems and passive marker systems, are based on fixed cameras to 
capture the light reflected or emitted by the marker. The OS benefits 
from the semiconductor industry. It currently has the highest 
precision compared to other systems and is often regarded as the 
gold standard (e.g., Vicon or Optotrak) in the literature (Corazza 
et al., 2010; Galna et al., 2014; Van der Kruk and Reijne, 2018; Albert 
et  al., 2020) for accurate quantitative movement-based analysis. 
However, using marker-based MoCap systems on NHP models faces 
challenges in making the animals comply with the marker setup; 
very often they remove or even swallow the marker.

This paper reviews NHP models and systems for gait and correlated 
neurophysiological research, focusing on MoCap and BCI neural 
recording systems for NHPs, to help researchers choose suitable systems 
for their experimental setup. An extensive literature review of peer-
reviewed papers on NHP models and systems for gait and 
neurophysiological analysis is conducted. This review thoroughly 
evaluates various MoCap systems and neural recording devices used in 
NHP BCI and gait studies in the past. Based on their performances, 
useability, and data quality, the advantages and limitations of recent BCI 
and gait studies have been discussed. Finally, the challenges and directions 
of future NHP BCI and gait experimental setups are concluded.

2. Methods

A systematic review was conducted according to the preferred 
reporting items for systematic reviews and meta-analyses (PRISMA) 
guidelines (Page et al., 2021).

2.1. Search strategy

A systematic literature search for neuroscientific studies of gait 
in NHP models was conducted in four main databases: Web of 
Science, Science Direct, PubMed, and IEEE, up until 1 June, 2022 
(Figure 2). Some results searched in Google Scholar not covered by 
the four databases were also included as a supplement. The search 
strategy aimed to identify studies with NHP models for gait study, 
including the study that contains neuroscience. To exclude NHP 
gait studies that do not consider joint angles (e.g., only consider 
step numbers), we  defined the search terms used as (gait OR 
walking OR locomotion) AND (primates OR monkey OR macaque 
OR rhesus OR ape) AND angle. Only publications in English were 
considered. The publication period investigated was from 2000 to 
June 2022.

First, the titles and abstracts of located papers were  
screened against the inclusion criteria. Then, the full texts  
of the papers were obtained and further screened for  
inclusion.

FIGURE 1

Freely-moving NHP models. (A) An unconstrained NHP in the Reach Cage [Reproduced with permission from Berger et al., 2020]. (B) Treadmill NHP 
model [Reproduced with permission from Foster et al., 2014]. (C) An unconstrained NHP on a treadmill [Reproduced with permission from Yin et al., 
2014]. (D) Bipedal walking NHP model [Reproduced with permission from Lebedev and Nicolelis, 2017].
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TABLE 1 MoCap systems in NHP studies.

Price Marker Accuracy Joint angles Number of studies

OS ↑ √ ↑↑ √ 11

IPS-marker-based ↑ √ ↑ √ 44

IPS-markerless ↑ - √ 27

Observation and Analysis from Videos - ↓ 8

Footprints ↓ ↓ 4

A down arrow represents a lower extent, while an up arrow shows an increased extent from baseline (‘-’).

2.2. Inclusion criteria

This review includes NHP models and systems for gait and 
neurophysiological analysis in peer-reviewed papers. It focuses on the 
MoCap device/system and neurophysiological device, especially the 
BCI device.

2.3. Exclusion criteria

Book chapters, conference proceedings, review papers, and thesis 
works were excluded. The studies only considered NHP upper limb 
(not including locomotion) were also excluded.

2.4. Data management and statistical 
analysis

The characteristics of the included studies, such as the MoCap 
device, authors, other sensors, the neuroscience device, and the 

measurements, were tabulated. Subgroups were formed based on 
whether neural signals were studied in the paper.

3. Results

3.1. Publication overview

The database search initially returned 7,048 publications 
(Figure 2). We identified and excluded 4,931 duplicates. We assessed 
the remaining 2,117 publications for eligibility and ended up with 94 
included studies. Nineteen studies were categorized into the subgroup 
as they also conducted neuroscience studies.

3.2. MoCap device

OS, IPS (including marker-based and markerless), footprint 
measurements, and observation and analysis from videos were 
employed in NHP studies (Table 1).

FIGURE 2

Flowchart of article selection.
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3.2.1. OS
Infrared (IR)-based MoCap systems belonging to OS were used 

in a few studies (n = 11; 11.7%). Reflective or active markers were 
attached or painted on NHPs. Fixed infrared cameras emit the IR light 
and capture the light reflected by the markers to obtain the 3D 
locations of markers based on triangulation. Eleven studies employed 
three brands of IR-based MoCap systems: Qualisys (Blickhan et al., 
2018, 2021; Ogihara et al., 2018; Oku et al., 2021), Optotrak (Xiang 
et al., 2007; Chen et al., 2009), and Vicon (Demes, 2011; Wei et al., 
2016, 2018, 2019; Zhao et al., 2018). Qualisys and Vicon are passive 
marker systems, while Optotrak is an active marker system. IR light-
emitting diodes (LEDs) emit IR light in the Optotrak system. How to 
put markers on NHPs is a challenging issue discussed in section 4.2.5.

3.2.2. IPS
In IPS, video-captured films or photos are digitally analyzed. IPS 

has difficulty recognizing images in real-time and might require 
high-quality, high-speed cameras at a high cost (Van der Kruk and 
Reijne, 2018). IPS has marker-based tracking and markerless 
tracking. Note that both the marker-based IPS and the OS require 
markers, but marker-based IPS uses high-contrast markers detected 
by visible light, while OS employs reflective markers and works with 
infrared light. Moreover, markerless IPS usually tracks 2D features, 
such as corners or edges, and is convenient to use, especially for 
NHP models. For example, “DeepLabCut” is an up-to-date open-
source tool for markerless pose estimation based on transfer 
learning. Its feasibility on humans, mice, macaque, and Drosophila 
was validated (Mathis et  al., 2018; Mathis and Mathis, 2020; 
Labuguen et al., 2021). Specifically, Labuguen proposed an open-
source dataset of Macaques in the wild for the training of 
DeepLabCut (Labuguen et al., 2021).

A large proportion of the NHP studies chose IPS (n = 71; 75.5%) 
because of its convenience. Among them, Frame DIAS (21 studies: 
e.g., Mori et al., 2006; Higurashi et al., 2010; Goto et al., 2021), Simi 
Motion (five studies: Fitzsimmons et al., 2009; Capogrosso et al., 2016; 
Vouga et al., 2017; Tseng et al., 2019; Xing et al., 2019), Peak Motus 
software (four studies: Courtine et al., 2005a,b; Larson and Demes, 
2011; Demes and O’Neill, 2013), and Xcitex (seven studies: e.g., 
O’Neill et al., 2015; Thompson et al., 2018; Young and Chadwell, 2020) 
were commonly used (n = 37; 52.1%). The remaining 34 studies used 
self-written programs based on development platforms, such as 
MATLAB (Reghem et al., 2013, 2014; Pontzer et al., 2014; Dunham 
et al., 2018) and C++ (Peikon et al., 2009), or manually observed and 
analyzed videos or photos to obtain spatial–temporal parameters 
(Kimura, 2000; Nakano, 2002; Ma et al., 2016; Hu et al., 2021).

Commercial IPS supports both marker-based and markerless 
tracking. Among the 71 studies using IPS, 27 studies used markerless 
tracking. For example, Demes and O’Neill (2013) and Young and 
Chadwell (2020) chose prominent anatomical landmarks, such as the 
eyes and the base of the tails, to obtain normal spatial–temporal 
parameters, such as step length and walking speeds. Hirasaki et al. 
(2019) chose anatomical landmarks, such as wrist, elbow, hip, and 
knee joints, to get joint angles. The remaining 44 studies adopted 
marker-based tracking. Reflective or high-contrast paint markers in 
white or black on the shaved skin of NHPs were reported by all 
studies, except for Ogihara et al. (2010), which adopted reflective tape 
markers. Some studies also stressed that the paint was non-toxic (Goto 
and Nakano, 2018; O’Neill et  al., 2018; Shitara et  al., 2022b) or 

water-soluble (O’Neill et al., 2018), and the NHPs in the study were 
highly trained (Nakatsukasa et al., 2004).

The systems with X-rays also belong to IPS. Schmidt (2005, 2008) 
used an X-ray system to obtain the kinematics based on uniplanar 
cineradiography. However, the kinematics were captured only when 
the animals ran perpendicularly to the X-ray beam. Gait analysis was 
performed in specialized software (Unimark, by R. Voss, Tübingen, 
Germany).

3.2.3. EMS, ULS, and ISS
None of the 94 included studies were reported to employ EMS, 

ULS, or ISS systems, maybe because of the inconvenience.

3.2.4. Footprints measurement
Babu et al. (2007a,b, 2012) and Babu and Namasivayam (2008) did 

not employ cameras but footprint measurements to obtain spatial–
temporal parameters. They painted non-toxic black ink on the feet of 
the NHPs. The animals left footprints on the white paper as they 
walked. But, this method is not reported in other NHP studies.

3.3. Accuracy of MoCap system

Different MoCap systems are with different accuracies (Table 2). 
The OS is believed to have the highest accuracy among other systems 
and is often regarded as the gold standard (e.g., Vicon or Optotrak) in 
the literature (Corazza et al., 2010; Galna et al., 2014; Van der Kruk 
and Reijne, 2018; Albert et al., 2020). For example, the Vicon system 
was reported to have an accuracy of 0.6 mm (Spörri et al., 2016) and 
0.77 mm (listed in Table 2, Monnet et al., 2014). The OS outperformed 
IPS (Scaramuzza and Fraundorfer, 2011).

The feasibility and accuracy of markerless IPS still need to 
be improved due to the lack of proof in the literature (Ceseracciu et al., 
2014). Ceseracciu et al. (2014) reported that markerless IPS has a root 
mean square error (RMSE) of 11.75°, 18.35% of the range of motion in 
the knee angle (in the sagittal plane), and an RMSE of 17.62°, 44.66% of 
the range of motion in the hip angle, compared with the gold standard 
in gait analysis. Similarly, significant differences in the knee angle 
(15.9°) during squats were reported by Perrott et al. (2017). Moreover, 
insufficient accuracy of the markerless system in the transverse plane is 
believed to hinder its application. For example, the Simi markerless 
system (Simi Reality Motion Systems GmbH, Unterschleißheim, 
Germany) was reported to have a standard deviation of 6.4° (±2.9°) in 
the sagittal plane hip angle, 9.2° (±3.8°) in the transverse plane hip angle 
and 20.6° (±28.3°) in elbow rotation (Ruß, 2016). The calculation error 
may be due to the camera’s optical distortion, the system’s processing 
errors, and skin artifacts (the system assumes that the model is rigid, 
whereas the skin is flexible during movement; Winiarski, 2003). Up to 
now, the Simi system’s accuracy or the validity of measurement is not 
yet validated by high-quality peer-reviewed studies.

Home-made IPS still has poor kinematics measurement. Foster 
et al. (2014) designed a markerless IPS with 8 video cameras for freely-
moving NHPs. The estimated distance error for the wrist point is 
26.1 mm. Nakamura et al. (2016) used four depth cameras (Kinect V1, 
Microsoft Corp., Redmond, WA, USA) to build a markerless system 
for NHPs. The estimated errors are reported as 4–14 cm for the 
position of different limbs and 35–43° for head rotation (listed in 
Table 2).
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TABLE 3 Joint angles measured in Demes (2011).

