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Alzheimer’s disease (AD) is a progressive neurodegenerative disease, and

the development of AD is irreversible. However, preventive measures in

the presymptomatic stage of AD can e�ectively slow down deterioration.

Fluorodeoxyglucose positron emission tomography (FDG-PET) can detect the

metabolism of glucose in patients’ brains, which can help to identify changes

related to AD before brain damage occurs. Machine learning is useful for early

diagnosis of patients with AD using FDG-PET, but it requires a su�ciently large

dataset, and it is easy for overfitting to occur in small datasets. Previous studies

using machine learning for early diagnosis with FDG-PET have either involved the

extraction of elaborately handcrafted features or validation on a small dataset,

and few studies have explored the refined classification of early mild cognitive

impairment (EMCI) and late mild cognitive impairment (LMCI). This article presents

a broad network-based model for early diagnosis of AD (BLADNet) through PET

imaging of the brain; this method employs a novel broad neural network to

enhance the features of FDG-PET extracted via 2D CNN. BLADNet can search for

information over a broad space through the addition of new BLS blocks without

retraining of the whole network, thus improving the accuracy of AD classification.

Experiments conducted on a dataset containing 2,298 FDG-PET images of 1,045

subjects from the ADNI database demonstrate that our methods are superior to

those used in previous studies on early diagnosis of ADwith FDG-PET. In particular,

our methods achieved state-of-the-art results in EMCI and LMCI classification

with FDG-PET.

KEYWORDS

Alzheimer’s disease, PET, broad learning system, neural network, computer-aided

diagnosis

1. Introduction

Alzheimer’s disease (AD) cannot be diagnosed until obvious symptoms appear in the

patient, but studies have found that patients with AD show abnormalities in regional

metabolism before brain structure changes occur (Jagust et al., 2006). Fluorine 18 (18F)

fluorodeoxyglucose (FDG) positron emission tomography (PET) is a non-invasive nuclear

medicine imaging technique that can indicate the metabolic activity of tissues and organs

(Marcus et al., 2014; Bouter et al., 2019; Levin et al., 2021). FDG-PET may detect
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the onset of certain diseases earlier than other imaging tests (Brown

et al., 2014). FDG-PET is regarded as an effective biomarker

for earlier diagnosis of AD (Chételat et al., 2020). The onset of

Alzheimer’s disease is insidious and slow, and it can be divided into

three stages: cognitively normal (CN), mild cognitive impairment

(MCI), and Alzheimer’s disease (AD). Patients with AD tend

to show hypometabolism on 18F-FDG-PET scan in the regions

of the posterior cingulate, parietotemporal cortices, and frontal

lobes, while patients with MCI often show posterior cingulate

and parietotemporal hypometabolism with variable frontal lobe

involvement (Mosconi et al., 2008; Kobylecki et al., 2015). However,

the difference between the two stages in FDG-PET is difficult to

distinguish with the naked eye or through pattern recognition-

based decisions made via qualitative readings. Because the disease

involves a wide continuous spectrum, from normal cognition to

MCI to AD, MCI can also be subdivided into early MCI (EMCI)

and late MCI (LMCI) (Jessen et al., 2014).

Machine learning approaches can effectively extract features

that are difficult to find with the naked eye and can outperform

professional clinicians in certain imaging diagnosis problems

(Zhang et al., 2020). A number of studies have already

experimented with unsupervised learning (Suk and Shen, 2013),

adversarial learning (Baydargil et al., 2021), and multi-scale

learning (Lu et al., 2018) techniques in AD-related PET image

analysis. These methods have achieved good results in classification

of CN, MCI, and AD, but few studies have explored the refined

classification of early EMCI and late LMCI.

Currently, deep learning-based approaches have been applied

in early diagnosis of AD (Suk and Shen, 2013; Lu et al., 2018).

