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Background: Glaucoma is the leading cause of irreversible vision loss. Accurate

Optic Disc (OD) and Optic Cup (OC) segmentation is beneficial for glaucoma

diagnosis. In recent years, deep learning has achieved remarkable performance in

OD and OC segmentation. However, OC segmentation is more challenging than

OD segmentation due to its large shape variability and cryptic boundaries that

leads to performance degradation when applying the deep learning models to

segment OC. Moreover, the OD and OC are segmented independently, or pre-

requirement is necessary to extract the OD centered region with pre-processing

procedures.

Methods: In this paper, we suggest a one-stage network named EfficientNet

and Attention-based Residual Depth-wise Separable Convolution (EARDS) for

joint OD and OC segmentation. In EARDS, EfficientNet-b0 is regarded as

an encoder to capture more effective boundary representations. To suppress

irrelevant regions and highlight features of fine OD and OC regions, Attention

Gate (AG) is incorporated into the skip connection. Also, Residual Depth-wise

Separable Convolution (RDSC) block is developed to improve the segmentation

performance and computational efficiency. Further, a novel decoder network is

proposed by combining AG, RDSC block and Batch Normalization (BN) layer,

which is utilized to eliminate the vanishing gradient problem and accelerate

the convergence speed. Finally, the focal loss and dice loss as a weighted

combination is designed to guide the network for accurate OD and OC

segmentation.

Results and discussion: Extensive experimental results on the Drishti-GS and

REFUGE datasets indicate that the proposed EARDS outperforms the state-of-

the-art approaches. The code is available at https://github.com/M4cheal/EARDS.

KEYWORDS

glaucoma, joint optic disc and cup segmentation, EfficientNet, attention, residual depth-
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Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1139181
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1139181&domain=pdf&date_stamp=2023-03-09
https://doi.org/10.3389/fnins.2023.1139181
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1139181/full
https://github.com/M4cheal/EARDS
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1139181 March 4, 2023 Time: 14:44 # 2

Zhou et al. 10.3389/fnins.2023.1139181

1. Introduction

Glaucoma is an eye disease that becomes the first leading cause
of irreversible vision loss in the world (Weinreb et al., 2014; Mary
et al., 2016). It is estimated that 111.8 million people will suffer from
glaucoma by the year 2040 (Tham et al., 2014). Since the visual field
loss is not evident (Giangiacomo and Coleman, 2009) at an early
stage of glaucoma, the damage to visual function is progressive and
irreversible when patients are diagnosed with glaucoma. Hence,
early-stage glaucoma screening is critical.

At present, retinal color fundus image plays the most widely
used imaging technique at early-stage glaucoma screening, due to
cost-effective. In a color retinal fundus image, it has various retinal
structures, e.g., Optic Disc (OD), Optic Cup (OC), blood vessels,
macula, and fovea, as depicted in Figure 1A. Figure 1B illustrates
the vertical OC to OD ratio denoted as CDR, which is well accepted
and the prime attribute in glaucoma screening (Fernandez-Granero
et al., 2017). CDR can be calculated by the ratio of the Vertical
Cup Diameter (VCD) to the Vertical Disc Diameter (VDD). If the
CDR value is greater than 0.5, then it reports as glaucoma (Soorya
et al., 2019). Since the calculation of CDR depends on precise
segmentation of OD and OC, manually segmenting these regions
always suffers from the following challenges, e.g., lacking qualified
ophthalmologists, inter-individual variability of reading and times-
consuming (Pachade et al., 2021). Hence, automatic OD and OC
segmentation is more suitable for extracting the useful features for
glaucoma screening.

Recently, a series of automatic OD and OC segmentation
approaches have been developed based on the color retinal fundus
images for glaucoma diagnosis, which can be classified into
heuristic-based approaches and deep learning-based approaches
(Li et al., 2019). For the heuristic-based approaches, they conduct
OD and OC segmentation through the handcrafted features,
such as color, gradient, and texture features. However, these
features belong to artificial feature engineering, which are easily
affected by the fundus structures. Hence, their representation
capabilities and stability will influence the segmentation
performance. Recently, deep learning-based approaches have
become the mainstream for research in ophthalmology. Various
deep learning-based segmentation approaches have been put
forward (Sevastopolsky, 2017; Gu et al., 2019; Sevastopolsky
et al., 2019) for accurate segmentation of OD and OC. However,
they still face several challenging issues as below: (1) The OD
and OC are segmented independently, or pre-requirement is
necessary to extract the OD centered region with pre-processing
procedures. Hence, they can not only enhance the computational
complexity, but also reduce the accuracy of segmentation due
to the separate operations. (2) The high redundancy features
always contain in the current segmentation models, which may
weaken the reliability and accuracy of segmentation. (3) The
issue of vanishing gradient will occur as the network depth
increases, leading to overfitting. (4) The extreme OD and OC
class imbalance issue encountered in the color fundus images
especially for healthy eyes will result in large segmentation
errors.

To overcome these limitations, this paper designs an end-to-
end joint OD and OC segmentation network named EfficientNet
and Attention-based Residual Depth-wise Separable Convolution

(EARDS). The main contributions of this paper can be summarized
as:

(1) The proposed EARDS is a one-stage approach for joint OD
and OC segmentation.