Angles Definition

Trunk pitch angles Sagittal plane angles of hip-shoulder with vertical

Trunk tilt angles Frontal plane angles of hip-shoulder with vertical

Hip abduction Angle between trunk and thigh in frontal plane

Hip angles Vector angle between trunk and thigh

Knee angles Vector angle between shank and thigh

Ankle angles Vector angle between shank and foot

Foot angles Angle of ankle-head of 5th metatarsal with horizontal

Protraction at touchdown Angle of hip-5th metatarsal with horizontal at touchdown

Retraction at lift off Angle of hip-5th metatarsal with horizontal at lift off

Hind limb angular excursion Sum of protraction and retraction

Marker-based IPS is usually more accurate than markerless 
IPS (Van der Kruk and Reijne, 2018). Simi system also supports 
marker-based tracking. The photogrammetric errors of the 
marker-based Simi system were reported as 11, 9, and 13 mm in 
the x, y, and z directions, respectively (Klous et  al., 2010). An 
RMSE of 4° (±1°) in knee angle between Simi marker-based 
tracking and Qualisys (the gold standard) was reported during 
one gait cycle in race walking (Hanley et al., 2017). However, these 
accuracies are significantly lower than OS’ (listed in Table 2). Six 
studies adopted video observation and analysis but could only 
obtain the basic spatiotemporal parameters with poor accuracy. 
Four studies used footprint measurements in NHP’s locomotor 
analysis. This method is convenient and low-cost, but the accuracy 
and gait parameters obtained are not enough for the requirement 
of neuroscience studies.

3.4. Measurement of gait parameters

Parameters involved in gait studies provide scales to quantify 
animal behaviors, including spatiotemporal parameters, joint angles, 
ground reaction force (GRF), dynamics, neurophysiological 
measurements, and others.

3.4.1. Spatiotemporal parameters
Commonly measured spatiotemporal parameters (SP) are stride 

time, step time, stance time, gait velocity, cadence, stride symmetry, 
and the number of steps. Most NHP studies measured spatiotemporal 
parameters (n = 92; 97.9%). Conversely, Ma et al. (2016) proposed a 
self-made score to quantify hindlimb locomotion in the NHP after 
spinal cord injury (SCI). The score was graded based on the manual 
video analysis. Revuelta et  al. (2012) determined freezing of gait 
(FOG), a critical feature in Parkinson’s disease, in an NHP Parkinson’s 
model by reviewing the videos.

3.4.2. Joint angles
Of the 94 NHP studies, 68 (72.3%) measured joint angles, such as 

those of the hip, knee, and ankle angles. Joint angle is a critical feature 
in NHPs. For example, Demes (2011) researched three-dimensional 
kinematics of capuchin monkey bipedalism by putting reflective 
markers over the major joints of the animals and employing Peak 
Motus software (PEAK Performance Technologies Inc., Centennial, 
CO, USA) to calculate several angles (listed in Table 3 with definitions). 
Joint angles can quantify gait ability in SCI NHPs. Capogrosso et al. 
(2016) proposed a brain–spinal interface to alleviate gait disabilities in 
NHPs after SCI. The MoCap system, Simi, used 4–6 video cameras at 
100 Hz along with reflected white paint markers on shaved skin to 

TABLE 2 The reported accuracy of MoCap systems.

References System Type Cameras Range/area 
(m)

Accuracy (°) Accuracy (mm)

Dorociak and Cuddeford (1995) Vicon 370 OS 5 2 × 1 m 0.2 at knee 0.05 at ankle

Monnet et al. (2014) Vicon T-40 OS 10 1.1 × 1 m 0.77

Spörri et al. (2016) Vicon MX 13 OS 24 41.2 × 20 m 0.6

Ceseracciu et al. (2014) SMART-D BTS IPS-markerless 8 7 × 5 m 11.75 at knee 17.62 at hip

Perrott et al. (2017) Organic Motion IPS-markerless 14 lab room 15.9 at knee

Ruß (2016) Simi Shape IPS-markerless 8 lab room
6.4 in hip flexion 9.2 in hip 

rotation 20.6 in elbow

Foster et al. (2014) home-made IPS-markerless 8 cage 26.1 at wrist

Nakamura et al. (2016) home-made IPS-markerless 4 cage >35 at head >40 in limbs

Hanley et al. (2017) Simi Motion IPS-marker-based NA NA 4 in knee

Klous et al. (2010) Simi Motion IPS-marker-based 5 35 × 15 m
11 in x-axis 9 in y-axis 

13 in z-axis
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measure 7 landmarks on the animal’s right side. 3D spatial coordinates 
of the markers were obtained using the Simi motion tracking software 
and then the joint angles were computed accordingly. The increased 
knee angle in the paretic leg of NHPs showed the recovery of 
locomotion and demonstrated the feasibility of brain–spinal interface 
on NHPs and its potential application for humans.

3.4.3. GRF and dynamics
One common way to obtain the dynamics in gait analysis is to 

measure the GRF during locomotion. Seventeen NHP studies adopted 
force plate(s) to measure GRF in the NHP experiments. Force plates can 
be combined with MoCap systems, such as Qualisys (Qualisys AB, 
Gothenburg, Sweden. Blickhan et al., 2018, 2021; Ogihara et al., 2018; 
Oku et al., 2021), Frame-DIAS (DKH, Tokyo, Japan. Higurashi et al., 
2010; Ogihara et al., 2010, 2012; Shimada et al., 2017), and Xcitex (Xcitex 
Inc., Cambridge, MA, USA. Thompson et al., 2018; Young and Chadwell, 
2020) for the calculation of joint dynamics by the system software. Some 
studies measured GRF not to obtain dynamics but rather the center of 
mass. Demes et al. (2015) used force plates to analyze the center of mass 
mechanics of an NHP during bipedal walking. Hanna et al. (2015) 
analyzed the center of mass during load-carrying locomotion in NHPs.

3.5. Neurophysiological measurements

Neurophysiological measurements in NHP studies, such as 
electromyogram (EMG) and cortical neural recordings, are discussed 
in section 4.

3.6. Other measurements

NHP gait studies often involve gait parameter measurements and 
neurophysiological analysis; however, a few studies measure other 

locomotion-related signals. Nakatsukasa et al. (2004, 2006) employed 
an infrared gas analyzer in NHP studies to measure and analyze the 
energy consumption during bipedal and quadrupedal walking by 
measuring CO2 production.

4. Discussion

In the discussion, we focus on NHP studies involving neuroscience 
research (19 studies, listed in Table 4), while those that do not measure 
any neurophysiological data were not considered. NHP neuroscience 
studies include intracortical neural recordings (i.e., BCI), EMG, 
motor-evoked potential (MEP), and somatosensory-evoked 
potential (SSEP).

4.1. Biodevice

NHP studies of intracortical neural recordings or BCI were 
based on home-made (e.g., HermesB) or commercial neural 
recording systems (e.g., Blackrock Microsystems, Salt Lake City, 
UT, USA; FHC Inc., Bowdoin, ME, USA). EMG studies employed 
implantable electrodes (Yin et al., 2014; Hu et al., 2021; Shitara 
et al., 2022b) or surface EMG sensors (Nakano, 2002; Goetz et al., 
2012; Wei et al., 2019). Ma et al. (2016) adopted MEP and SSEP to 
evaluate spinal cord function electrophysiologically in 
NHP models.

4.2. BCI

There are 12 NHP BCI and gait studies from eight research teams 
(listed in Table 5). The BCIs in two of the 12 studies were implanted 
in the hippocampus, while BCIs in other studies were all in the motor 

TABLE 4 NHP neuroscience studies.

References Device Method/Software Gait Measurement Biodevice Wireless Tethered

Berger et al. (2020) IPS DeepLabCut SP BCI √

Capogrosso et al. (2016) IPS Simi motion Joint angles, SP BCI √

Courellis et al. (2019) IPS Mean shift algorithm SP BCI √

Fitzsimmons et al. (2009) IPS Simi motion Joint angles, SP BCI √

Foster et al. (2014) IPS Computer vision algorithm Joint angles, SP BCI √

Goetz et al. (2012) IPS Dartfish ProSuite Joint angles, SP Surface EMG, BCI √

Hazama and Tamura (2019) IPS Matlab SP BCI

Hu et al. (2021) Videos Observation and Analysis SP Implantable EMG √

Ma et al. (2016) Videos Observation and Analysis a self-made scale, MEP, SSEP BCI √

Nakano (2002) Videos Observation and Analysis SP Surface EMG √

Peikon et al. (2009) IPS Self-written software in GNU C++ Joint angles, SP BCI √

Schwarz et al. (2014) IPS Computer vision algorithm SP BCI √

Shitara et al. (2022a,b) IPS Frame-DIAS Joint angles, SP Implantable EMG √

Tseng et al. (2019) IPS Simi motion Joint angles, SP BCI √

Vouga et al. (2017) IPS Simi motion Joint angles, SP BCI √

Wei et al. (2019) OS Vicon software Joint angles, SP Surface EMG √

Xing et al. (2019) IPS Simi motion Joint angles, SP BCI √

Yin et al. (2014) IPS Simi motion Joint angles, SP BCI, Implantable EMG √
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TABLE 5 NHP BCI and gait studies.

Studies University Implant area Bipedal Quadrupedal Device Method/
Software

Marker How to fix 
markers

Wireless Tethered

Berger et al. 

(2020)

University of 

Goettingen
Motor cortex √ IPS DeepLabCut √

Courellis et al. 

(2019)

University of 

California
Hippocampus √ IPS

Mean shift 

algorithm
√

2 LEDs placed on 

the marmoset’s 

head cap

√

Foster et al. (2014) Stanford University Motor cortex √ IPS
Computer vision 

algorithm
√

Goetz et al. (2012)
Grenoble Institut 

Neurosciences
Motor cortex √ IPS Dartfish ProSuite √

Hazama and 

Tamura (2019)

University of 

Toyama
Hippocampus √ IPS Matlab √

Two light bulbs 

fixed at head cap
√

Fitzsimmons et al. 

(2009)
Duke University Motor cortex √ IPS Simi motion √

Tattooed, White 

fluorescent 

makeup 

(Kryolan)

√

Peikon et al. 

(2009)
Duke University Motor cortex √ IPS

Self-written 

software in GNU 

C++

√

Tattooed, White 

fluorescent 

makeup 

(Kryolan)

√

Schwarz et al. 

(2014)
Duke University Motor cortex √ √ IPS

Self-written 

program
√

Tseng et al. (2019) Duke University Motor cortex √ IPS Simi motion √

Tattooed, White 

fluorescent 

makeup 

(Kryolan)

√

Capogrosso et al. 

(2016)
EPFL Motor cortex √ IPS Simi motion √

Shaved, Reflective 

white paint
√

Xing et al. (2019) Brown University Motor cortex √ √ IPS Simi motion √
Shaved, Reflective 

white paint
√

Yin et al. (2014) Brown University Motor cortex √ IPS Simi motion √
Shaved, Reflective 

white paint
√
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cortex. Three studies by researchers at Duke University (Fitzsimmons 
et al., 2009; Peikon et al., 2009; Tseng et al., 2019) were based on the 
same tethered setup or paradigm. The NHPs walked bipedally on a 
treadmill with two hands fixed. Before the experiments, the NHPs 
were tattooed, and fluorescent, non-toxic markers were applied. A 
tethered multichannel neural acquisition system (Plexon, Inc., Dallas, 
TX, USA) was connected to headstages, enabling the simultaneous 
recording of neural activity and capture of movement during the 
experiments. But in 2014, Schwarz et al. (2014) from Duke University 
designed a wireless large-scale recording system to enable tethered 
and wireless freely-moving NHP models.