Nevertheless, there are still many issues remaining in deep learning,

such as gradient explosion and vanishing gradients, which limit the

depth in terms of number of layers in the network or its fitting

ability; some researchers have proposed residual learning (He et al.,

2016) as a way to alleviate this problem. The broad learning system

(BLS) is one kind of neural network without deep structure. BLS

provides better fitting ability by increasing the number of network

nodes horizontally and obtains solutions via pseudoinverse, with

no need for an iterative backpropagation process. However, BLS

obtains a feature representation of input data through random

projection, which may result in too much redundant information

that could influence the performance of the BLS model. Some

researchers have experimented with variations of BLS that use

other models as feature extractors in the feature mapping layer

(Feng and Chen, 2018; Du et al., 2020; Jara-Maldonado et al.,

2022; Wu and Duan, 2022). In this article, we propose a novel

BLS-based method, in which we use grouped convolution layers

to extract the features from slice groups in the first stage, and

then these features are fed into a broad learning model for further

feature enhancement.

This study proposes a machine learning model based on BLS to

predict the clinical diagnosis in patients using 18F-FDG-PET of the

brain. We attempted to predict patients’ classifications as AD, MCI,

or CN, and (within the category of MCI) as EMCI or LMCI. The

hypothesis was that the broad learning-based model would be able

to detect regional metabolic abnormalities caused by pathology,

which are difficult to observe on clinical review, and improve the

accuracy of individual diagnosis.

2. Materials and methods

2.1. Data acquisition

Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). ADNI was launched in 2003 as a public–private

partnership, led by Principal Investigator Michael W. Weiner,

MD. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), PET, other biological markers,

and clinical and neuropsychological assessment can be combined

to measure the progression of MCI and early AD.

In our study, we analyzed a total of 2,298 FDG-PET imaging

studies of 1,045 patients obtained from ADNI. The datasets

contained images of subjects of different ages. In ADNI 1, the

subjects were grouped into three classes: CN, MCI, and AD.

However, in ADNI 2/GO, the MCI stage was subdivided into

EMCI and LMCI. To be classified as CN, subjects must have no

memory complaints and be non-demented. To be classified as

having MCI, subjects must have a Mini-Mental State Examination

(MMSE) score between 24 and 30; the activities of daily living

must be preserved, and dementia must be absent. Finally, to be

classified as having AD, subjects must be clinically diagnosed as

such, with an MMSE score between 20 and 26 (Jack Jr et al., 2008).

Demographic information on our dataset is presented in Table 1. A

total of 80% of the data (1,851 imaging studies, 598 patients) were

used for model training. The remaining 20% (447 imaging studies;

no repeat studies of the same subjects in the test set) were used

for model testing, from which an additional test set (74 imaging

studies for AD vs. MCI vs. CN classification and 45 imaging studies

for EMCI vs. LMCI classification) was selected for validation by

professional radiologists.

2.2. Data processing

For the purpose of eliminating differences between images

acquired from various systems, FDG-PET images in ADNI have

undergone a series of preprocessing steps, intensity normalization,

and conversion to a uniform isotropic resolution of 8mm full width

at half maximum. We selected the processed images from ADNI;

our method does not require any specific pre-defined ROI or VOI

as traditional machine learning methods do. All 3D images were

resampled to a size of 160 × 160 × 96; we treated the images as

a series of 2D slices and removed slices with all-zero intensity on

both sides, then divided the image into four groups of slices at equal

intervals, with each group containing 23 slices. All processing steps

were conducted in Python (version 3.8) using the packages scipy

(http://www.scipy.org) and numpy (https://numpy.org/). Figure 1

shows a single slice, viewed on three planes.

2.3. Model development

Despite the good learning ability of deep neural networks, they

are easy to overfit on small datasets and their training is also
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TABLE 1 Demographics of datasets.