(2) RDSC block is proposed to improve the segmentation
performance and computational efficiency. A novel
decoder is designed by using RDSC, AG, and BN that
leads to promote faster convergence, eliminate vanishing
gradient problem, and improve segmentation accuracy.

(3) Our approach achieves better performance, compared
with the state-of-the-art approaches on two publicly
available datasets.

The rest of this paper is organized as follows. Section 2 gives
a brief description of the related works. Section 3 presents the
proposed approach in detail. Analysis of experimental results will
be introduced in Section 4. Section 5 concludes the paper.

2. Related works

Recently, most automatic OD and OC segmentation
approaches have been put forward. According to different
feature engineering techniques, previous studies can be divided
into traditional machine learning approaches based on handcraft
features and deep learning-based approaches.

2.1. Traditional machine learning
approaches

In the early stage, traditional machine learning approaches
mainly rely on the handcrafted features for OD and OC
segmentation, which are divided into three categories (Morales
et al., 2013): appearance-based approaches, model-based
approaches, and pixel-based classification approaches. For
appearance-based approaches, they always detect the OD and OC
through the physiological structure in the retinal fundus images,
e.g., OD is the brightest circular (Lalonde et al., 2001; Zhu and
Rangayyan, 2008) or elliptical object (Cheng et al., 2011). These
approaches are further divided into template-based techniques
(Aquino et al., 2010), deformable models-based techniques (Xu
et al., 2007), morphology-based techniques (Welfer et al., 2010) and
principal component analysis (Dai et al., 2017). However, the main
limitation in these approaches is that they can hardly represent the
OD regions with irregular shape and contours due to the images
with more visible pathologies or lower quality. For model-based
approaches, they always utilize the position prior knowledge of
OD, OC, and blood vessels for OD and OC segmentation. For
instance, OD is the convergence region of the major blood vessels
(Mahfouz and Fahmy, 2010) and vessel bends can be regarded
as the center of OC (Wong et al., 2008). According to these
prior knowledges, reference (Hoover and Goldbaum, 2003) first
detected the blood vessels and the OD and OC regions can be
segmented based on the acquired vessels. Nevertheless, when the
image quality is poor or the blood vessels are detected badly, they
can hardly work well for OD and OC segmentation. Pixel-based
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FIGURE 1

Color retinal fundus images. (A) Main structures in a color retinal fundus image. (B) VCD and VDD in the normal and glaucomatous color retinal
fundus images.

FIGURE 2

An overview of the proposed EARDS.

classification approaches regard the OD and OC segmentation
as a supervised pixel classification problem. Cheng et al. (2013)
designed a superpixel classification approach for OD segmentation.
First, the authors aggregated the pixels from the retinal fundus
images into superpixels and then divided each superpixel into the
OD regions or non-OD regions. In summary, there are two main
limitations in the above-discussed segmentation approaches (Li
et al., 2020). On one hand, they depend heavily on handcrafted
features and lack generalization. On the other hand, they segment
the OD and OC in two separate steps and the mutual relation
between them is ignored.

2.2. Deep learning approaches

Convolutional Neural Networks (CNNs) can automatically
extract the complex features from the input images, which
have achieved huge achievements in medical image processing
especially for segmentation area (Çiçek et al., 2016). Therefore,
a series of CNN variants have attempted to perform OD and
OC segmentation, which have achieved excellent performance
(Maninis et al., 2016; Sevastopolsky, 2017; Zilly et al., 2017; Al-
Bander et al., 2018; Fu et al., 2018; Kim et al., 2019; Shah et al.,
2019; Yin et al., 2019; Yu et al., 2019; Pachade et al., 2021). For
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FIGURE 3

The structure of EfficientNet-b0.

example, Maninis et al. (2016) suggested a DRIU network based
on the VGG-16 for segmenting retinal vessels and OD at the
same time. However, the more challenging OC boundary cannot
be extracted. Inspired by Region Proposal Network (RPN), Yin
et al. (2019) proposed a PM-net for OD and OC segmentation
where a pyramidal RoIAlign module is designed to capture multi-
scale features. In 2015, a series of Fully Convolutional Network
(FCN) (Long et al., 2015) based models have been proposed,
in which the FCN-based UNet (Ronneberger et al., 2015) is
the most advanced and widely utilized model for medical image
segmentation. Motivated by the success of UNet, most UNet
variants have been presented to segment the OD and OC. For
example, Sevastopolsky (2017) suggested a modified UNet for
automatic OD and OC segmentation. Unlike the original UNet,
the authors adopt fewer filters and a modified loss function, which
has the merits of fast processing speed and few parameters. In Zilly
et al. (2017), the authors incorporated an entropy-based sampling
technique into CNN framework for OD and OC segmentation
which has achieved competitive results. First, an entropy sampling
technique is employed to extract informative points. Then, the
segmentation results can be acquired by graph cut algorithm.
However, these approaches segment OD and OC in a sequential
way, thus their effectiveness is limited. To address this issue, a series
of two-stage joint OD and OC segmentation approaches have been
proposed, in which the first stage is to locate the Optic Nerve Head
(ONH) area, and the second stage is to segment OD and OC within
the extracted ONH area. For example, Al-Bander et al. (2018)
designed a U-shape network structure by combining DenseNet
with UNet for OD and OC segmentation simultaneously. Fu et al.
(2018) proposed a M-net based on UNet, which consists of multiple
inputs and multiple outputs for joint OD and OC segmentation.
Similarly, Yu et al. (2019) proposed an improved UNet approach