None of the 12 BCI and gait studies adopted OS but IPS. Because 
the OS faces challenges in making the animals comply with the marker 
setup; very often, they just remove or even swallow the marker. A 
better solution is needed to use OS, the gold standard with the highest 
accuracy in NHP’s BCI and gait studies.

4.2.1. Wireless
Transmitting neural data wirelessly enables a wide range of natural 

behavior studies with full-body movements, including arm 
movements and locomotion (listed in Table 6). Compared with wired 
neural recording, wireless rexording does not need to tether the NHP, 
thus the NHP is freely-moving. Moreover, the training complexity in 
freely-moving NHPs is lower than in tethered ones.

A few studies (n = 6) performed wireless neural recordings (i.e., 
there is no wire between the BCI headstages and recording systems). 
For example, wireless modules designed by Yin et al. (2014; Figure 1C) 
enabled neural signal transmission to external receivers in the studies 
conducted at EPFL and Brown University (Yin et al., 2014; Capogrosso 
et al., 2016; Xing et al., 2019). Stanford University (Figure 1B; Foster 
et al., 2014) used home-designed HermesD and HermesE systems for 
the wireless transmission of neural data. Both Capogrosso et al. (2016) 
and Berger et  al. (2020; Figure  1A) used a commercial neural 
recording system (CerePlex W, Blackrock Microsystems, Salt Lake 
City, UT, USA). The system offers 96 ch wideband neural recording 
with 16 b resolution, 30 kSps sampling rate, weighs only 33.5 g with 
battery, and measures 32.5 × 32.5 × 21 mm. It has a wireless 
transmission range of 3 m and 2 m for freely moving animals in rich 
multipath fading environments. But the system still requires 
improvement in coverage distance, battery life, and channel counts.

4.2.2. Tethered
Studies undertaken at Duke University (Fitzsimmons et al., 2009; 

Peikon et  al., 2009; Tseng et  al., 2019), University of California 
(Courellis et al., 2019), Grenoble Institute Neurosciences (Goetz et al., 
2012), and University of Toyama (Hazama and Tamura, 2019) were 
based on tethered NHP models, while other BCI studies enabled 
freely-moving NHPs (listed in Table 5). Fitzsimmons et al. (2009; 
Figure 1D) developed an NHP bipedal walking paradigm. Monkeys 

were trained to walk on the treadmill with arms holding a bar on the 
treadmill. A wired BCI system was used to obtain neural recordings 
from the M1 area. They reported that neurons in M1 modulate the 
firing rate to the timing of gait cycles. But monkeys’ arms holding a 
bar breaks the interlimb coordination between forelimbs and 
hindlimbs during nature gait. Conversely, freely-moving NHP models 
are promising to help understand how the brain changes with the 
environment and how to control prosthetic devices in response to 
neuron signals.

4.2.3. Bipedal or quadrupedal
Due to the limitation of their wired recording systems, three 

studies at Duke University forced the NHPs to walk bipedally on a 
treadmill with two hands holding a bar. Therefore, only bipedal gait 
was analyzed. Moreover, fixing forelimbs may affect the nature of 
bipedal gait. By contrast, freely-moving NHP models in other studies 
enabled the study of bipedal and quadrupedal gait. Schwarz et al. 
(2014) and Xing et al. (2019) obtained bipedal, quadrupedal gait, and 
intracortical neural data.

4.2.4. MoCap system
All 12 NHP BCI and gait studies used the IPS. However, the 

accuracy of IPS is not comparable with OS, as discussed in section 3.3. 
Goetz et al. (2012), Foster et al. (2014), and Berger et al. (2020) used 
markerless IPS systems, whose accuracy is outperformed by marker-
based IPS. Simi motion is a marker-based IPS system commonly used 
in five BCI and gait studies. However, as mentioned in section 3.3, the 
accuracy of Simi is not yet validated by high-quality peer-reviewed 
studies. Thus, the reported error (4–20°) does not meet the 
requirement of high-speed, precise kinematics and neural decoding. 
However, Simi can be used in BCI and gait studies that do not need 
accurate kinematics due to its convenience. For example, Capogrosso 
et al. (2016) used Simi to compare the gait of the NHP SCI model 
before and after the intervention (brain–spinal interface). Joint angles, 
step height, and foot trajectory of the NHP were obtained 
and compared.

Up to now, no NHP BCI and gait studies have used OS, which has 
the highest accuracy as the gold standard (Corazza et al., 2010; Galna 
et al., 2014; Van der Kruk and Reijne, 2018; Albert et al., 2020). The 
OS requires the placement of rigid reflective markers on NHPs. Thus, 
attaching reflective markers on NHPs to enable OS in BCI and gait 
studies becomes a key issue.

4.2.5. Marker attachment
In the six NHP BCI and gait studies that used marker-based IPS 

systems, reflective white paint or white fluorescent makeup was 
commonly used as markers on the NHPs. The reflective white paint 
provides high contrast to other colors on NHPs and thus can be easily 
captured by the IPS.

TABLE 6 Comparison of wired and wireless neural recording systems and models.

References Neural 
recording

Tethered Freely-
moving

Training 
complexity

Arm 
movements

Bipedal Quadrupedal

Fitzsimmons et al. (2009) Wired √ - √ Unnatural

Foster et al. (2014), Schwarz et al. 

(2014), Yin et al. (2014)
Wireless √ ↓ √ √ √

A down arrow represents a lower extent from baseline (‘-’).
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FIGURE 3

System overview of a suggested freely-moving (untethered) NHP model or paradigm. Wireless neural, EMG, and motion data from a monkey were 
recorded synchronously. The paradigm can be used to understand whether the motor cortex codes muscle activities (lower left panel) or movement 
parameters (lower right panel) during locomotion.

Although no NHP BCI and gait studies used OS, there is still 
some experience from 11 NHP gait studies that used OS (introduced 
in 3.2.1). To attach the rigid reflective markers to NHPs, one way (four 
studies) is to make NHPs walk on a treadmill with two forelimbs fixed 
(Wei et al., 2016, 2018, 2019; Zhao et al., 2018). This method disables 
the study of quadrupedal gait. Another way (seven studies) is to attach 
the markers with straps or tapes. For example, Velcro straps, double-
sided tape, and children’s leggings were used by Blickhan et al. (2018, 
2021), Ogihara et al. (2018), and Oku et al. (2021), whereas Xiang et al. 
(2007) and Cohen et al. (2009) adopted Optotrak active OS. In the 
experiments, IR LEDs (rigid bodies, or “markers”) were fixed on tapes 
and then wrapped around the head, chest, wrists, and ankles. Optotrak 
system requires training the NHPs not to eat or grasp the tape or the 
markers, and this issue may influence the experiment. Moreover, 
fixing forelimbs may affect the nature of bipedal gait. Both approaches 
have their weaknesses. A better solution is needed to use OS in BCI 
and gait studies. Finding replacements for markers, such as self-made 
surface markers, may be a solution. Recently, our group is setting up 
an OS-based freely-moving NHP model (Figure  3) with a high 
accuracy and fast speed MoCap system (Mars 4H, Nokov Science and 
Technology Co., Ltd., Beijing, China) along with a high spatiotemporal 
resolution neural recording system and wireless EMG system, to 
increase the accuracy of kinematics and thus expand motor and 
neurophysiological analysis in NHPs.

4.2.6. Findings or contribution
With the MoCap systems, 12 NHP BCI and gait studies have 

different findings or contributions. Capogrosso et al. (2016) proposed 
a brain-spinal interface to alleviate gait disabilities in NHPs after 
SCI. The increased knee angle obtained by the MoCap system in the 
paretic leg showed the recovery of locomotion and stressed the 
potential of the brain-spinal interface for humans. Three studies 
undertaken at Duke University established tethered NHP bipedal 
models that enabled online decoding of 3D kinematics from 
intracortical neural signals. Subsequently, a better computational 
decoder, the LSTM, was proposed to replace the Kalman filter (Tseng 
et  al., 2019) because LSTM units have physiological features like 
neuron populations, such as neuronal dynamics, and directional 
tuning. In 2014, three studies of different universities all built freely-
moving NHP models using self-developed wireless neural recording 
systems (Foster et al., 2014; Schwarz et al., 2014; Yin et al., 2014). 
Following those studies, Xing et al. (2019) simultaneously recorded 
bipedal and quadrupedal kinematics with intracortical data. They 
found that it was possible to decode kinematics from a limited number 
of neurons just as well as or better than from the neural population 
(18–80 neurons). However, the limited accuracy of the MoCap system 
(Simi, reported error: 4–20°) may influence the robustness of their 
findings. Berger et al. (2020) designed a free-moving NHP model 
based on a commercial-available wireless recording system (Blackrock 
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Microsystems, Salt Lake City, UT, USA) and a markerless motion 
capture system to study goal-directed movements, including 
walk-and-reach.

Two studies analyzed the role of the hippocampus’s place cells 
in locomotion. Hazama and Tamura (2019) found that NHP’s place 
cells are more sensitive to locomotion velocity than direction. Courellis 
et al. (2019) reported that the correlation between the activities of place 
cells and θ oscillations in NHP is remarkably different from rodents.

5. Current challenges and 
opportunities

5.1. The role of the motor cortex in gait 
generation remains unsolved

The role of the motor cortex in NHP arm movement has been 
studied for a long time. Whether the motor cortex codes muscle 
activities or higher-level movement parameters such as limb trajectory 
is an open question (Figure  3). In other words, does the cortical 
activity correlate with the muscle EMG or with movement kinematics 
such as position and velocity? In 1986, a population of cortical 
neurons was found to have strong correlations with movement 
direction (Georgopoulos et al., 1986). But, Cisek (2006) argued that 
the motor system does not describe the motion but produces it. 
Moreover, evidence from cats suggested a direct contribution of the 
motor cortex to leg muscle adjustment during gait modifications 
(Drew and Marigold, 2015). However, studies from another view 
sought to describe the firing rate of motor neuron populations as the 
function of various kinematic parameters such as hand or joint 
kinematics, target locations, and the estimated endpoint error (Reimer 
and Hatsopoulos, 2009; Wang et al., 2010; Pearce and Moran, 2012). 
Locomotion movements are different from arm movements regarding 
autonomy. There is still a lack of consensus on the role of the motor 
cortex during locomotion due to the lack of related studies.

Due to technological limitations of neural recording systems, only 
three papers (Foster et al., 2014; Yin et al., 2014; Xing et al., 2019) 
studied the role of the motor cortex during NHP’s quadrupedal 
locomotion and only one of them (Xing et al., 2019) analyzed the role 
of the motor cortex regarding kinematics, not just spatial–temporal 
parameters. Our group (Yin et al., 2014) reported the reproducible 
cyclic ensemble modulation of NHP motor cortex across the entire gait 
cycle during natural locomotion. Foster et al. (2014) found that the 
modulation of NHP’s motor cortex correlates well with wrist speed 
during locomotion. However, neither Yin nor Foster gave insights into 
gait kinematics such as joint angles; their gait parameters are limited to 
spatial–temporal parameters. Xing et  al. (2019) found that it was 
possible to decode hindlimb kinematics and gait phase from limited 
neurons just as well or as accurately as from the neural population 
(18–80 neurons). It is the first demonstration that the motor cortex can 
robustly decode kinematics and gait during NHP quadrupedal 
locomotion. But the limited accuracy of the MoCap system (Simi, 
reported error: 4–20°) used in their research may influence the 
robustness of their findings. Moreover, their findings lack evidence, 
considering they are the only study analyzing gait kinematics and 
neural recordings simultaneously during NHP quadrupedal locomotion.