Average age∗

Clinical diagnosis No. of Patients No. of imaging studies Men Women

AD 297 541 76.47± 7.57

(56–92)

75.11± 7.63

(55–92)

MCI 196 616 77.79± 7.01

(57–92)

74.82± 7.95

(57–96)

CN 242 627 77.12± 5.41

(62–91)

76.93± 6.37

(60–96)

Total 735 1,784 77.18± 6.75

(56–92)

75.76± 7.31

(55–96)

EMCI 152 265 73.89± 6.85

(56–90)

72.40± 8.40

(55–92)

LMCI 158 249 74.70± 7.37

(56–94)

71.80± 7.80

(55–91)

Total 310 514 74.27± 7.10

(56–94)

72.09± 8.11

(55–91)

AD, Alzheimer’s disease; MCI, mild cognitive impairment; CN, cognitively normal.
∗Data in parentheses are the range.

FIGURE 1

Example of FDG-PET imaging from ADNI. Each row represents a PET imaging slice on a three-plane view. The three rows are: a 73-year-old man with

AD, an 81-year-old woman with MCI, and a 71-year-old man without MCI/AD. The di�erence between them is di�cult to identify with the naked eye.

time-consuming. The BLS is a lightweight network with a broad

structure proposed by Chen and Liu (2017). The inspiration for

its design comes from a random vector functional link neural

network (RVFLLNN) (Pao and Takefuji, 1992; Chu et al., 2019;

Gong et al., 2021). It can obtain a globally optimal solution

using a ridge regression algorithm during training. without an
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FIGURE 2

Each 3D image is decomposed into groups of 2D slices at equal intervals. In the first stage, deep convolutional features are extracted from each

group by 2D CNN. In the second stage, all features from each slice group are concatenated to form a compact feature vector, and fed to EBLS for

final prediction. (A) The overall architecture of BLADNet. (B) The detailed structure of EBLS.

iterative backpropagation process, meaning that its training is fast

and efficient. The detailed description of the BLS is illustrated

in the Supplementary material. Based on the BLS, we propose a

broad network-based model for early diagnosis of AD (BLADNet)

through PET imaging of the brain.

Figure 2 illustrates the overall architecture of BLADNet. The

framework consists of two stages. In the first stage, we use a 2D

CNN for automated feature learning from each group of slices

rather than directly using a 3D CNN, which reduces the number

of parameters to be learned. In the second stage, the features

extracted from each group in the previous step are concatenated

to form a compact sequence feature; then, the Extreme Broad

Learning System (EBLS), based on a broad neural network, is

used to enhance the features from 2D CNN and carry out the
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FIGURE 3

Main steps of the experiment. The data set was split into training and test sets at a ratio of 8:2. In the validation step, the radiologists were provided

with demographic information to aid their readings.

final classification. A detailed description of the EBLS is provided

in the Supplementary material1. Our model was developed in

Python using the packages numpy and pytorch (https://pytorch.

org/, version 1.7.1). All experiments were conducted using a

computer with a Linux operating system (Ubuntu 18.04). The

computer was equipped with a CPU (Intel(R) Core (TM) i9-

9980XE, 3.00 GHz), 64 GB of DDR4 SDRAM, and GPU (GeForce

RTX 3080) with CUDA Version 11.2 and cuDNN Version 9.1.85.

2.4. Model evaluation and statistical analysis

We performed the experiments of AD vs. MCI vs. CN

classification as in previous studies on data from ADNI 1, and

also performed additional experiments of refined classification

between EMCI and LMCI on data from ADNI 2/GO. All data were

randomly shuffled before being spli into the training set and test

set. In all experiments, we used 80% of the samples for training

and 20% of the samples for testing. In the experiment, we regard

each category as positive samples respectively, the rest as negative

samples, and then calculate metrics. We used accuracy, sensitivity,

1 The code of EBLS model (https://github.com/YangLiuuuu/Extreme-

Broad-Learning-System).

and specificity as metrics to evaluate classification performance. All

metrics were calculated under a default threshold value of 0.5. We

also plotted the ROC curve of all experiments and calculated the

corresponding AUC.