by making full use of the advantage of the pre-trained ResNet
and UNet to speed up the model and avoiding overfitting. Kim
et al. (2019) detected the Region of Interest (ROI) area around
OD, followed by the OD and OC segmentation. In their model,
FCN with UNet framework is employed to segment the OD and
OC from the ROI. Moreover, Shah et al. (2019) proposed a weak
ROI model-based segmentation (WRoIM) approach. In WRoIM, it
firstly acquires the coarse OD segmentation regions through a small
UNet structure and then inputs the coarse segmentation results
into another UNet to obtain accurate fine segmentation. Recently,
Pachade et al. (2021) introduced the adversarial learning into the
OD and OC segmentation tasks, which acquires a remarkable
performance. The studies undertaken above, either segment the
OD and OC separately (Maninis et al., 2016; Sevastopolsky, 2017;
Zilly et al., 2017; Yin et al., 2019) or require extracting the OD
centered region with pre-processing procedures (Al-Bander et al.,
2018; Fu et al., 2018; Kim et al., 2019; Yu et al., 2019; Pachade et al.,
2021). Therefore, their performance and computational cost will be
significantly affected.

3. The proposed approach

The proposed EARDS a fully automatic end-to-end network for
joint OD and OC segmentation. Next, more detailed descriptions of
EARDS will be provided.

3.1. Network architecture

The overview of our EARDS is depicted in Figure 2, composed
of an encoder-decoder structure. The encoder is a EfficientNet-b0,
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RDSC block.

which is used to extract features from the input fundus images and
then convert the features to high-level visual representations. The
decoder is a novel network which contains Attention Gate (AG),
Residual Depth-wise Separable Convolution (RDSC) block and
Batch Normalization (BN) layer. First, we incorporate AG into the
skip connection to eliminate the irrelevant regions and highlight
features of fine OD and OC regions. Second, to preserve more
spatial information from minor details of the OD and OC regions,
RDSC block is suggested to replace the traditional convolution
operations. The introduction of RDSC is able to achieve the best
trade-off between performance and computational efficiency. In
addition, BN layer can further eliminate the vanishing gradient
problem to accelerate the convergence speed. The final outputs of
the decoder network are the segmented OD and OC results. More
detailed descriptions are given as below.

3.1.1. EfficientNet
Convolution Neural Networks (CNNs) have been utilized for

extracting the key features from the image. Development of a CNNs
is done at a fixed resource budget. If there is increase in resources
then scaling is done to improve accuracy. A series of ways for
scaling CNNs, which can be divided dimension-depth based or
width based or image resolution based. Among them, dimension-
depth based is widely used. However, due to the tedious manual
tuning scaling, it always gives sub-optimal performance. Recently,
Tan and Le (2019) research the relationship between width and
depth of CNN models and put forward efficient CNN models with
less parameters, achieving excellent classification performance. In
their study, a baseline model called EfficientNet-b0 is developed,
which is scaled up to acquire a family of EfficientNets from B1 to
B7. These models have achieved Top-1 accuracy in the ImageNet
dataset (Krizhevsky et al., 2017).

In EfficientNet models, Mobile inverted Bottleneck
Convolution (MBConv) is the main building block proposed

by Sandler et al. (2018), as depicted in Figure 3. It consists of 1× 1
convolution (1 × 1 Conv), Depth-wise convolution (Depth-wise
Conv) and Squeeze-and-Excitation (SE) module. First, the output
of the previous layer is sent to MBConv block and then the number
of channels is expended by 1× 1 Conv. Second, a 3× 3 Depth-wise
Conv is utilized to reduce the number of parameters further.
Third, channel pruning reduces number of channels by a 1 × 1
Conv layer. At last, the residual connection between the input
and output of the projection layer is introduced. Figure 3 shows
the SE module, which contains squeeze operation and excitation
operation. First, global average pooling (AvgPooling) is used for
squeeze operation. After that, excitation operation is performed
which contains two fully connected layers, a Swish activation, and
a Sigmoid activation function.

To achieve the best segmentation performance with low
resource consumption, this paper chooses the EfficientNet-b0
depieced in Figure 3 as our encoder. The overall structure
of EfficientNet-b0 contains 7 MBConvX blocks, represented by
different colors. For simplify, we employ ksize to represent the
size of convolution kernel, i.e., 3 and 5. The symbol X indicates
the coefficient of channel number scaling, e.g., MBConv6 denotes
MBConv with a scaling factor of 6. According to the reference
(He et al., 2016), EfficientNet-b0 has 5.3M parameters, which is 4.9
times smaller and 11 times faster than ResNet-50. To obtain larger
inputs and outputs in the encoding phase, this paper modifies the
Stem layer by convolution (kernel = 3, stride = 1, padding = 1).