Therefore, since the advent of wireless neural recording 
technology has paved the way for freely-moving BCI and gait studies 

in NHPs, one of the future study directions is to clarify the role of the 
motor cortex during locomotion, especially the accurate correlation 
or model between motor cortex activities and gait kinematics by using 
high spatiotemporal resolution neural recording along with high 
accuracy and fast speed MoCap systems.

5.2. Decoding or modeling methods in BCI 
and gait studies

Wessberg et al. (2000) employed a population of cortical neurons to 
control a prosthetic limb. After that, dozens of methods were proposed 
to decode or model the relationship between the motor of upper limbs 
and recorded neural activities in NHP’s arm movement tasks, including 
linear Wiener Filters (Wessberg et al., 2000; Carmena et al., 2003), PCA 
(Churchland et al., 2012), Kalman Filters (Wu et al., 2002; Li et al., 
2009), and LSTM (Tseng et al., 2019; Glaser et al., 2020). Wessberg et al. 
(2000) employed a linear filter and an artificial neuron network (ANN) 
to decode neural population signals to estimate real-time three-
dimensional hand movements and control a robotic device for the first 
time. No significant differences were reported between these two 
decoders. Churchland used PCA, the popular dimensionality reduction 
technique, to extract essential features at the single-neuron level from 
neuron populations during arm reaching in NHPs. Tseng et al. (2019) 
LSTM was reported to outperform Kalman Filter, the state-of-the-art 
method in decoding arm movements from neuron populations.

However, since the role of the motor cortex during locomotion is 
unclear, whether the decoding methods for arm movement can model 
neuron populations in the motor cortex and gait kinematics is unknown. 
Xing et al. (2019) successfully employed Poisson Linear Dynamical 
System (PLDS) to reconstruct limb kinematics from neuron populations 
in the motor cortex. He  suggested that the state-of-art RNN may 
outperform PLDS. He also found a difference between the contributions 
or functions of the motor cortex to locomotion and reaching 
movements. Except for Xing’s work, no other studies tried to model the 
neuron populations in the motor cortex and gait kinematics. Moreover, 
the limited accuracy of the MoCap system (Simi, reported error: 4–20°) 
used in Xing’s study influenced the robustness of his conclusions.

Therefore, future studies need to: testify if motor neuron 
populations and gait kinematics can be  modeled using previous 
decoding methods for arm movements such as PLDS and PCA; testify 
if the contributions or functions of the motor cortex in bipedal 
locomotion, quadrupedal locomotion, and arm movements are 
different; try to find an optimal decoding method to fully extract the 
gait kinematics from cortical neuron populations and give insights for 
the generation mechanism of locomotion.

5.3. Wireless neural recording device

While wireless neural recording devices can free animals and offer 
unprecedented opportunities for recording signals under untethered 
natural behavior, building a feasible wireless system for NHP BCI and 
gait research faces many technical challenges. The most critical ones 
include wireless coverage and quality, data throughput, size, and power 
consumption. It is even more challenging since all the above specs are 
cross related. Usually, NHP gait experimental space needs to be at least 
1 m × 1 m × 1 m (Schwarz et al., 2014), with some extending up to a few 
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cubic meters (CerePlex W, Blackrock Microsystems, Salt Lake City, UT, 
USA). Depending on the wireless recording system channel counts, a 
high data rate comes with high channel counts. For example, 96 
channels with a 30kSps sample rate (to record high-frequency neural 
action potentials) and 16-bit resolution will produce roughly 50Mbps 
data throughput. With such a high data rate, wireless transmission with 
a few meters of reliable coverage and low power (in the 10s of mW 
range) is tough, especially when the applications require high-fidelity 
wireless communication with a minimum bit-error rate. Plus, a 
minimum bit-error rate often requires complicated power-hungry error 
detection and correction coding in wireless transceivers. With the 
increased system complexity and power dissipation, the systems need 
to use larger batteries and produce more heat. The former increase the 
size and weight of the device, hinder usability, and potentially biases the 
animal behavior; the latter could harm the animal. Therefore, low-power, 
reliable, high data rate short distance wireless communication is key to 
a successful wireless recording device for NHPs BCI and gait application.

Previously, Schwarz et al. (2014) built a custom wireless neural 
recording system to record high-frequency neural data from a 
maximum of 1792 channels. For every 128 channels, the data was 
transmitted through a commercial ISM band radio (Nordic 
nRF24L01+) with 1.33 Mbps data throughput after intensive data 
compression. To transmit all 1792 channels, they used 16 ISM radios. 
And the overall transceiver power reached 2 mW/ch, leading to 
256 mW per 128 ch and over 4 W for the whole 1792 channel system. 
As a result, the battery and size of the entire system are fairly large 
(roughly 10 cm × 10 cm × 10 cm). Additionally, the original 16-bit 
sample data was shortened to 8-bit, and lookup table compression was 
used to free up extra bits further to leverage the limited 1.33 Mbps ISM 
radio data throughput. Foster et al. (2014) presented a wireless neural 
recording system (Hermes D and E) for a freely-moving monkey 
treadmill model. They used custom design ASIC and device to 
implement the system, which achieved 24 Mbps transmission of 128 
ch data at 12.5 kSps/ch sampling rate. But the wireless power 
consumption is still high (125 mW) and the sampling rate is relatively 
low for Aps recordings (usually around 30 kSps/ch is the industrial 
standard). The entire device was enclosed in a 38 × 38 × 51 mm 
aluminum enclosure. Though its power dissipation, size, sampling rate, 
and data throughput still require further improvement, the system is 
small and light-weighted enough for NHPs applications. Yin et  al. 
(2014) proposed a wireless system for locomotion analysis using 
custom wireless recording ASICs and devices, the power consumption 
of the system has been limited to around 82.5 mW for 100 channels, 
with the wireless communication part to be around 4 mW/15 mW (low 
and high output power modes). The size of the device was 
52 × 44 × 30 mm and it can function over 48 h from a single 1.2 Ah 
one-half AA Li-SOCL2 primary battery. SIMO wireless communication 
technology was used to improve signal fidelity. Although the system 
has quite a few improvements in size, weight, power dissipation, and 
signal fidelity, it still experienced issues in wireless coverage distance 
and potential signal loss due to the multipath fading effect from the 
animals’ freely moving. Animals moving causes received signal strength 
to vary over a large scale. Capogrosso et al. (2016), Berger et al. (2020), 
and Silvernagel et al. (2021) all used CerePlex W system from Blackrock 
Microsystem. The system offers 96 ch wideband neural recording with 
16 b resolution, 30 kSps sampling rate, weighs only 33.5 g with battery, 
and measures 32.5 × 32.5 × 21 mm. It has a wireless transmission range 
of 3 m and 2 m for freely-moving animals in rich multipath fading 
environments. It can operate for 3.5 h continuously without recharging 

the battery, which is mostly sufficient for applications like NHPs BCI 
and gait research. But the system still requires improvement in coverage 
distance, battery life, and channel counts.

Overall, wireless systems attract many researchers’ attention in the 
field due to the ability to free the animals and enable NHP research 
requiring natural behavior in an untethered setup, which provides 
more genuine un-bias neural data. However, because of technical 
challenges, such an ideal wireless recording system is yet to come and 
awaits further engineering.

6. Conclusion

Our understanding of the motor cortex remains incomplete 
(Shenoy et al., 2013), and further research is needed to understand 
its role in locomotion and neural control in NHP. This knowledge 
is essential to provide insights into the generation mechanism of 
walking in humans, thus giving implications for the control design 
of capable, accurate neural prostheses and biped robots (Shenoy 
et al., 2013) and for the rehabilitation of gait disorders such as 
stroke. NHP has been commonly selected as a suitable subject in 
neuroscience studies. This review summarizes 94 NHP studies 
with gait analysis, including 12 studies with BCI and gait studies. 
While wired neural recording systems have been used to acquire 
electrophysiological data in NHPs, the advent of wireless neural 
recording systems has expanded the scope of neuroscience 
research on freely-moving NHPs, enabling challenging 
experimental setups requiring large or total freedom, such as 
locomotion. Our group has continuously designed wireless 
neurosensors for full-spectrum neural recordings (Yin and 
Ghovanloo, 2008, 2009, 2011; Yin et al., 2013, 2014). However, 
with the harsh requirements for a complete NHP locomotion 
research setup, it was in 2014 that the first three studies came out 
with designs of freely-moving NHP models to comprehensively 
analyze cortical neurons and locomotion (Foster et  al., 2014; 
Schwarz et al., 2014; Yin et al., 2014).

Limited research (Foster et al., 2014; Yin et al., 2014; Xing et al., 
2019) has been conducted on the role of the motor cortex during NHP 
quadrupedal locomotion. The study of Xing et al.’s (2019) is the only 
study that attempts to decode hindlimb kinematics from a limited 
number of neurons in NHP quadrupedal locomotion; the low accuracy 
MoCap system used in his study compromised the robustness of his 
conclusions. Thus, the role of the motor cortex in gait generation, 
including bipedal and quadrupedal gait, remains unsolved, and the 
suitable methods to decode or model the neuron populations in the 
motor cortex and gait kinematics are also unclear. Future studies need 
to (1) clarify the role of the motor cortex during locomotion, especially 
the accurate correlation or model between motor cortex activities and 
gait kinematics; (2) quantify and compare the contributions or functions 
of the motor cortex in bipedal locomotion, quadrupedal locomotion, 
and arm movements; (3) investigate if motor neuron populations and 
gait kinematics can be modeled using previous decoding methods for 
arm movements such as PLDS and PCA; (4) testify if the state-of-art 
RNN may outperform previous decoding methods (as suggested by 
Xing et al.); (5) identify an optimal decoding method to fully extract the 
gait kinematics from cortical neuron populations for freely-moving 
bipedal and quadrupedal gait; (6) explore contributions from other 
cortical areas (such as posterior parietal cortex) to the control 
of locomotion.
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The advent of wireless neural recording systems for NHPs enabled 
freely-moving NHP models and neuroscience research on NHP 
locomotion. However, current MoCap systems in BCI and gait studies 
are based on image processing and lack accuracy (error: ≥4° and 
9 mm). Some home-made IPS systems used in NHP models have been 
reported even higher measurement errors (26.1 mm and > 40 mm). To 
address this issue, future BCI and gait studies require simultaneous, 
high-speed, and accurate measures of neural and movement data. 
Neuroscience studies may consider using a commercial infrared 
MoCap system (OS) that is considered the gold standard with the 
highest accuracy (Figure 3). However, the challenge is how to place 
markers on NHPs’ bodies as they may remove or even eat the marker. 
This review discussed the methods used in the literature and suggested 
that self-made surface markers may be  a solution. Additionally, 
CerePlex W system (Blackrock Microsystem, Salt Lake City, UT, USA, 
Figure  3) is the most frequently-used and validated commercial 
wireless neural recording system in current BCI studies. But, there is 
still room for improvement in coverage distance, battery life, and 
channel counts. Home-made wireless neural recording systems 
should also consider signal quality, data throughput, working distance, 
size, and power constraints. Moreover, other measurement systems 
such as wireless EMG systems (Figure  3) and force plates can 
be combined with commercial MoCap systems to obtain EMG and 
gait dynamics, such as joint force and torque, to enhance neuroscience 
studies. Currently, our group is working to set up an OS-based NHP 
model and improve neural recording systems for NHP 
neuroscience studies.