Two board-certified professional radiologists working in a

department of brain imaging and nuclear medicine (radiologist

1: HLZ, with 8 years of experience in brain imaging reading for

AD diagnosis; radiologist 2: HHW, with 6 years of experience in

brain imaging reading for AD diagnosis) were asked to give their

diagnostic impressions of a dataset that was not used for model

training. For each case, the radiologists were provided with the

patient’s age, gender, and MMSE score as additional information

for validation. To validate the performance of the proposed model

and the professional readings of radiologists, we compared the

performance of our proposed model with that of the radiologists’

interpretations. The main steps of the experiment are shown

in Figure 3.

3. Experimental results

3.1. Results of model training

The prediction results of the broad network-based model are

shown in Table 2. For classification of AD, MCI, and CN samples,

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1137567
https://pytorch.org/
https://pytorch.org/
https://github.com/YangLiuuuu/Extreme-Broad-Learning-System
https://github.com/YangLiuuuu/Extreme-Broad-Learning-System
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Duan et al. 10.3389/fnins.2023.1137567

TABLE 2 Comparison of performance between our model and radiology readers in prediction of AD, MCI, and CN.

Our method on ADNI test set Sensitivity (%)∗ Specificity (%)∗ Precision (%)∗ F1 score (%) No. of imaging
studies

AD 92.16 (94/102) 97.56 (240/246) 94.00 (94/100) 93.06 102

MCI 89.34 (109/122) 95.58 (216/226) 91.60 (109/119) 90.46 122

CN 95.16 (118/124) 95.09 (213/224) 91.47 (118/129) 93.28 124

Radiologist 1

AD 51.85 (14/27) 57.45 (27/47) 41.76 (14/34) 45.9 27

MCI 29.41 (5/17) 80.70 (46/57) 31.25 (5/16) 30.3 17

CN 46.67 (14/30) 77.27 (34/44) 58.33 (14/24) 51.85 30

Radiologist 2

AD 37.04 (10/27) 72.34 (34/47) 43.48 (10/23) 40 27

MCI 35.29 (6/17) 63.16 (36/57) 22.22 (6/27) 27.27 17

CN 46.67 (14/30) 77.27 (34/44) 58.33 (14/24) 51.85 30

AD, Alzheimer’s disease; MCI, mild cognitive impairment; CN, cognitively normal.
∗Data in parentheses are raw data used to calculate the percentage.

FIGURE 4

ROC curve of our method tested on the ADNI data set. The ROC

curve labeled AD represents the model’s performance in

distinguishing AD vs. all other classes, the other curves represent the

equivalent objective. The AUC is larger for CN than for the other

classes, which indicates that our model can distinguish healthy

subjects from patients with AD/MCI more successfully than other

classifications.

sensitivity was 92.16 (94 of 102), 89.34 (109 of 122), and 95.16%

(118 of 124), respectively; specificity was 97.56 (240 of 246), 95.58

(216 of 226), and 95.09% (213 of 224), respectively; and precision

was 94.00 (94 of 100), 91.60 (109 of 119), and 91.47% (118 of 129),

respectively. The ROC curves of our model, trained on 80% of

the ADNI data and tested on the remaining 20%, are shown in

Figure 4. The AUC in prediction of AD, MCI, and CN was 0.97,

0.98, and 0.99, respectively. The AUC for CN was the highest,

indicating that our model can distinguish healthy subjects from

patients with AD/MCI.

The results for EMCI and LMCI prediction are shown in

Table 3. In this experiment, we treated LMCI as the positive class

and EMCI as the negative class. Sensitivity was 81.63% (40 of 49)

and specificity was 85.19% (46 of 54). Similar to the AD vs. MCI

vs. CN experiment, the specificity of the model was much higher

than the sensitivity, indicating that our model was better than

radiologists at identifying healthy subjects.