3.1.2. Attention gate (AG)
Early work on OD and OC segmentation from color fundus

image employ two-stage (Maninis et al., 2016; Sevastopolsky,
2017; Zilly et al., 2017; Yin et al., 2019), involving ROI
extraction and subsequent segmentation. In particular, these
approaches first require extracting the OD centered region
with pre-processing procedures and then conduct OD and OC
segmentation in sequence. In this way, their computational
cost will be significantly affected. Moreover, OC segmentation
is more challenging than OD segmentation due to its large
shape variability and cryptic boundaries. Therefore, false-positive
predictions for OC segmentation remains difficult to reduce.
Motivated by the successfully applied of AG in deep learning-
based computer vision tasks, this paper introduces AG into
our model to locate the most significant features and eliminate
redundancy, achieving end-to-end segmentation. Attention Gate
proposed by Oktay et al. (2018) belongs to attention mechanism,
which allows the model to adaptively adjust and automatically
learn the highlight salient features from an input image. Figure 2
shows the structure of AG, in which g and xl are the input
feature maps sampled from the current layer and the previous
layer, respectively. Based on these feature maps, performing a
group of operations include 1 × 1 convolution (1 × 1 Conv),
BN, and a point-by-point summation operation. After that, the
attention coefficient α can be obtained by executing a series
of operations (Rectifier Linear Unit (ReLU) activation + 1 × 1
Conv + Sigmoid activation + resampler operation) in turn.
Finally, the final output feature map x̂l can be acquired by
multiplying the attention coefficient α with the input feature
map xl.

Since AG can be linearly transformed without any spatial
support and the resolution of the input feature map will be
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TABLE 1 OD and OC segmentation results by different loss functions on the REFUGE dataset.

Loss function OD segmentation OC segmentation CE

DCOD JACOD BAOD DCOC JACOC BAOC

Cross-entropy 0.9593 0.9225 0.9600 0.8815 0.7907 0.8901 0.0518

Dice 0.9557 0.9160 0.9566 0.8911 0.8080 0.9008 0.0542

Focal 0.9528 0.9103 0.9542 0.8702 0.7733 0.8818 0.0580

Cross-entropy+Focal 0.9585 0.9214 0.9592 0.8862 0.8003 0.8952 0.0497

Cross-entropy+Dice 0.9563 0.9172 0.9568 0.8899 0.8053 0.8979 0.0504

Focal+Dice 0.9594 0.9226 0.9600 0.8930 0.8100 0.9014 0.0482

Bold text indicates the optimal performance.

A B

C D

FIGURE 5

Loss function curves on the REFUGE dataset. (A) Training loss curves with different loss functions, (B) OD segmentation, (C) OC segmentation, and
(D) CE scores.

reduced by down-sampling to the gated signal, the parameter and
computational resource of the network model are greatly reduced.
Motivated by the advantages of AG, this paper introduces the AG
into the original skip connection, which has the following two main
merits. For one thing, the promising segmentation performance
can be obtained while preserving computational efficiency. For
another, the network model can automatically learn the ROI
(Region of Interest) implicitly from the original image, eliminating
irrelevant regions and focusing on interesting area to be segmented.

3.1.3. Residual depth-wise separable convolution
(RDSC)

Most deep learning-based segmentation networks always
require large-scaled parameters and high computational cost,
leading to hardly deploy the networks to mobile and embedded
devices. Moreover, the existing networks tend to overfit the training

data. To solve these issues, this paper develops a Residual Depth-
wise Separable Convolution (RDSC) block consisting of Depth-
wise Separable Convolution (DSC), BN, Rectifier Linear Unit
(ReLU) activation and Channel Convolution (CC), as shown in
Figure 4.

Each RDSC block contains the following operations: (1) DSC
block. (2) BN and ReLU activation are preformed after DSC. (3)
CC is to change the number of channels. The main advantages of
RDSC are as follows: (1) The network can be deepened and widened
without incurring any extra computations. (2) Introducing BN into
RDSC speeds up the convergence of the network and effectively
avoids the gradient disappearance (He et al., 2016). (3) The
nonlinear ReLU activation function increases the nonlinearity of
the deep network to learn more complex feature representations.

DSC proposed by Chollet (2017) contains two processes:
Depth-wise Convolution and Point-wise Convolution. First,
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FIGURE 6

Training loss curves with different initial learning rates on the
REFUGE dataset.

Depth-wise Convolution applies a single filter per input channel.
Then, the Point-wise Convolution combines the outputs of Depth-
wise Convolution by a 1× 1 convolution.

Supposing that F(DF × DF ×M) and G(DF × DF × N) are the
feature maps, where DF × DF denotes the spatial width and height.
M andN are the number of input and output channels, respectively.
In the standard convolution, the feature map is parameterized as
DK × DK ×M × N by the convolution with the kernel size (K)
where DK is the spatial dimension of the kernel. If stride and
padding of convolution are set as 1, the number of parameters of
standard convolution is:

DK × DK ×M × N × DF × DF (1)

The number of parameters of Depth-wise Convolution is:

DK × DK ×M × DF × DF (2)

Combining 1 × 1 (point-wise) convolution and Depth-wise
Convolution together forms the DSC, and the total number of
parameters is:

DK × DK ×M × DF × DF +M × N × DF × DF (3)

Seen from the above comparisons, the number of parameters
of DSC is greatly lower than the standard convolution. When
the standard convolution is employed to the proposed model,
the parameter size is 17.14 M and the Floating-Point Operations
(FLOPs) is 8.51G. Instead, when the RDSC is introduced, it has
15.44 M and 4.21G in parameter size and FLOPs. From these
results, we can observe that RDSC can reduce the parameter size
and FLOPS by 1.7M and by 4.30G, respectively. Therefore, this
paper replaces the standard convolutional blocks with RDSC blocks
in the decoding stage.