Author contributions

FL and SY contributed to the conception, investigation, and 
original draft of the study. SP provided methodological input. XW and 

JJ provided scientific input and contributed to the manuscript writing. 
ZS and BL contributed to the manuscript editing. FL wrote the first 
draft of the manuscript. FG, W-HL, and MY supervised the whole 
project and reviewed the manuscript. All authors contributed to the 
article and approved the submitted version.

Funding

This research was supported by the Key R&D Project of Hainan 
Province (Grant Nos. ZDYF2022SHFZ302, ZDYF2022SHFZ275, and 
ZDYF2021SHFZ083), the High-level Talent Project of Natural Science 
Foundation of Hainan Province (Grant Nos. 322RC560 and 
821RC532), the National Natural Science Foundation of China (No. 
32160204), the Major Science and Technology Projects of Hainan 
Province (Grant No. ZDKJ2021032), and Hainan Province Clinical 
Medical Center (No: 0202067).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., et al. (2015). Decoding motor 

imagery from the posterior parietal cortex of a tetraplegic human. Science 348, 906–910. 
doi: 10.1126/science.aaa5417

Akaka, W. H., and Houck, B. A. (1980). The use of an ultrasonic monitor for 
recording locomotor activity. Behav. Res. Methods Instrum. 12, 514–516. doi: 10.3758/
BF03201825

Albert, J. A., Owolabi, V., Gebel, A., Brahms, C. M., Granacher, U., and Arnrich, B. 
(2020). Evaluation of the pose tracking performance of the azure kinect and kinect v2 
for gait analysis in comparison with a gold standard: a pilot study. Sensors 20:5104. doi: 
10.3390/s20185104

Babu, R. S., Anand, P., Jeraud, M., Periasamy, P., and Namasivayam, A. (2007a). 
Bipedal locomotion of bonnet macaques after spinal cord injury. Mot. Control. 11, 
322–347. doi: 10.1123/mcj.11.4.322

Babu, R. S., and Namasivayam, A. (2008). Recovery of bipedal locomotion in bonnet macaques 
after spinal cord injury: footprint analysis. Synapse 62, 432–447. doi: 10.1002/syn.20513

Babu, R. S., Periasamy, P., Varadamurthy, S., Sethuraman, O. S., and Namasivayam, A. 
(2007b). Locomotor behavior of bonnet macaques after spinal cord injury. Mot. Control. 
11, 322–347. doi: 10.1123/mcj.11.4.322

Babu, R. S., Sunandhini, R. L., Sridevi, D., Periasamy, P., and Namasivayam, A. (2012). 
Locomotor behavior of bonnet monkeys after spinal contusion injury: footprint study. 
Synapse 66, 509–521. doi: 10.1002/syn.21537

Badi, M., Borgognon, S., O’Doherty, J. E., and Shokur, S. (2021). “Cortical stimulation 
for somatosensory feedback: translation from nonhuman primates to clinical 
applications” in Somatosensory feedback for neuroprosthetics. ed. B. Güçlü (London, 
United Kingdom: Academic Press), 413–441.

Berger, M., Agha, N. S., and Gail, A. (2020). Wireless recording from unrestrained 
monkeys reveals motor goal encoding beyond immediate reach in frontoparietal cortex. 
elife 9:e51322. doi: 10.7554/eLife.51322

Blickhan, R., Andrada, E., Hirasaki, E., and Ogihara, N. (2018). Global dynamics of 
bipedal macaques during grounded and aerial running. J. Exp. Biol. 221:jeb178897. doi: 
10.1242/jeb.178897

Blickhan, R., Andrada, E., Hirasaki, E., and Ogihara, N. (2021). Trunk and leg 
kinematics of grounded and aerial running in bipedal macaques. J. Exp. Biol. 
224:jeb225532. doi: 10.1242/jeb.225532

Borton, D., Yin, M., Aceros, J., Agha, N., Minxha, J., Komar, J., et al. (2011). 
“Developing implantable neuroprosthetics: a new model in pig.” in 2011 Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society. 
pp. 3024–3030. IEEE.

Borton, D. A., Yin, M., Aceros, J., and Nurmikko, A. (2013). An implantable wireless 
neural interface for recording cortical circuit dynamics in moving primates. J. Neural 
Eng. 10:026010. doi: 10.1088/1741-2560/10/2/026010

Capogrosso, M., Milekovic, T., Borton, D., Wagner, F., Moraud, E. M., Mignardot, J. B., 
et al. (2016). A brain–spine interface alleviating gait deficits after spinal cord injury in 
primates. Nature 539, 284–288. doi: 10.1038/nature20118

Carmena, J. M., Lebedev, M. A., Crist, R. E., O'Doherty, J. E., Santucci, D. M., 
Dimitrov, D. F., et al. (2003). Learning to control a brain–machine interface for 
reaching and grasping by primates. PLoS Biol. 1:e42:E42. doi: 10.1371/journal.
pbio.0000042

Ceseracciu, E., Sawacha, Z., and Cobelli, C. (2014). Comparison of markerless and 
marker-based motion capture technologies through simultaneous data collection during 
gait: proof of concept. PLoS One 9:e87640. doi: 10.1371/journal.pone.0087640

Chen, L., Wang, J., Li, S., Gao, L., Li, H., Wang, Z., et al. (2009). “Analysis of temporal 
and spatial gait parameters in children with spastic cerebral palsy.” in 2009 2nd 
International Conference on Biomedical Engineering and Informatics. pp. 1–4. IEEE.

Chestek, C. A., Gilja, V., Nuyujukian, P., Ryu, S. I., Shenoy, K. V., Kier, R. J., et al. 
(2008). “HermesC: RF wireless low-power neural recording system for freely behaving 

https://doi.org/10.3389/fnins.2023.1141567
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1126/science.aaa5417
https://doi.org/10.3758/BF03201825
https://doi.org/10.3758/BF03201825
https://doi.org/10.3390/s20185104
https://doi.org/10.1123/mcj.11.4.322
https://doi.org/10.1002/syn.20513
https://doi.org/10.1123/mcj.11.4.322
https://doi.org/10.1002/syn.21537
https://doi.org/10.7554/eLife.51322
https://doi.org/10.1242/jeb.178897
https://doi.org/10.1242/jeb.225532
https://doi.org/10.1088/1741-2560/10/2/026010
https://doi.org/10.1038/nature20118
https://doi.org/10.1371/journal.pbio.0000042
https://doi.org/10.1371/journal.pbio.0000042
https://doi.org/10.1371/journal.pone.0087640


Liang et al. 10.3389/fnins.2023.1141567

Frontiers in Neuroscience 14 frontiersin.org

primates.” in 2008 IEEE International Symposium on Circuits and Systems. pp. 1752–1755. 
IEEE.

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., 
Ryu, S. I., et al. (2012). Neural population dynamics during reaching. Nature 487, 51–56. 
doi: 10.1038/nature11129

Cisek, P. (2006). Integrated neural processes for defining potential actions and 
deciding between them: a computational model. J. Neurosci. 26, 9761–9770. doi: 
10.1523/JNEUROSCI.5605-05.2006

Clarac, F. (2008). Some historical reflections on the neural control of locomotion. 
Brain Res. Rev. 57, 13–21. doi: 10.1016/j.brainresrev.2007.07.015

Clarke, R. L., Smith, R. F., and Justesen, D. R. (1985). An infrared device for detecting 
locomotor activity. Behav. Res. Methods Instrum. Comput. 17, 519–525. doi: 10.3758/
BF03207645

Cohen, B., Xiang, Y., Yakushin, S. B., Kunin, M., Raphan, T., Minor, L., et al. (2009). 
Effect of canal plugging on quadrupedal locomotion in monkey. Ann. N. Y. Acad. Sci. 
1164, 89–96. doi: 10.1111/j.1749-6632.2009.03845.x

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., 
Weber, D. J., et al. (2013). High-performance neuroprosthetic control by an individual 
with tetraplegia. Lancet 381, 557–564. doi: 10.1016/S0140-6736(12)61816-9

Corazza, S., Mündermann, L., Gambaretto, E., Ferrigno, G., and Andriacchi, T. P. 
(2010). Markerless motion capture through visual hull, articulated icp and subject specific 
model generation. Int. J. Comput. Vis. 87, 156–169. doi: 10.1007/s11263-009-0284-3

Courellis, H. S., Nummela, S. U., Metke, M., Diehl, G. W., Bussell, R., 
Cauwenberghs, G., et al. (2019). Spatial encoding in primate hippocampus during free 
navigation. PLoS Biol. 17:e3000546. doi: 10.1371/journal.pbio.3000546

Courtine, G., Roy, R. R., Hodgson, J., McKay, H., Raven, J., Zhong, H., et al. (2005a). 
Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate 
(Rhesus). J. Neurophysiol. 93, 3127–3145. doi: 10.1152/jn.01073.2004

Courtine, G., Roy, R. R., Raven, J., Hodgson, J., Mckay, H., Yang, H., et al. (2005b). 
Performance of locomotion and foot grasping following a unilateral thoracic 
corticospinal tract lesion in monkeys (Macaca mulatta). Brain 128, 2338–2358. doi: 
10.1093/brain/awh604

Demes, B. (2011). Three-dimensional kinematics of capuchin monkey bipedalism. 
Am. J. Phys. Anthropol. 145, 147–155. doi: 10.1002/ajpa.21484

Demes, B., and O’Neill, M. C. (2013). Ground reaction forces and center of mass 
mechanics of bipedal capuchin monkeys: implications for the evolution of human 
bipedalism. Am. J. Phys. Anthropol. 150, 76–86. doi: 10.1002/ajpa.22176

Demes, B., Thompson, N. E., O’Neill, M. C., and Umberger, B. R. (2015). Center of 
mass mechanics of chimpanzee bipedal walking. Am. J. Phys. Anthropol. 156, 422–433. 
doi: 10.1002/ajpa.22667

Dorociak, R. D., and Cuddeford, T. J. (1995). Determining 3-D system accuracy for 
the VICON 370 system. Gait Posture 3:88. doi: 10.1016/0966-6362(95)93468-R

Drew, T. (1988). Motor cortical cell discharge during voluntary gait modification. 
Brain Res. 457, 181–187. doi: 10.1016/0006-8993(88)90073-X

Drew, L. (2022). The brain-reading devices helping paralysed people to move, talk and 
touch. Nature 604, 416–419. doi: 10.1038/d41586-022-01047-w

Drew, T., and Marigold, D. S. (2015). Taking the next step: cortical contributions to 
the control of locomotion. Curr. Opin. Neurobiol. 33, 25–33. doi: 10.1016/j.
conb.2015.01.011

Dunham, N. T., McNamara, A., Shapiro, L., Hieronymus, T., and Young, J. W. (2018). 
A user's guide for the quantitative analysis of substrate characteristics and locomotor 
kinematics in free-ranging primates. Am. J. Phys. Anthropol. 167, 569–584. doi: 10.1002/
ajpa.23686

Evarts, E. V. (1966). Pyramidal tract activity associated with a conditioned hand 
movement in the monkey. J. Neurophysiol. 29, 1011–1027. doi: 10.1152/jn.1966.29.6.1011

Fitzsimmons, N., Lebedev, M., Peikon, I., and Nicolelis, M. A. (2009). Extracting 
kinematic parameters for monkey bipedal walking from cortical neuronal ensemble 
activity. Front. Integr. Neurosci. 3:3. doi: 10.3389/neuro.07.003.2009

Flesher, S. N., Downey, J. E., Weiss, J. M., Hughes, C. L., Herrera, A. J., 
Tyler-Kabara, E. C., et al. (2021). A brain-computer interface that evokes tactile 
sensations improves robotic arm control. Science 372, 831–836. doi: 10.1126/science.
abd0380