3.2. Model interpretation: t-SNE plot

We used the t-SNE algorithm to reduce the dimensionality

of the features extracted from the convolutional network and

projected them into a two-dimensional space for visualization. As

shown in Figure 5A, for the AD vs. MCI vs. CN experiment, there

were obvious boundaries between the three categories. Moreover,

only a few samples from other categories were scattered within the

CN category, indicating that themodel has a better screening ability

for healthy cases than for patients. Similarly, as shown in Figure 5B,

for EMCI and LMCI classification, the model divided the samples

very successfully into two clusters. Although a few cases weremixed

in the junction of the two clusters, which indicates that there is a

transition stage from EMCI to LMCI, our model could distinguish

the two stages well.

3.3. Comparison of model predictions with
state-of-the-art methods

Recently, a substantial amount of work has been carried

out exploring the application of machine learning approaches

to AD prediction using brain imaging. Most of these studies

have used structural imaging of the brain, with few studies using

functional imaging, specifically 18F-FDG-PET. Some researchers

have attempted to analyze 18F-FDG-PET for AD predictions, but

these studies have yielded limited success (Liu et al., 2018; Lu et al.,

2018; Pan et al., 2018; Ding et al., 2019; Huang et al., 2019; Hamdi

et al., 2022). Tables 4, 5 summarize state-of-the-art deep learning

methods for prediction of AD using 18F-FDG-PET imaging. Most
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TABLE 3 Comparison of performance between our model and radiology readers in prediction of EMCI and LMCI.

Sensitivity (%)∗ Specificity (%)∗ Precision (%)∗ F1 score (%) No. of imaging studies

Our method on test set 2 81.63 (40/49) 85.19 (46/54) 83.33 (40/48) 82.47 103

Radiologist 1 84.00 (21/25) 25.00 (5/20) 58.33 (21/36) 68.85 45

Radiologist 2 76.00 (19/25) 30.00 (6/20) 58.33 (19/33) 65.52 45

EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment.
∗Data in parentheses are raw data used to calculate the percentage.

FIGURE 5

Scatter plot of all data after dimension reduction by t-SNE. (A) Visualization of dimension reduction for AD, MCI, and CN. (B) Visualization of

dimension reduction for EMCI and LMCI.

of the methods investigated can only discriminate AD from CN

or MCI from CN, while our method can classify patients at

different stages of AD with higher sensitivity and specificity. In

addition, compared with these methods, we used a larger test set in

our experiments, which demonstrates the superior generalization

ability of our method.

3.4. Comparison of model predictions with
professional radiologists

As shown in Table 2, two radiologists gave their interpretations

of a test set. For radiologist 1, the sensitivity results for MCI, AD,

and CN were 51.85 (14 of 27), 29.41 (5 of 17), and 46.67% (14 of

30), respectively; the specificity results were 57.45 (27 of 47), 80.70

(46 of 57), and 77.27% (34 of 44), respectively; and the precision

results were 41.76 (14 of 34), 34.25 (5 of 16), and 58.33% (14 of 24),

respectively. For radiologist 2, sensitivity for MCI, AD, and CN was

37.04 (10 of 27), 35.29 (6 of 17), and 46.67% (14 of 30), respectively;

specificity was 72.34 (34 of 47), 63.16 (36 of 57), and 77.27% (34

of 44), respectively; and precision was 43.48 (10 of 23), 22.22 (6 of

27), and 58.33% (14 of 24), respectively. It can be observed that the

prediction results of our proposed model were better than those

of the radiologist, which indicates that the model was able to find

lesions that were difficult to observe with the naked eye. It is also

worth noting that although the two radiologists obtained the same

results in their evaluations of healthy cases, patients with MCI and

AD were difficult to evaluate.