3.2. Loss function

The OD and OC segmentation can be regarded as a multi-class
segmentation problem. However, there are two major limitations
in the current segmentation approaches. For one thing, the
overlapped OD and OC makes the segmentation task more
challenging. For another, since the OD and OC regions are much

smaller than the background region in the fundus images, the
class imbalance issue will influence the model training. Recently,
the researchers have proposed dice loss (Milletari et al., 2016)
and focal loss (Lin et al., 2017) for the optimization of the
parameters, achieving superior performance. Among them, dice
loss derived from the dice coefficient reflects the similarity of two
contour regions and focal loss is to deal with the class imbalance
issue.

Inspired by the advantages of focal loss and dice loss, this paper
presents a novel fusion loss function by combining the weighted
focal loss and dice loss for joint OD and OC segmentation. The
proposed fusion loss function is given as follows:

Lseg
(
m, p

)
= LDL

(
m, p

)
+ λLFL

(
m, p

)
(4)

where

LDL(m, p) = 1−
K∑

k=1

2mkpk
(mk)2 + (pk)2 (5)

LFL(m, p) =
K∑

k=1

[−mkαk(1− pk)γ log pk (6)

−(1−mk)(1− αk)(pk)γ log(1− pk)]

where LDL and LFL are dice loss and focal loss, respectively. λ

is a regularization parameter to balance the weight of LDL and
LFL. m ∈ {0, 1} is a binary ground truth label, and p ∈ [0, 1] is the
predicted probability value. K represents the number of categories,
and the proposed weighting factor of the kth category is denoted as
αk.

4. Experiments and results

4.1. Datasets

Extensive experiments are performed on two publicly available
datasets, i.e., Drishti-GS (Sivaswamy et al., 2014) and REFUGE
(Orlando et al., 2020).

Drishti-GS dataset (Sivaswamy et al., 2014) contains 101
annotated color fundus images, of which 70 and 31 correspond to
glaucomatous and normal eyes, respectively. The given split of the
dataset contains 50 training images and 51 testing images.

REFUGE dataset (Orlando et al., 2020) consists of 1200
annotated color fundus images, which are equally divided into three
subsets of 400 images each to form training, validation, and testing.
In the training set, there are 40 glaucomatous images and 360
normal images. In this paper, we adopt the training set to verify the
effectiveness of the proposed approach. First, we randomly select 10
glaucomatous images and 30 normal images from the training set
forming the testing set. Then, the rest images are regarded as the
training and validation sets. We repeat the sample selection process
five times, and the averaged result is utilized for performance
comparison.

4.2. Implementation details

Our approach is implemented based on the PyTorch platform.
We carry out the experiments on Windows 10 system with NVIDIA
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TABLE 2 OD and OC segmentation results by different models on the Drishti-GS dataset and REFUGE dataset.

Dataset Model OD segmentation OC segmentation CE

DCOD JACOD BAOD DCOC JACOC BAOC

Drishti-GS UNet
(Baseline)

0.9642 0.9319 0.9654 0.8661 0.7737 0.8845 0.0793

E-UNet 0.9715 0.9447 0.9719 0.9008 0.8251 0.9083 0.0544

EA-UNet 0.9572 0.9255 0.9616 0.8888 0.8146 0.9044 0.0513

ERDSC-UNet 0.9725 0.9467 0.9729 0.9092 0.8395 0.9161 0.0486

Our EARDS 0.9741 0.9497 0.9745 0.9157 0.8493 0.9205 0.0443

REFUGE UNet
(Baseline)

0.8849 0.8201 0.9045 0.8258 0.7221 0.8480 0.0821

E-UNet 0.9521 0.9100 0.9535 0.8838 0.7965 0.8929 0.0503

EA-UNet 0.9547 0.9141 0.9556 0.8805 0.7908 0.8896 0.0470

ERDSC-UNet 0.9531 0.9118 0.9542 0.8828 0.7942 0.8924 0.0500

Our EARDS 0.9549 0.9147 0.9559 0.8872 0.8017 0.8957 0.0471

Bold text indicates the optimal performance.

FIGURE 7

Examples of visual segmentation on the Drishti-GS and REFUGE datasets. (A–C) Examples from the Drishti-GS dataset and (D–F) examples from the
REFUGE dataset.

TITAN Xp graphics card with 12 GB of RAM and a single CPU
Intel(R) Xeon(R) CPU E5-2620 v4. The network is trained for
30 epochs with a batch size of 2. Root Mean Square Propagation
(RMSProp) optimizer is employed with the initial learning rate of
1e-04. The learning rate is automatically decayed by the validation
set score, and the loss is automatically adjusted. The values of
parameter α in focal loss are set as 0.75, 0.75 and 0.25 for OD,

OC, and background, respectively. Meanwhile, the value of tunable
parameter γ is set to 2.

To avoid overfitting, this paper performs data augmentation
based on the original images to generate new training data. For
Drishti-GS dataset, we apply a combination of image horizontal
flip, vertical flip, and translation techniques to generate a total of
2,800 images. Similarly, we employ the same data augmentation
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TABLE 3 Performance of different ablation models in terms of training time, number of parameters, and FLOPS.