Foster, J. D., Nuyujukian, P., Freifeld, O., Gao, H., Walker, R., I Ryu, S., et al. (2014). A 
freely-moving monkey treadmill model. J. Neural Eng. 11:046020. doi: 
10.1088/1741-2560/11/4/046020

Galna, B., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P., and Rochester, L. (2014). 
Accuracy of the Microsoft Kinect sensor for measuring movement in people with 
Parkinson's disease. Gait Posture 39, 1062–1068. doi: 10.1016/j.gaitpost.2014.01.008

Georgopoulos, A. P., Schwartz, A. B., and Kettner, R. E. (1986). Neuronal 
population coding of movement direction. Science 233, 1416–1419. doi: 10.1126/
science.3749885

Giansanti, D., Maccioni, G., and Macellari, V. (2005). The development and test of a 
device for the reconstruction of 3-D position and orientation by means of a kinematic 
sensor assembly with rate gyroscopes and accelerometers. IEEE Trans. Biomed. Eng. 52, 
1271–1277. doi: 10.1109/TBME.2005.847404

Glaser, J. I., Benjamin, A. S., Chowdhury, R. H., Perich, M. G., Miller, L. E., and 
Kording, K. P. (2020). Machine learning for neural decoding. Eneuro 7:ENEU19.2020. 
doi: 10.1523/ENEURO.0506-19.2020

Goetz, L., Piallat, B., Thibaudier, Y., Montigon, O., David, O., and Chabardes, S. 
(2012). A non-human primate model of bipedal locomotion under restrained condition 
allowing gait studies and single unit brain recordings. J. Neurosci. Methods 204, 306–317. 
doi: 10.1016/j.jneumeth.2011.11.025

Goto, R., Grider-Potter, N., Kinoshita, Y., Oka, K., Shitara, T., and Nakano, Y. (2021). 
Paraspinal muscle activation during bipedal walking in orthograde primates and its 
implications for the evolution of trunk balance. Am. J. Phys. Anthropol. 174:41. doi: 
10.1002/ajpa.24262

Goto, R., and Nakano, Y. (2018). A muscle synergy-based analysis of the trunk and 
hindlimb muscle activation patterns during quadrupedal and bipedal walking in 
Japanese macaque, white-handed gibbon, and human. Am. J. Phys. Anthropol. 165:103. 
doi: 10.1002/ajpa.23489

Griffith, D. A., Tamer Cavusgil, S., and Xu, S. (2008). Emerging themes in international 
business research. J. Int. Bus. Stud. 39, 1220–1235. doi: 10.1057/palgrave.jibs. 
8400412

Grillner, S. (2003). The motor infrastructure: from ion channels to neuronal networks. 
Nat. Rev. Neurosci. 4, 573–586. doi: 10.1038/nrn1137

Hanley, B., Tucker, C. B., and Bissas, A. (2017). Differences between motion analysis 
systems in calculating knee angle in elite race walking. Available at: http://ecss-congress.
eu/2017/17/index.php/programme (Accessed September 20, 2022).

Hanna, J. B., Schmitt, D., Wright, K., Eshchar, Y., Visalberghi, E., and Fragaszy, D. 
(2015). Kinetics of bipedal locomotion during load carrying in capuchin monkeys. J. 
Hum. Evol. 85, 149–156. doi: 10.1016/j.jhevol.2015.05.006

Harrison, R. R., Kier, R. J., Kim, S., Rieth, L., Warren, D. J., Ledbetter, N. M., et al. 
(2008). “A wireless neural interface for chronic recording.” in 2008 IEEE Biomedical 
Circuits and Systems Conference. pp. 125–128. IEEE.

Hazama, Y., and Tamura, R. (2019). Effects of self-locomotion on the activity of place 
cells in the hippocampus of a freely behaving monkey. Neurosci. Lett. 701, 32–37. doi: 
10.1016/j.neulet.2019.02.009

Higurashi, Y., Hirasaki, E., and Kumakura, H. (2010). Palmar and plantar pressure 
while walking on a horizontal ladder and single pole in Macaca fuscata. Int. J. Primatol. 
31, 181–190. doi: 10.1007/s10764-010-9393-7

Hildebrand, M. (1967). Symmetrical gaits of primates. Am. J. Phys. Anthropol. 26, 
119–130. doi: 10.1002/ajpa.1330260203

Hirasaki, E., Malaivijitnond, S., and Hamada, Y. (2019). Locomotor kinematics of two 
semi-wild macaque species (Macaca assamensis and Macaca arctoides) in Thailand. Folia 
Primatol. 90, 162–178. doi: 10.1159/000496024

Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., et al. 
(2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic 
arm. Nature 485, 372–375. doi: 10.1038/nature11076

Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., 
et al. (2006). Neuronal ensemble control of prosthetic devices by a human with 
tetraplegia. Nature 442, 164–171. doi: 10.1038/nature04970

Hu, D., Wang, S., Li, B., Liu, H., and He, J. (2021). Spinal cord injury-induced changes 
in encoding and decoding of bipedal walking by motor cortical ensembles. Brain Sci. 
11:1193. doi: 10.3390/brainsci11091193

Kimura, T. (2000). Development of quadrupedal locomotion on level surfaces in 
Japanese macaques. Folia Primatol. 71, 323–333. doi: 10.1159/000021755

Klous, M., Müller, E., and Schwameder, H. (2010). Collecting kinematic data on 
a ski/snowboard track with panning, tilting, and zooming cameras: is there 
sufficient accuracy for a biomechanical analysis? J. Sports Sci. 28, 1345–1353. doi: 
10.1080/02640414.2010.507253

Labuguen, R., Matsumoto, J., Negrete, S. B., Nishimaru, H., Nishijo, H., 
Takada, M., et al. (2021). MacaquePose: a novel “in the wild” macaque monkey 
pose dataset for markerless motion capture. Front. Behav. Neurosci. 14:581154. doi: 
10.3389/fnbeh.2020.581154

Lane, M. A. (2000). Nonhuman primate models in biogerontology. Exp. Gerontol. 35, 
533–541. doi: 10.1016/S0531-5565(00)00102-9

Larson, S. G., and Demes, B. (2011). Weight support distribution during quadrupedal 
walking in Ateles and Cebus. Am. J. Phys. Anthropol. 144, 633–642. doi: 10.1002/
ajpa.21460

Lebedev, M. A., and Nicolelis, M. A. (2017). Brain-machine interfaces: from basic 
science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97, 767–837. doi: 
10.1152/physrev.00027.2016

Li, Z., O’Doherty, J. E., Hanson, T. L., Lebedev, M. A., Henriquez, C. S., and 
Nicolelis, M. A. (2009). Unscented Kalman filter for brain-machine interfaces. PLoS One 
4:e6243. doi: 10.1371/journal.pone.0006243

Ma, Z., Zhang, Y. P., Liu, W., Yan, G., Li, Y., Shields, L. B., et al. (2016). A controlled 
spinal cord contusion for the rhesus macaque monkey. Exp. Neurol. 279, 261–273. doi: 
10.1016/j.expneurol.2016.02.008

Martin, P. H., and Unwin, D. M. (1980). A microwave doppler radar activity monitor. 
Behav. Res. Methods Instrum. 12, 517–520. doi: 10.3758/BF03201826

https://doi.org/10.3389/fnins.2023.1141567
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1038/nature11129
https://doi.org/10.1523/JNEUROSCI.5605-05.2006
https://doi.org/10.1016/j.brainresrev.2007.07.015
https://doi.org/10.3758/BF03207645
https://doi.org/10.3758/BF03207645
https://doi.org/10.1111/j.1749-6632.2009.03845.x
https://doi.org/10.1016/S0140-6736(12)61816-9
https://doi.org/10.1007/s11263-009-0284-3
https://doi.org/10.1371/journal.pbio.3000546
https://doi.org/10.1152/jn.01073.2004
https://doi.org/10.1093/brain/awh604
https://doi.org/10.1002/ajpa.21484
https://doi.org/10.1002/ajpa.22176
https://doi.org/10.1002/ajpa.22667
https://doi.org/10.1016/0966-6362(95)93468-R
https://doi.org/10.1016/0006-8993(88)90073-X
https://doi.org/10.1038/d41586-022-01047-w
https://doi.org/10.1016/j.conb.2015.01.011
https://doi.org/10.1016/j.conb.2015.01.011
https://doi.org/10.1002/ajpa.23686
https://doi.org/10.1002/ajpa.23686
https://doi.org/10.1152/jn.1966.29.6.1011
https://doi.org/10.3389/neuro.07.003.2009
https://doi.org/10.1126/science.abd0380
https://doi.org/10.1126/science.abd0380
https://doi.org/10.1088/1741-2560/11/4/046020
https://doi.org/10.1016/j.gaitpost.2014.01.008
https://doi.org/10.1126/science.3749885
https://doi.org/10.1126/science.3749885
https://doi.org/10.1109/TBME.2005.847404
https://doi.org/10.1523/ENEURO.0506-19.2020
https://doi.org/10.1016/j.jneumeth.2011.11.025
https://doi.org/10.1002/ajpa.24262
https://doi.org/10.1002/ajpa.23489
https://doi.org/10.1057/palgrave.jibs.8400412
https://doi.org/10.1057/palgrave.jibs.8400412
https://doi.org/10.1038/nrn1137
http://ecss-congress.eu/2017/17/index.php/programme
http://ecss-congress.eu/2017/17/index.php/programme
https://doi.org/10.1016/j.jhevol.2015.05.006
https://doi.org/10.1016/j.neulet.2019.02.009
https://doi.org/10.1007/s10764-010-9393-7
https://doi.org/10.1002/ajpa.1330260203
https://doi.org/10.1159/000496024
https://doi.org/10.1038/nature11076
https://doi.org/10.1038/nature04970
https://doi.org/10.3390/brainsci11091193
https://doi.org/10.1159/000021755
https://doi.org/10.1080/02640414.2010.507253
https://doi.org/10.3389/fnbeh.2020.581154
https://doi.org/10.1016/S0531-5565(00)00102-9
https://doi.org/10.1002/ajpa.21460
https://doi.org/10.1002/ajpa.21460
https://doi.org/10.1152/physrev.00027.2016
https://doi.org/10.1371/journal.pone.0006243
https://doi.org/10.1016/j.expneurol.2016.02.008
https://doi.org/10.3758/BF03201826


Liang et al. 10.3389/fnins.2023.1141567

Frontiers in Neuroscience 15 frontiersin.org

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., et al. 
(2018). DeepLabCut: markerless pose estimation of user-defined body parts with deep 
learning. Nat. Neurosci. 21, 1281–1289. doi: 10.1038/s41593-018-0209-y

Mathis, M. W., and Mathis, A. (2020). Deep learning tools for the measurement of animal 
behavior in neuroscience. Curr. Opin. Neurobiol. 60, 1–11. doi: 10.1016/j.conb.2019.10.008

McCrea, D. A., and Rybak, I. A. (2008). Organization of mammalian locomotor 
rhythm and pattern generation. Brain Res. Rev. 57, 134–146. doi: 10.1016/j.
brainresrev.2007.08.006

Miranda, H., Gilja, V., Chestek, C. A., Shenoy, K. V., and Meng, T. H. (2010). HermesD: 
a high-rate long-range wireless transmission system for simultaneous multichannel 
neural recording applications. IEEE Trans. Biomed. Circuits Syst. 4, 181–191. doi: 
10.1109/TBCAS.2010.2044573