Table 3 reports reader performance on prediction of EMCI

vs. LMCI. For radiologist 1, the results in terms of sensitivity,

specificity, and precision were 84.00 (21 of 25), 25.00 (5 of 20), and

58.33% (21 of 36), respectively. For radiologist 2, the results were

76.00 (19 of 25), 30.00 (6 of 20), and 58.33% (19 of 33), respectively.

Although radiologists had higher sensitivity in this scenario, their

specificity was very low; this is because radiologists tend to predict

cases as LMCI. In contrast, our model was able to achieve high

specificity under high sensitivity.

4. Discussion

With the aging of the population, the number of patients with

AD is continuously increasing. However, research on a cure for AD

has been slow, and the focus of research has shifted to the early

diagnosis of AD, so that early prevention measures can delay the

progression of the disease. However, early identification of patients
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TABLE 4 Summary of state-of-the-art methods for prediction of Alzheimer’s disease (AD) using 18F-FDG-PET imaging.

References Summary of method Dataset specifications Sensitivity Specificity AUC∗

Ding et al. (2019) Inception V3 network pre-trained on ImageNet 484 AD, 861 MCI, 764 non-AD/MCI

scans from ADNI

AD 81% 94% 0.92

MCI 54% 68% 0.63

Non-AD/MCI 59% 75% 0.73

Huang et al. (2019) 3D VGG network 647 AD, 731 CN, 767 MCI

18F-FDG-PET scans from ADNI

AD vs. CN 90.24% 87.77% 0.9269

Lu et al. (2018) A multiscale deep neural network 226 AD and 304 18F-FDG-PET scans

from ADNI

AD vs. CN 91.54% 95.06% NA

Liu et al. (2018) A combination of 2D CNN and RNN 93 AD, 146 MCI, 100 CN scans from

ADNI

AD vs. CN 91.4% 91% 0.953

MCI vs. CN 78.1% 80% 0.839

Hamdi et al. (2022) A 2D CNN network 220 AD, 635 CN FDG-PET scans

from ADNI

AD vs. CN 94% 96% 0.95

Pan et al. (2018) SVM 94 AD, 88 MCI, 90 CN subjects from

ADNI

AD vs. CN 92.78% 91.38% 0.9598

MCI vs. CN 84.20% 82.83% 0.8893

Current study A broad learning-based network 541 AD, 616 MCI, 627 FDG-PET

imaging studies from ADNI

AD 92.16% 97.56% 0.97

MCI 89.34% 95.58% 0.98

Non-AD/MCI 95.16% 95.09% 0.99

We report sensitivity, specificity, and area under the curve (AUC) for all these methods.

AD, Alzheimer’s disease; MCI, mild cognitive impairment; CN, cognitively normal.
∗A value of NA indicates that this result is not reported in the literature.

TABLE 5 Comparison of performance between our model and other existing methods in prediction of EMCI and LMCI.

References Sensitivity (%)∗ Specificity (%)∗ F1 score (%)∗ Dataset specifications

Singh et al. (2017) 64.82% NA 0.6844 178 EMCI, 158 LMCI

Nozadi et al. (2018) 72.50% 79.20% NA 164 EMCI, 189 LMCI

Forouzannezhad et al. (2020) 61.50% 64.3% NA 296 EMCI, 193 LMCI

Ours 81.63% 85.19% 82.47% 265 EMCI, 249 LMCI

EMCI, early mild cognitive impairment, LMCI, late mild cognitive impairment.
∗A value of NA indicates that this result is not reported in the literature.

at the prodromal stage of AD is still a challenging problem. The

broad neural network-based model can identify patients with AD

at different stages with high sensitivity and specificity. In addition,

in identifying patients at the EMCI or LMCI stage, the proposed

model is able to achieve high sensitivity under high specificity;

notably, it outperformed professional radiologist readers, achieving

higher sensitivity and specificity.