Model Drishti-GS REFUGE Number of
parameters

FLOPS

Training time Training time

UNet 6h 35m 8s 6h 25m 59s 118.40M 218.99G

E-UNet 7h 38m 29s 7h 50m 42s 16.82M 7.71G

EA-UNet 8h 5m 10s 8h 53m 49s 16.98M 8.16G

ERDSC-UNet 8h 14m 40s 8h 49m 5s 15.28M 3.76G

EARDS 9h 26m 40s 9h 26m 23s 15.44M 4.21G

A B

FIGURE 8

The training loss curves of different models in the different datasets. (A) Drishti-GS, (B) REFUGE.

techniques for REFUGE dataset to generate a total of 2,880 images.
All of the images in both datasets are resized to 512× 512 pixels.

4.3. Evaluation metrics

Four widely used performance metrics are adopted to evaluate
the effectiveness of the proposed approach, e.g., Dice Coefficients
(DC), Jaccard (JAC), CDR Error (CE), and Balance Accuracy (BA).

DC =
2× TP

2× TP + FP + FN
(7)

JAC =
TP

TP + FP + FN
(8)

CE =
1
N

N∑
n=1

∣∣∣CDRnp − CDRnm
∣∣∣ (9)

with
CDR =

VDcup

VDdisc
(10)

BA =
1
2
(Se+ Sp) (11)

With
Se =

TP
TP + FN

, Sp =
TN

TN + FP
(12)

where TN, FN, TP, and FP denote the number of True Negatives,
False Negatives, True Positives, and False Positives, respectively.

CDRnp is the predicted CDR value of n-th image calculated by the
segmented result and CDRnm is the corresponding ground truth
CDR from trained clinician. N represents the total number of
samples in the testing set. Lower the absolute CDR Error value
(CE) better is the predicted result. VDcup and VDdisc are the
vertical diameters of OC and OD respectively. Se and Sp represent
sensitivity and specificity.

4.4. Experimental results

Extensive experiments are performed to verify the effectiveness
of our approach on the Drishti-GS and REFUGE datasets and
the acquired experimental results are as below. On the Drishti-
GS dataset, our approach achieves the scores of 0.9741, 0.9497,
and 0.9745 in terms of DC, JAC, and BA for OD segmentation
and it obtains 0.9157, 0.8493, and 0.9205 for OC segmentation,
respectively. On the REFUGE dataset, it acquires the scores of
0.9549, 0.9147, and 0.9559 in terms of DCOD, JACOD, and BAOD.
For OC segmentation, the achieved scores are 0.8872, 0.8017, and
0.8957, respectively. To further assist ophthalmologists in diagnosis
of glaucoma, the corresponding CDR can be calculated based on
the obtained OD and OC segmentation results. We adopt the
commonly used CE to evaluate the accuracy of CDR estimation.
The results on the Drishti-GS and REFUGE datasets indicate that
our approach acquires the scores of 0.0443 and 0.0471 in terms of
CE, respectively.

Next, our approach with different loss functions is tested on
the REFUGE dataset. In the experiment, cross-entropy loss, dice
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FIGURE 9

Confusion matrices on different datasets. (A) Drishti-GS, (B) REFUGE.

loss, and focal loss are selected for comparison. Table 1 depicts the
segmentation performance with different loss functions.

As it can be seen in Table 1, when we just employ one
kind of loss functions to train model, the cross-entropy loss
can always achieve the best performance. Meanwhile, when we
combine the cross-entropy loss with dice loss or the focal loss,
the segmentation performance will not be further improved.
However, appending a focal loss on dice loss constructs the fusion
loss for model training, which can achieve the best performance
in terms of all the evaluation criteria. Motivated by this, this

paper proposes the fusion loss function by incorporating tunable
parameters to handle output imbalance. Figure 5A shows loss
function curves that are generated from different loss functions.
The proposed fusion loss is proved to be more suitable for training
network.

The relative weighting λ of the focal loss and dice loss is a major
parameter in the proposed fusion loss. In this paper, the role of λ

is determined by grid-based searching {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1.0}. According to the experiment results depicted in
Figures 5B–D, when the value of λ is set to 0.3, our approach
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FIGURE 10

Scatter plots of CDR for different datasets. (A) Drishti-GS, (B) REFUGE.

can acquire the best results in terms of all the evaluation metrics.
Therefore, we recommend λ = 0.3 in the following experiment.

To evaluate the effect of various initial learning rates in training
model, Figure 6 depicts the training loss curves with different initial
learning rates on the REFUGE dataset. As depicted in Figure 6,
when the initial learning rate is set as too large (e.g., 1e-2 and 1e-
3), the model cannot be trained properly, (denoted as Nan). When
the initial learning rate is set as too small (e.g., 1e-06), the model
converges slowly and falls into the local optimal point. According
to these results, we determine the initial learning rate as 1e-04 in
our experiment.

4.5. Ablation study

Ablation experiments are conducted on the DRISHTI-GS
and REFUGE databases. In our approach, there are three major
components including the Efficient-b0, AG module, RDSC. For the

sake of description, we utilize the E-UNet, EA-UNet, ERDSC-UNet
to represent Efficient-b0 module, Efficient-b0 Attention Gate, and
Efficient-b0 RDSC, respectively. The original UNet is regarded as
the baseline model and the proposed fusion loss is used to train
different components. Meanwhile, the mean DC, JAC, BA and CE
are employed to evaluate the segmentation performance. Table 2
summarize the ablation results of OD and OC segmentation on the
Drishti-GS and REFUGE datasets, respectively.

