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Cognitive impairment is the core precursor to dementia and other cognitive 
disorders. Current hypotheses suggest that they share a common pathological 
basis, such as inflammation, restricted neurogenesis, neuroendocrine disorders, 
and the destruction of neurovascular units. Fibroblast growth factors (FGFs) 
are cell growth factors that play essential roles in various pathophysiological 
processes via paracrine or autocrine pathways. This system consists of FGFs and 
their receptors (FGFRs), which may hold tremendous potential to become a new 
biological marker in the diagnosis of dementia and other cognitive disorders, and 
serve as a potential target for drug development against dementia and cognitive 
function impairment. Here, we review the available evidence detailing the relevant 
pathways mediated by multiple FGFs and FGFRs, and recent studies examining 
their role in the pathogenesis and treatment of cognitive disorders and dementia.
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1. Introduction

Dementia which occurs in the late stages of the cognitive disorders is one of the most 
prevalent mental illnesses, particularly among the elderly (Bennett and Thomas, 2014). The 
primary clinical manifestation of cognitive disorders is a decline in cognitive function, 
accompanied by disordered thinking, memory deficits, sensory disturbances, and poor 
concentration, which are risk factors and precursor symptoms of dementia, including 
Alzheimer’s disease (AD; Anderson, 2019), vascular dementia (VaD; Dichgans and Leys, 2017), 
and Huntington’s disease (HD; Papoutsi et al., 2014; van der Flier et al., 2018; Iadecola et al., 
2019). Recent research has shown that the pathogenesis of those diseases is associated with 
various pathological mechanisms, including neuroinflammation (Byers and Yaffe, 2011; Leng 
and Edison, 2021), oxidative stress (Luca and Luca, 2019; Manduca et al., 2020), immune 
dysregulation (Hayley et al., 2021), disruption of neurotransmitters (Singh, 2009), synaptic 
plasticity injury (Byers and Yaffe, 2011; Skaper et al., 2017), and neuroendocrine disorders 
(Manduca et al., 2020). FGFs are cell growth factors involved in multiple critical pathophysiologic 
processes in the human body via paracrine and autocrine pathways such as embryonic 
development and angiogenesis, neurogenesis, wound healing, and glucolipid metabolism, which 
need to bind fibroblast growth factors receptor (FGFR) to produce physiological effects (Hui 
et al., 2018). Some researchers believe that FGFs have the potential to become a novel biological 
marker for the diagnosis and prognosis of neurodegenerative diseases, and these results may 
also indicate new targets for treatment (Galvez-Contreras et al., 2016). This review focuses on 

OPEN ACCESS

EDITED BY

Jianxun Liu,  
China Academy of Chinese Medical Sciences,  
China

REVIEWED BY

Zequn Yin,  
Hefei University of Technology, China
Ke-Yang Chen,  
Wenzhou Medical University, China

*CORRESPONDENCE

Shijing Huang  
 hsjgam2878@163.com  

Manman Xu  
 xummjournal@163.com  

Juhua Pan  
 journal5739@163.com

†These authors have contributed equally to this 
work and share first authorship

RECEIVED 02 January 2023
ACCEPTED 19 April 2023
PUBLISHED 05 May 2023

CITATION

Zhai W, Zhang T, Jin Y, Huang S, Xu M and 
Pan J (2023) The fibroblast growth factor 
system in cognitive disorders and dementia.
Front. Neurosci. 17:1136266.
doi: 10.3389/fnins.2023.1136266

COPYRIGHT

© 2023 Zhai, Zhang, Jin, Huang, Xu and Pan. 
This is an open-access article distributed under 
the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Review
PUBLISHED 05 May 2023
DOI 10.3389/fnins.2023.1136266

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1136266&domain=pdf&date_stamp=2023-05-05
https://www.frontiersin.org/articles/10.3389/fnins.2023.1136266/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1136266/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1136266/full
mailto:hsjgam2878@163.com
mailto:xummjournal@163.com
mailto:journal5739@163.com
https://doi.org/10.3389/fnins.2023.1136266
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1136266


Zhai et al. 10.3389/fnins.2023.1136266

Frontiers in Neuroscience 02 frontiersin.org

how the FGF-FGFR system changes and affects the pathogenesis and 
treatment of cognitive disorders and other dementia. We hypothesized 
that maintaining a dynamic balance in the FGF-FGFR system would 
be  beneficial for nerve repair and neuroprotection to reduce the 
clinical symptoms and risk of cognitive disorders.