Previous research has studied the specific pattern of

hypometabolism that can be observed in FDG-PET of patients

with AD. Bilateral temporo-parietal hypometabolism has been

found to be a dominant pattern related to clinically confirmed AD

(Hoffman et al., 2000). Other studies have demonstrated that, as

the disease progresses, FDG uptake is reduced, especially in the

frontal, parietal, and lateral temporal lobes (Ossenkoppele et al.,

2012). However, FDG-PET is not a definitive imaging biomarker

for AD and MCI. Substantial previous efforts have been devoted

to attempts to develop computer-aided methods of diagnosis of

AD via other modalities, but few studies have been conducted

involving attempts to applying machine learning approaches to

classify patients with AD by FDG-PET alone. Previous attempts

to identify MCI have resulted in limited sensitivity (81% for AD,

54% for MCI) and specificity (Ding et al., 2019). In addition to

prediction of AD, our model performs refined classification of

EMCI vs. LMCI, achieving sensitivity of 81.63% and specificity

of 85.19% in doing so. Compared to previous studies, the key

advantages of ourmodel are as follows. First, due to the incremental

learning ability of BLS, our model can be dynamically updated

without retraining from scratch if new imaging studies are added;

our EBLS model can further extend the incremental learning ability

of BLS by adding new BLS blocks dynamically. In addition, our

model exhibits better performance in the identification of the early

stage of AD, which is of great significance for the diagnosis of AD,

because early identification of AD facilitates early intervention in

the progression of the disease. There are also some limitations to

our model in that the training needs to be completed in two stages,

and the process is complicated. In addition, training a convolution

layer from scratch for the first time is still time-consuming work,

and the BLS model in the second stage depends on the quality of

feature extraction in the convolution layer.

Because of deep structure, deep learning models are very good

at capturing abstract and intrinsic features of images. However,

the problems existing in deep learning models, such as gradient

explosion and vanishing gradients, usually limit the possibility

of deepening the networks of deep learning models indefinitely.
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BLS can solve this problem in a different way, providing good

universal approximation ability with a flat structure. The universal

approximation ability of BLS has been proven by Chen et al.

(2018). Our proposed method utilizes a convolution layer as a

feature extractor to provide deep space features for BLS, and our

proposed EBLS model can enhance the features in broad space

before computing the final output. The comparison in the section

above demonstrates that our method achieves better performance

than state-of-the-art deep learning methods, which demonstrates

the role of broad learning in feature enhancement. In addition,

compared to other studies that have only used dozens of images,

our model was trained and validated on a large dataset containing

thousands of images and achieves better performance, which

indicates that our method has better generalizability. However, in

real clinical scenarios, the reasons for hypometabolism observed

in FDG-PET may be more complicated. For instance, other

types of dementia, such as dementia with Lewy bodies (DLB)

or frontotemporal dementia (FTD), may also cause pathological

changes similar to AD. Further studies that verify this method on

more complex data may in future provide more reliable clinical aids

for diagnosis of AD.

Our study also has limitations. First, although the machine

learning method has achieved very good results in the validation

with the ADNI data set, actual clinical prediction is much more

complicated. For instance, many patients may have neurological

diseases other than AD, which will affect the prediction results.

We will continue our investigation and apply our model to a more

general patient population in the future. Second, the algorithm can

learn features that are difficult to see with the naked eye (which

means that its predictions can differ from experts’ interpretations),

and t-SNE dimension reduction also shows the gradual progression

of patients from MCI to AD, but the model cannot provide

interpretable information for radiologists.

5. Conclusion

In conclusion, in our study we have developed a novel broad

network-based model for prediction of AD diagnosis using 18F-

FDG-PET of the brain. The proposed broad learning-based model

was able to achieve high accuracy, sensitivity, and specificity on the

validation set and outperformed professional radiologist readers in

predicting AD based on FDG-PET. Moreover, the proposed model

can be integrated into the clinical workflow as a powerful auxiliary

diagnosis tool for reading PET imaging of patients with AD.
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