Seen from Table 2, when the Efficient-b0, AG module, and
RDSC block are gradually added into the baseline model, all the
evaluation metrics continuedly increase. Hence, the contribution of
each improvement in the proposed model is verified and combining
these models in a reasonable way can further enhance the
segmentation performance. For better visualizing the segmentation
results, we select six representative testing images from Drishti-GS
and REFUGE datasets, as shown in Figure 7. In Figure 7, the first
two rows are original color fundus images and the corresponding
ground truth images for OD and OC. The rest 5 rows are the
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A B

FIGURE 11

AUC scores and ROC curves for glaucoma screening based on CDR. (A) Drishti-GS, (B) REFUGE.

TABLE 4 OD and OC segmentation results of the state-of-the-art approaches on the Drishti-GS dataset and REFUGE dataset.

Dataset Methods OD segmentation OC segmentation CE

DC JAC DC JAC

Drishti-GS UNet (Ronneberger et al., 2015) 0.9500 – 0.8200 – –

FC-DenseNet (Al-Bander et al., 2018) 0.9490 0.9042 0.8282 0.7113 –

Yu et al. (2019) 0.9738 0.9492 0.8877 0.8042 –

WRoIM (Shah et al., 2019) 0.9600 – 0.8900 – –

M-Net (Fu et al., 2018) 0.9590 – 0.8660 – –

WGAN (Kadambi et al., 2020) 0.9540 – 0.8400 – 0.0860

pOSAL (Wang et al., 2019) 0.9650 – 0.8580 – 0.0820

GL-Net (Jiang et al., 2019) 0.9710 – 0.9050 – –

Multi-model (Hervella et al., 2020) 0.9607 0.9243 0.9029 0.8229 –

ResFPN-Net (Sun et al., 2021) 0.9759 – 0.8961 – –

M-Ada (Hervella et al., 2022) 0.9718 – 0.9103 – 0.0413

Ours 0.9741 0.9497 0.9157 0.8493 0.0443

REFUGE M-Net (Fu et al., 2018) 0.9436 – 0.8315 – –

pOSAL (Wang et al., 2019) 0.9460 – 0.8750 – 0.0510

CFEA (Liu et al., 2019) 0.9416 – 0.8627 – 0.0481

Multi-model (Hervella et al., 2020) – 0.9225 – 0.7902 –

Two-stage Mask R-CNN (Almubarak
et al., 2020)

0.9477 – 0.8546 – 0.0425

M-Ada (Hervella et al., 2022) 0.9585 – 0.8825 – 0.0373

Ours 0.9549 0.9147 0.8872 0.8017 0.0471

‘–’ Means that there is no performance reported and bolded values denote the best performance of models.

results obtained by different models in ablation study. As observed
from Figure 7, each component in our model is effective, and
the best segmentation results can be acquired by combining these
components together.

Moreover, some main performance evaluation criteria
involving the training time, the number of parameters and FLOPS,
are also provided in Table 3. As observed from Table 3, the training
time will be increased when more components are fused into
the baseline model (UNet) and the segmentation performance is
enhanced gradually. Apart from the training time, the number
of parameters and FLOPS in our model are 1.53M and 3.95G

less than EA-UNet, respectively, which can greatly improve the
computational cost. All in all, the proposed model best settles
the challenging trade-off between segmentation performance and
network cost. Figure 8 gives the training loss curves obtained
by different models on the Drishti-GS and REFUGE datasets.
Seen from these figures, with the increasing number of epochs,
the training loss of our model converges with the lowest values,
indicating that our model can be successfully trained on the
Drishti-GS and REFUGE datasets.

Furthermore, the confusion matrices of segmentation results
achieved by different models in ablation study are shown in
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Figure 9. According to the comparison results, we can observe that
our model can better distinguish the OD and OC regions from
the background, especially for the more challenging OC region.
In addition, the number of mis-segmentation pixels in the OD
region is lower than that of other models. Hence, the merits of our
approach over other models on the segmentation of OD and OC.

Finally, we also calculate the CDR values based on the obtained
segmentation results in the ablation study. Figure 10 shows the
scatter plots of the corresponding CDR values. As can be observed
from Figure 10, the value of CDR calculated by our model is
closer to the real CDR. For example, on the Drishti-GS dataset,
the scores of UNet, EA-UNet, ERDSC-UNet and our model are
respectively 0.0793, 0.0513, 0.0486, and 0.0443 in terms of CE.
On the REFUGE dataset, UNet, EA-UNet, ERDSC-UNet and our
model achieve 0.0821, 0.0470, 0.0500, 0.0471 in CE, respectively.
Compared with these models in the ablation study, our model
obtains higher accuracy on CDR calculation.

4.6. Glaucoma screening

In this subsection, we will validate the effectiveness of the
proposed approach in glaucoma screening. Since the vertical CDR
is an important metric for glaucoma screening, we calculate it
via the obtained OD and OC segmentation masks. This paper
adopts the Receiver Operating Characteristic (ROC) curve and
Area Under the ROC Curve (AUC) as the metrics. The results of
glaucoma screening on the Drishti-GS and REFUGE datasets are
depicted in Figures 11A, B, respectively. Since the REFUGE dataset
is tested on five cross-validation datasets separately, there are five
ROC curves as shown in Figure 11B. The averaged AUC score is
regarded as the final AUC score. As seen from these figures, the
AUC scores obtained by the proposed approach are 0.9028 and
0.9733 on the Drishti-GS and REFUGE datasets, respectively. As
seen from these figures, the AUC scores obtained by the proposed
approach are 0.9028 and 0.9733 on the Drishti-GS and REFUGE
datasets, respectively. According to the reference (Pachade et al.,
2021) proposed by Pachade et al., the acquired AUC scores are
0.8968 and 0.9644 on the Drishti-GS and REFUGE datasets, which
is lower than our approach. Hence, the proposed approach has a
strong potential for glaucoma screening.