Miri, A., Warriner, C. L., Seely, J. S., Elsayed, G. F., Cunningham, J. P., 
Churchland, M. M., et al. (2017). Behaviorally selective engagement of short-latency 
effector pathways by motor cortex. Neuron 95, 683–696.e11. doi: 10.1016/j.
neuron.2017.06.042

Monnet, T., Samson, M., Bernard, A., David, L., and Lacouture, P. (2014). 
Measurement of three-dimensional hand kinematics during swimming with a motion 
capture system: a feasibility study. Sports Eng. 17, 171–181. doi: 10.1007/
s12283-014-0152-4

Mori, F., Nakajima, K., Tachibana, A., and Mori, S. (2006). Obstacle clearance and 
prevention from falling in the bipedally walking Japanese monkey, Macaca fuscata. Age 
Ageing 35, ii19–ii23. doi: 10.1093/ageing/afl079

Nakamura, T., Matsumoto, J., Nishimaru, H., Bretas, R. V., Takamura, Y., Hori, E., 
et al. (2016). A markerless 3D computerized motion capture system incorporating a 
skeleton model for monkeys. PLoS One 11:e0166154. doi: 10.1371/journal.
pone.0166154

Nakano, Y. (2002). The effects of substratum inclination on locomotor patterns in 
primates. Z. Morphol. Anthropol. 83, 189–199. doi: 10.1127/zma/83/2002/189

Nakatsukasa, M., Hirasaki, E., and Ogihara, N. (2006). Energy expenditure of bipedal 
walking is higher than that of quadrupedal walking in Japanese macaques. Am. J. Phys. 
Anthropol. 131, 33–37. doi: 10.1002/ajpa.20403

Nakatsukasa, M., Ogihara, N., Hamada, Y., Goto, Y., Yamada, M., Hirakawa, T., et al. 
(2004). Energetic costs of bipedal and quadrupedal walking in Japanese macaques. Am. 
J. Phys. Anthropol. 124, 248–256. doi: 10.1002/ajpa.10352

Ogihara, N., Hirasaki, E., Andrada, E., and Blickhan, R. (2018). Bipedal gait versatility 
in the Japanese macaque (Macaca fuscata). J. Hum. Evol. 125, 2–14. doi: 10.1016/j.
jhevol.2018.09.001

Ogihara, N., Makishima, H., Hirasaki, E., and Nakatsukasa, M. (2012). Inefficient use 
of inverted pendulum mechanism during quadrupedal walking in the Japanese 
macaque. Primates 53, 41–48. doi: 10.1007/s10329-011-0265-3

Ogihara, N., Makishima, H., and Nakatsukasa, M. (2010). Three-dimensional 
musculoskeletal kinematics during bipedal locomotion in the Japanese macaque, 
reconstructed based on an anatomical model-matching method. J. Hum. Evol. 58, 
252–261. doi: 10.1016/j.jhevol.2009.11.009

Oku, H., Ide, N., and Ogihara, N. (2021). Forward dynamic simulation of Japanese 
macaque bipedal locomotion demonstrates better energetic economy in a virtualised 
plantigrade posture. Commun. Biol. 4, 1–11. doi: 10.1038/s42003-021-01831-w

O’Neill, M. C., Demes, B., Thompson, N. E., and Umberger, B. R. (2018). Three-
dimensional kinematics and the origin of the hominin walking stride. J. R. Soc. Interface 
15:20180205. doi: 10.1098/rsif.2018.0205

O’Neill, M. C., Lee, L. F., Demes, B., Thompson, N. E., Larson, S. G., Stern, J. T. Jr., 
et al. (2015). Three-dimensional kinematics of the pelvis and hind limbs in chimpanzee 
(Pan troglodytes) and human bipedal walking. J. Hum. Evol. 86, 32–42. doi: 10.1016/j.
jhevol.2015.05.012

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., 
et al. (2021). Updating guidance for reporting systematic reviews: development of the 
PRISMA 2020 statement. J. Clin. Epidemiol. 134, 103–112. doi: 10.1016/j.jclinepi.2021.02.003

Pearce, T. M., and Moran, D. W. (2012). Strategy-dependent encoding of planned arm 
movements in the dorsal premotor cortex. Science 337, 984–988. doi: 10.1126/
science.1220642

Peikon, I. D., Fitzsimmons, N. A., Lebedev, M. A., and Nicolelis, M. A. (2009). Three-
dimensional, automated, real-time video system for tracking limb motion in brain–
machine interface studies. J. Neurosci. Methods 180, 224–233. doi: 10.1016/j.
jneumeth.2009.03.010

Perrott, M. A., Pizzari, T., Cook, J., and McClelland, J. A. (2017). Comparison of lower 
limb and trunk kinematics between markerless and marker-based motion capture 
systems. Gait Posture 52, 57–61. doi: 10.1016/j.gaitpost.2016.10.020

Pontzer, H., Raichlen, D. A., and Rodman, P. S. (2014). Bipedal and quadrupedal 
locomotion in chimpanzees. J. Hum. Evol. 66, 64–82. doi: 10.1016/j.jhevol.2013.10.002

Rapeaux, A. B., and Constandinou, T. G. (2021). Implantable brain machine interfaces: 
first-in-human studies, technology challenges and trends. Curr. Opin. Biotechnol. 72, 
102–111. doi: 10.1016/j.copbio.2021.10.001

Reghem, E., Chèze, L., Coppens, Y., and Pouydebat, E. (2013). Unconstrained 
3D-kinematics of prehension in five primates: lemur, capuchin, gorilla, chimpanzee, 
human. J. Hum. Evol. 65, 303–312. doi: 10.1016/j.jhevol.2013.06.011

Reghem, E., Chèze, L., Coppens, Y., and Pouydebat, E. (2014). The influence of body 
posture on the kinematics of prehension in humans and gorillas (Gorilla gorilla). Exp. 
Brain Res. 232, 1047–1056. doi: 10.1007/s00221-013-3817-5

Reimer, J., and Hatsopoulos, N. G. (2009). The problem of parametric neural coding 
in the motor system. Adv. Exp. Med. Biol. 629, 243–259. doi: 10.1007/978-0- 
387-77064-2_12

Revuelta, G. J., Uthayathas, S., Wahlquist, A. E., Factor, S. A., and Papa, S. M. (2012). 
Non-human primate FOG develops with advanced parkinsonism induced by MPTP 
treatment. Exp. Neurol. 237, 464–469. doi: 10.1016/j.expneurol.2012.07.021

Rizk, M., Bossetti, C. A., Jochum, T. A., Callender, S. H., Nicolelis, M. A., Turner, D. A., 
et al. (2009). A fully implantable 96-channel neural data acquisition system. J. Neural 
Eng. 6:026002. doi: 10.1088/1741-2560/6/2/026002

Rouse, A. G., Stanslaski, S. R., Cong, P., Jensen, R. M., Afshar, P., Ullestad, D., et al. 
(2011). A chronic generalized bi-directional brain–machine interface. J. Neural Eng. 
8:036018. doi: 10.1088/1741-2560/8/3/036018

Ruß, D. K. P. (2016). Evaluation of joint angle accuracy using markerless silhouette-
based tracking and hybrid tracking against traditional marker tracking. Doctoral 
dissertation, Institute of Sport.

Santhanam, G., Linderman, M. D., Gilja, V., Afshar, A., Ryu, S. I., Meng, T. H., et al. 
(2007). HermesB: a continuous neural recording system for freely behaving primates. 
IEEE Trans. Biomed. Eng. 54, 2037–2050. doi: 10.1109/TBME.2007.895753

Scaramuzza, D., and Fraundorfer, F. (2011). Visual odometry [tutorial]. IEEE Robotics 
and Automation Magazine 18, 80–92.

Schmidt, M. (2005). Quadrupedal locomotion in squirrel monkeys (Cebidae: Saimiri 
sciureus): a cineradiographic study of limb kinematics and related substrate reaction 
forces. Am. J. Phys. Anthropol. 128, 359–370. doi: 10.1002/ajpa.20089

Schmidt, M. (2008). Forelimb proportions and kinematics: how are small primates 
different from other small mammals? J. Exp. Biol. 211, 3775–3789. doi: 10.1242/
jeb.019802

Schwarz, D. A., Lebedev, M. A., Hanson, T. L., Dimitrov, D. F., Lehew, G., Meloy, J., 
et al. (2014). Chronic, wireless recordings of large-scale brain activity in freely moving 
rhesus monkeys. Nat. Methods 11, 670–676. doi: 10.1038/nmeth.2936

Serruya, M., Hatsopoulos, N., Fellows, M., Paninski, L., and Donoghue, J. (2003). 
Robustness of neuroprosthetic decoding algorithms. Biol. Cybern. 88, 219–228. doi: 
10.1007/s00422-002-0374-6

Shenoy, K. V., Sahani, M., and Churchland, M. M. (2013). Cortical control of arm 
movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359. doi: 
10.1146/annurev-neuro-062111-150509

Shimada, H., Kanai, R., Kondo, T., Yoshino-Saito, K., Uchida, A., Nakamura, M., et al. 
(2017). Three-dimensional kinematic and kinetic analysis of quadrupedal walking in the 
common marmoset (Callithrix jacchus). Neurosci. Res. 125, 11–20. doi: 10.1016/j.
neures.2017.06.005

Shitara, T., Goto, R., Ito, K., Hirasaki, E., and Nakano, Y. (2022b). Hip medial rotator 
action of gluteus medius in Japanese macaque (Macaca fuscata) and implications to 
adaptive significance for quadrupedal walking in primates. J. Anat. 241, 407–419. doi: 
10.1111/joa.13658

Shitara, T., Ito, K., Fujiwara, T., Goto, R., Hirasaki, E., and Nakano, Y. (2022a). How was 
the abductor function of gluteus medius muscle acquired in the evolution of bipedalism? 
A comparison of the moment arms of gluteus medius during quadrupedal and bipedal 
walking in Japanese macaque (Macaca fuscata). Am. J. Biol. Anthropol. 177:167. doi: 
10.1002/ajpa.24514

Silvernagel, M. P., Ling, A. S., and Nuyujukian, P.Brain Interfacing Laboratory (2021). 
A markerless platform for ambulatory systems neuroscience. Science. Robotics 
6:eabj7045. doi: 10.1126/scirobotics.abj7045

Sodagar, A. M., Perlin, G. E., Yao, Y., Najafi, K., and Wise, K. D. (2009). An 
implantable 64-channel wireless microsystem for single-unit neural recording. IEEE J. 
Solid State Circuits 44, 2591–2604. doi: 10.1109/JSSC.2009.2023159

Spörri, J., Schiefermüller, C., and Müller, E. (2016). Collecting kinematic data on a ski 
track with optoelectronic stereophotogrammetry: a methodological study assessing the 
feasibility of bringing the biomechanics lab to the field. PLoS One 11:e0161757. doi: 
10.1371/journal.pone.0161757

Thompson, N. E., O’Neill, M. C., Holowka, N. B., and Demes, B. (2018). Step width 
and frontal plane trunk motion in bipedal chimpanzee and human walking. J. Hum. 
Evol. 125, 27–37. doi: 10.1016/j.jhevol.2018.09.006

Tseng, P. H., Urpi, N. A., Lebedev, M., and Nicolelis, M. (2019). Decoding movements 
from cortical ensemble activity using a long short-term memory recurrent network. 
Neural Comput. 31, 1085–1113. doi: 10.1162/neco_a_01189

Van der Kruk, E., and Reijne, M. M. (2018). Accuracy of human motion capture 
systems for sport applications; state-of-the-art review. Eur. J. Sport Sci. 18, 806–819. doi: 
10.1080/17461391.2018.1463397