2. Fibroblast growth factors in 
cognitive disorders and dementia

Patients with cognitive impairment without meeting the 
diagnostic criteria for dementia tend to be diagnosed by clinicians 
as mild cognitive impairment (MCI), while patients with 
concomitant cerebrovascular pathological changes or whose 
cognitive deficit occurs secondary to cerebrovascular disease can 
be  diagnosed as vascular cognitive impairment. Cognitive 
impairment can be  classified as ‘functional’ or ‘non-functional’ 
depending on the presence or absence of neurodegenerative changes 
(Ball et  al., 2020). For the former, only cognitive, memory, and 
emotional impairments occur, which are less likely to deteriorate 
into dementia; for the latter, the subjective cognitive decline is 
accompanied by structural changes in the brain and eventually 
degenerates into dementia.

The pathological changes of dementia are, on the one hand, 
neurodegenerative changes due to senescence, such as AD, HD, 
frontotemporal dementia, and Parkinson’s disease dementia; on the 
other hand, dementia is also closely associated with cerebrovascular 
injury, metabolic disorder, intracranial infections, intracranial 
tumors, hypoxic–ischemic brain injury, which secondary to stroke, 
atherosclerosis, chronic renal insufficiency, diabetes, hyperlipidemia, 
hypertension, and other diseases. These suggest a mixed pathology 
for dementia. Cellular senescence apoptosis and abnormal 
autophagy, inflammation, oxidative stress, vascular damage, and 
metabolic dysfunction interact to induce neuropathic protein 
accumulation and morphological changes in the brain, which are 
further disordered in a vicious cycle of neurodegenerative disease 
(Gonzales et al., 2022).

The FGF-FGFR system consists of seven receptors and 22 ligands 
that are required to bind to their corresponding receptors via acetyl 
heparan sulfate (HS) cofactor or α/β-Klotho (α/β-KL) transmembrane 
proteins to exert their physiological effects (Beenken and Mohammadi, 
2009; Xie et al., 2020). The 22 FGFs can be divided into different 
subgroups based on sequence homology and developmental 
characteristics. For example, FGF-15/19, FGF-21, and FGF-23 are 
members of a particular FGF type called endocrine FGFs, which 
require KL proteins to bind to their receptors because of their low 
affinity for HS (Belov and Mohammadi, 2013; Owen et al., 2015; Hui 
et  al., 2018cc Deng et  al., 2019; Chen K. et  al., 2022). Except for 
homologous factor subfamily (FGF-11/12/13/14) and endocrine FGF 
subfamily, other FGFs all belong to paracrine subfamilies, including 
FGF-1, FGF-2, FGF-9, and FGF-17 (Deng et al., 2019). Abnormal FGF 
expression levels have been observed by researchers in patients with 
dementia and other cognitive disorders (Stopa et al., 1990; Mashayekhi 
et al., 2010; Hensel et al., 2016; Liang et al., 2021). Moreover, the effects 
of FGFs on neuromodulation and cognitive improvement have been 
validated in literature (Lee et al., 2011; Taliyan et al., 2019). Fibroblast 
growth factors in cognitive disorders and dementia is summarized in 
Table 1.

2.1. Paracrine fibroblast growth factors

2.1.1. FGF-1
Fibroblast growth factor-1 (FGF-1), also known as acidic 

fibroblast growth factor (aFGF), is secreted by meningeal cells in the 
ventricles of the third ventricle and is widespread in multiple tissues, 
including the hippocampus, pituitary gland, heart, and kidney 
(Beenken and Mohammadi, 2009; Mashayekhi et al., 2010). FGF-1 can 
modulate physiological activities such as embryonic development, 
angiogenesis, cell proliferation and differentiation, and adult 
hippocampal neurogenesis (AHN) by activating different FGFRs (Lee 
et al., 2011; Tsai et al., 2015; Gasser et al., 2017; Sun et al., 2021). 
Although there remains a paucity of studies investigating the specific 
role of FGF-1  in the pathological mechanisms of cognitive 
impairment, several lines of evidence have shown that dysregulation 
of FGF-1 expression is closely associated with dementia, especially 
Alzheimer’s disease (Takami et al., 1998; Yamagata et al., 2004).