4.7. Discussion and comparison with the
state-of-the-art approaches

In this subsection, we compare the proposed approach with the
state-of-the-art approaches, including UNet (Ronneberger et al.,
2015), FC-DenseNet (Al-Bander et al., 2018), Yu et al. (2019),
WRoIM (Shah et al., 2019), M-Net (Fu et al., 2018), WGAN
(Kadambi et al., 2020), pOSAL (Wang et al., 2019), GL-Net (Jiang
et al., 2019), CFEA (Liu et al., 2019), Multi-model (Hervella
et al., 2020), Two-stage Mask R-CNN (Almubarak et al., 2020),
ResFPN-Net (Sun et al., 2021) and M-Ada (Hervella et al., 2022).
Table 4 illustrate the OD and OC segmentation results of different
approaches on the Drishti-GS and REFUGE datasets, respectively.

Considering that our approach is an improved structure based
on UNet, we first compare it with the original UNet on the Drishti-
GS and REFUGE datasets. According to Table 4, it is noteworthy

that our approach greatly outperforms the original UNet in terms of
DC scores. In addition, some UNet based variants, i.e., M-Net (Fu
et al., 2018), FC-DenseNet (Al-Bander et al., 2018), Yu et al. (2019),
WRoIM (Shah et al., 2019) are used for performance comparison.
As can be seen from Table 4, our approach remarkably performs
better than the earlier best result by Yu et al. (2019) on OC DC
by around 2.8%. Also, we have higher DC scores of 0.0113 and
0.0557 than M-Net (Fu et al., 2018) for OD and OC segmentation
on the REFUGE dataset. Since deep learning approaches based
on Generative Adversarial Networks (GAN) have also achieved
satisfactory OD and OC segmentation results, some state-of-the-
art GAN-based approaches such as CFEA (Liu et al., 2019), pOSAL
(Wang et al., 2019), WGAN (Kadambi et al., 2020), and GL-Net
(Jiang et al., 2019) are employed to compare. As observed from
Table 4, our approach achieves the best performance in terms of
all the evaluation metrics on the two datasets. Finally, the proposed
approach is compared with the latest deep learning approaches,
i.e., Multi-model (Hervella et al., 2020), Two-stage Mask R-CNN
(Almubarak et al., 2020), ResFPN-Net (Sun et al., 2021) and M-Ada
(Hervella et al., 2022). According to the results, we can learn that
the OD segmentation performance of our approach is slightly lower
than ResFPN-Net by 0.0018 (DC) on the Drishti-GS dataset and
is inferior to M-Ada by 0.0036 (DC) on the REFUGE dataset.
However, the OC segmentation is a more challenging and far more
complicated than OD segmentation. Under this circumstance, our
approach can achieve the best OC segmentation performance.

Among all the comparison approaches, our approach
can greatly improve the accuracy of the more challenging
OC segmentation and obtain competitive results on the OD
segmentation. The main reasons are as below:

1. Our approach directly outputs the segmentation result
based on the original color retinal fundus images.
Therefore, it cannot only reduce the complexity,
but also take the relationship between OD and OC
into consideration, which is helpful for OD and
OC segmentation.

2. A novel decoder network using AGs, RDSC block and
BN layer is suggested to eliminate the vanishing gradient
problem and accelerate the convergence speed.

3. To deal with the class imbalance issue in the color retinal
fundus images, this paper designs a novel fusion loss
function by weighted fusing focal loss and dice loss to train
model, which can effectively improve the segmentation
performance.

5. Conclusion and future work

This paper proposes an end-to-end joint OD and OC
segmentation approach. First, we employ the EfficientNet-b0 as an
encoder to increase the output feature map size and the feature
representation capability. Then, the AG module is applied into the
skip connection to suppress the irrelevant regions and highlight
the ROI region for OD and OC segmentation. Next, we design
a RDSC block to improve the segmentation performance and
computational efficiency. Furthermore, taking AG, RDSC and BN
into a united framework, a novel decoder network is presented
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to eliminate the vanishing gradient problem and speed up the
convergence speed. Finally, to solve the class imbalance problem
in the OD and OC segmentation tasks, a novel fusion loss is
proposed. We conduct the proposed approach on the Drishti-
GS and REFUGE datasets, which achieves the state-of-the-art
performance. In addition, based on the obtained OD and OC
segmentation results, the CDR value can be calculated to assess the
risk of glaucoma. The results indicate that the proposed approach
has a good potential in glaucoma screening.

Although the proposed approach can achieve encouraging
performance on the OD and OC segmentation tasks, a challenging
problem in our approach is the domain shift, i.e., unstably diagnosis
results will be achieved without re-training. Therefore, the domain
adaptation will be incorporated into our model to improve its
generalization and stability in the future.
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