Vargas-Irwin, C. E., Shakhnarovich, G., Yadollahpour, P., Mislow, J. M., Black, M. J., and 
Donoghue, J. P. (2010). Decoding complete reach and grasp actions from local primary 
motor cortex populations. J. Neurosci. 30, 9659–9669. doi: 10.1523/JNEUROSCI.5443-09.2010

Vouga, T., Zhuang, K. Z., Olivier, J., Lebedev, M. A., Nicolelis, M. A., Bouri, M., et al. 
(2017). EXiO—A brain-controlled lower limb exoskeleton for rhesus macaques. IEEE 
Trans. Neural Syst. Rehabil. Eng. 25, 131–141. doi: 10.1109/TNSRE.2017.2659654

https://doi.org/10.3389/fnins.2023.1141567
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1016/j.conb.2019.10.008
https://doi.org/10.1016/j.brainresrev.2007.08.006
https://doi.org/10.1016/j.brainresrev.2007.08.006
https://doi.org/10.1109/TBCAS.2010.2044573
https://doi.org/10.1016/j.neuron.2017.06.042
https://doi.org/10.1016/j.neuron.2017.06.042
https://doi.org/10.1007/s12283-014-0152-4
https://doi.org/10.1007/s12283-014-0152-4
https://doi.org/10.1093/ageing/afl079
https://doi.org/10.1371/journal.pone.0166154
https://doi.org/10.1371/journal.pone.0166154
https://doi.org/10.1127/zma/83/2002/189
https://doi.org/10.1002/ajpa.20403
https://doi.org/10.1002/ajpa.10352
https://doi.org/10.1016/j.jhevol.2018.09.001
https://doi.org/10.1016/j.jhevol.2018.09.001
https://doi.org/10.1007/s10329-011-0265-3
https://doi.org/10.1016/j.jhevol.2009.11.009
https://doi.org/10.1038/s42003-021-01831-w
https://doi.org/10.1098/rsif.2018.0205
https://doi.org/10.1016/j.jhevol.2015.05.012
https://doi.org/10.1016/j.jhevol.2015.05.012
https://doi.org/10.1016/j.jclinepi.2021.02.003
https://doi.org/10.1126/science.1220642
https://doi.org/10.1126/science.1220642
https://doi.org/10.1016/j.jneumeth.2009.03.010
https://doi.org/10.1016/j.jneumeth.2009.03.010
https://doi.org/10.1016/j.gaitpost.2016.10.020
https://doi.org/10.1016/j.jhevol.2013.10.002
https://doi.org/10.1016/j.copbio.2021.10.001
https://doi.org/10.1016/j.jhevol.2013.06.011
https://doi.org/10.1007/s00221-013-3817-5
https://doi.org/10.1007/978-0-387-77064-2_12
https://doi.org/10.1007/978-0-387-77064-2_12
https://doi.org/10.1016/j.expneurol.2012.07.021
https://doi.org/10.1088/1741-2560/6/2/026002
https://doi.org/10.1088/1741-2560/8/3/036018
https://doi.org/10.1109/TBME.2007.895753
https://doi.org/10.1002/ajpa.20089
https://doi.org/10.1242/jeb.019802
https://doi.org/10.1242/jeb.019802
https://doi.org/10.1038/nmeth.2936
https://doi.org/10.1007/s00422-002-0374-6
https://doi.org/10.1146/annurev-neuro-062111-150509
https://doi.org/10.1016/j.neures.2017.06.005
https://doi.org/10.1016/j.neures.2017.06.005
https://doi.org/10.1111/joa.13658
https://doi.org/10.1002/ajpa.24514
https://doi.org/10.1126/scirobotics.abj7045
https://doi.org/10.1109/JSSC.2009.2023159
https://doi.org/10.1371/journal.pone.0161757
https://doi.org/10.1016/j.jhevol.2018.09.006
https://doi.org/10.1162/neco_a_01189
https://doi.org/10.1080/17461391.2018.1463397
https://doi.org/10.1523/JNEUROSCI.5443-09.2010
https://doi.org/10.1109/TNSRE.2017.2659654


Liang et al. 10.3389/fnins.2023.1141567

Frontiers in Neuroscience 16 frontiersin.org

Wang, W., Chan, S. S., Heldman, D. A., and Moran, D. W. (2010). Motor cortical 
representation of hand translation and rotation during reaching. J. Neurosci. 30, 
958–962. doi: 10.1523/JNEUROSCI.3742-09.2010

Wei, R. H., Song, W., Zhao, C., Zhao, W., Li, L. F., Ji, R., et al. (2016). Influence of 
walking speed on gait parameters of bipedal locomotion in rhesus monkeys. J. Med. 
Primatol. 45, 304–311. doi: 10.1111/jmp.12235

Wei, R. H., Zhao, C., Rao, J. S., Zhao, W., Wei, Y. Q., Zhou, X., et al. (2019). 
Neuromuscular control pattern in rhesus monkeys during bipedal walking. Exp. Anim. 
68, 341–349. doi: 10.1538/expanim.18-0180

Wei, R. H., Zhao, C., Rao, J. S., Zhao, W., Zhou, X., Tian, P. Y., et al. (2018). The 
kinematic recovery process of rhesus monkeys after spinal cord injury. Exp. Anim. 67, 
431–440. doi: 10.1538/expanim.18-0023

Wessberg, J., Stambaugh, C. R., Kralik, J. D., Beck, P. D., Laubach, M., Chapin, J. K., 
et al. (2000). Real-time prediction of hand trajectory by ensembles of cortical neurons 
in primates. Nature 408, 361–365. doi: 10.1038/35042582

Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M., and Shenoy, K. V. 
(2021). High-performance brain-to-text communication via handwriting. Nature 593, 
249–254. doi: 10.1038/s41586-021-03506-2

Winiarski, S. (2003). Human locomotion analysis technique with SIMI motion. Acta 
Bioeng. Biomech. 5, 544–550.

Wise, K. D., Anderson, D. J., Hetke, J. F., Kipke, D. R., and Najafi, K. (2004). Wireless 
implantable microsystems: high-density electronic interfaces to the nervous system. 
Proc. IEEE 92, 76–97. doi: 10.1109/JPROC.2003.820544

Wu, W., Black, M., Gao, Y., Serruya, M., Shaikhouni, A., Donoghue, J., et al. 
(2002). Neural decoding of cursor motion using a Kalman filter. Adv. Neural Inf. 
Proces. Syst. 15, 133–140.

Xiang, Y., John, P., Yakushin, S. B., Kunin, M., Raphan, T., and Cohen, B. (2007). 
Dynamics of quadrupedal locomotion of monkeys: implications for central control. Exp. 
Brain Res. 177, 551–572. doi: 10.1007/s00221-006-0707-0

Xing, D., Aghagolzadeh, M., Truccolo, W., and Borton, D. (2019). Low-
dimensional motor cortex dynamics preserve kinematics information during 

unconstrained locomotion in nonhuman primates. Front. Neurosci. 13:1046. doi: 
10.3389/fnins.2019.01046

Yakovenko, S., and Drew, T. (2015). Similar motor cortical control mechanisms for 
precise limb control during reaching and locomotion. J. Neurosci. 35, 14476–14490. doi: 
10.1523/JNEUROSCI.1908-15.2015

Yin, M., Borton, D. A., Aceros, J., Patterson, W. R., and Nurmikko, A. V. (2013). A 
100-channel hermetically sealed implantable device for chronic wireless neurosensing 
applications. IEEE Trans. Biomed. Circuits Syst. 7, 115–128. doi: 10.1109/
TBCAS.2013.2255874

Yin, M., Borton, D. A., Komar, J., Agha, N., Lu, Y., Li, H., et al. (2014).  
Wireless neurosensor for full-spectrum electrophysiology recordings  
during free behavior. Neuron 84, 1170–1182. doi: 10.1016/j.neuron.2014. 
11.010

Yin, M., and Ghovanloo, M. (2008). “A clockless ultra low-noise low-power wireless 
implantable neural recording system.” in 2008 IEEE International Symposium on Circuits 
and Systems (ISCAS). pp. 1756–1759. IEEE.

Yin, M., and Ghovanloo, M. (2009). “A flexible clockless 32-ch simultaneous 
wireless neural recording system with adjustable resolution.” in 2009 IEEE 
international solid-state circuits conference-digest of technical papers. pp. 432–433. 
IEEE.

Yin, M., and Ghovanloo, M. (2011). A low-noise clockless simultaneous 32-channel 
wireless neural recording system with adjustable resolution. Analog Integ. Circuit Sig 
Process 66, 417–431.

Young, J. W., and Chadwell, B. A. (2020). Not all fine-branch locomotion is equal: 
grasping morphology determines locomotor performance on narrow supports. J. Hum. 
Evol. 142:102767. doi: 10.1016/j.jhevol.2020.102767

Zhang, Q., Zhang, S., Hao, Y., Zhang, H., Zhu, J., Zhao, T., et al. (2012). Development 
of an invasive brain-machine interface with a monkey model. Chin. Sci. Bull. 57, 
2036–2045. doi: 10.1007/s11434-012-5096-0

Zhao, W., Song, W., Rao, J. S., Wei, R. H., Li, L. F., Ji, R., et al. (2018). Gait division of 
healthy and spinal cord–injuredrhesus monkeys by one-dimensional toe signals. J. Mech. 
Med. Biol. 18:1850017. doi: 10.1142/S0219519418500173

https://doi.org/10.3389/fnins.2023.1141567
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1523/JNEUROSCI.3742-09.2010
https://doi.org/10.1111/jmp.12235
https://doi.org/10.1538/expanim.18-0180
https://doi.org/10.1538/expanim.18-0023
https://doi.org/10.1038/35042582
https://doi.org/10.1038/s41586-021-03506-2
https://doi.org/10.1109/JPROC.2003.820544
https://doi.org/10.1007/s00221-006-0707-0
https://doi.org/10.3389/fnins.2019.01046
https://doi.org/10.1523/JNEUROSCI.1908-15.2015
https://doi.org/10.1109/TBCAS.2013.2255874
https://doi.org/10.1109/TBCAS.2013.2255874
https://doi.org/10.1016/j.neuron.2014.11.010
https://doi.org/10.1016/j.neuron.2014.11.010
https://doi.org/10.1016/j.jhevol.2020.102767
https://doi.org/10.1007/s11434-012-5096-0
https://doi.org/10.1142/S0219519418500173

	Non-human primate models and systems for gait and neurophysiological analysis
	1. Introduction
	2. Methods
	2.1. Search strategy
	2.2. Inclusion criteria
	2.3. Exclusion criteria
	2.4. Data management and statistical analysis

	3. Results
	3.1. Publication overview
	3.2. MoCap device
	3.2.1. OS
	3.2.2. IPS
	3.2.3. EMS, ULS, and ISS
	3.2.4. Footprints measurement
	3.3. Accuracy of MoCap system
	3.4. Measurement of gait parameters
	3.4.1. Spatiotemporal parameters
	3.4.2. Joint angles
	3.4.3. GRF and dynamics
	3.5. Neurophysiological measurements
	3.6. Other measurements

	4. Discussion
	4.1. Biodevice
	4.2. BCI
	4.2.1. Wireless
	4.2.2. Tethered
	4.2.3. Bipedal or quadrupedal
	4.2.4. MoCap system
	4.2.5. Marker attachment
	4.2.6. Findings or contribution

	5. Current challenges and opportunities
	5.1. The role of the motor cortex in gait generation remains unsolved
	5.2. Decoding or modeling methods in BCI and gait studies
	5.3. Wireless neural recording device

	6. Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note

	References