AHN refers to the process by which neural stem cells in the 
hippocampus undergo symmetric or asymmetric division into 
neuroblasts, gradually migrate to specific regions after cell proliferation 
and then differentiate into new neurons and other resident brain cells. 
Thus, AHN is the fundamental physiological basis for neuroplasticity. 
After binding to FGFR-1, FGF-1 has a significant reparatory effect on 
damaged neurons in the cortex and hippocampus, reducing 
inflammatory factors secreted by microglial (MG) activation, thereby 
promoting neurogenesis and vascular regeneration (Tsai et al., 2015). 
However, there is no one-to-one correspondence between the FGFs 
and FGFRs. For instance, FGF-1 secreted by activated astrocytes 
(ASTs) induces neuroinflammation instead of neuroprotection if by 
binding to FGFR-2 (Lee et al., 2011). The neurovascular unit (NVU) 
is a microstructure composed of neurons, neuroglia, the BBB, and the 
extracellular matrix, and plays an essential role in maintaining nerve 
function. The BBB is an essential barrier, that protects the stability of 
the neural microenvironment and is the core of NVU coupling, 
providing protection against leakage of neurotoxic substances from 
the blood into the cerebral parenchyma. The BBB consists of cerebral 
microvascular endothelial cells and is connected to astrocytes, 
pericytes, perivascular macrophages, and basement membranes, 
which are hyperpermeable in depressed patients, triggering 
inflammation of the central nervous system (CNS) and endothelial 
damage to cerebral microvessels, further exacerbating neuronal injury. 
At the same time, FGF-1 could repair the BBB by upregulating the 
expression of tight junction proteins and adherens junction proteins 
via activating p-PI3K, PI3K, p-Akt, and Akt to suppress RhoA but 
activate Rac1 (Wu et al., 2017). Preliminary observations suggest that 
FGF-1 expression is reduced in neurons of the internal olfactory 
cortex in patients with AD, which inhibits the expression of calcium-
binding proteins and induces overexpression of the N-methyl-D-
aspartic acid receptor (NMDAR), resulting in the disruption of 
calcium homeostasis and glutamate-mediated excitotoxicity (Thorns 
and Masliah, 1999; Thorns et al., 2001). Several recent studies reported 
a significant increase in FGF-1 levels in both plasma and cerebrospinal 
fluid in AD (Mashayekhi et al., 2010; Liang et al., 2021), suggesting 
that there may be differences in local concentrations of FGF-1, but this 
remains to be verified further.

Glucose is the primary energy source of the brain (Mergenthaler 
et  al., 2013). In addition to providing energy for neural activity, 
glucose indirectly regulates the transmission of signals that affect 
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neural function (Dienel, 2012; Hossain et al., 2020). Cerebral glucose 
metabolism plays a crucial role in the physiological mechanisms of 
cognitive function and the pathomechanisms of dementia. Therefore, 
cerebral insulin resistance can trigger oxidative stress, mitochondrial 
dysfunction, inflammation, and autophagy by inducing severe 
dysfunction of extracellular glucose transport and intracellular 
glucose metabolism disorders, leading to neurodegeneration (Chen 
and Zhong, 2013; Butterfield and Halliwell, 2019). Notably, patients 
with AD or MCI exhibit a dramatic decline in cerebral glucose 
metabolism due to insulin resistance (Chen and Zhong, 2013; 
Butterfield and Halliwell, 2019). Researchers have also found that 

patients with dementia have significant insulin resistance in their 
hippocampi (Wijesekara et al., 2018; Hamer et al., 2019), suggesting 
that dysregulation of brain insulin signaling pathways may play an 
important role in cognitive dysfunction. Exogenous FGF-1 has been 
shown to reduce blood glucose concentrations and increase insulin 
sensitivity (Holmes, 2014; Suh et al., 2014; Gasser et al., 2017; Tennant 
et al., 2019) via modulating the Wnt/β-catenin (Sun et al., 2021) and 
AMPK pathways (Chen Q. et al., 2022). Thus, FGF-1 could indirectly 
ameliorate cognitive impairment by attenuating insulin resistance 
in local brain regions. The potential therapeutic mechanisms of FGF-1 
are shown in Figure 1.

TABLE 1 The expressions and prospects of the FGF/FGFR system in cognitive disorders and dementia.

Members Receptors Sample Trends Main effects Prospects References

FGF-1
FGFR-1b,1c

Cortex 

homogenate (AD)
↑

Reduced inflammation and 

oxidative stress, repaired BBB, 

suppressed excitotoxicity, 

improved insulin sensitivity

AD, VaD, MCI, 

VCI

Takami et al. (1998), Thorns 

et al. (2001), Yamagata et al. 

(2004), Mashayekhi et al. 

(2010), Tsai et al. (2015), Wu 

et al. (2017), and Liang et al. 

(2021)

FGFR-2b,2c Serum (AD) ↓

FGFR-3b,3c CSF (AD) ↓

FGFR-4

FGF-2 FGFR-1b,1c Cortex 

homogenate (AD)
↑

Promoted neurogenesis, 

inhibited neurotoxicity, 

extended neurons life-span, 

induced angiogenesis, inhibited 

inflammation

AD, VaD, HD

Jin et al. (2005), Duff et al. 

(2010), Wang et al. (2016), 

Tyebji and Hannan (2017), 

Liu M. et al. (2018), and Ilieva 

et al. (2019)

FGFR-2c

FGFR-3c
Serum (AD) ↓

FGFR-4

FGF-9 FGFR-2c Hippocampus 

homogenate (AD)
↑

Promoted neuronal 

development, inhibited 

oxidative stress, suppressed 

apoptosis, promoted 

neurogenesis

AD, HD

Nakamura et al. (1998), 

Chuang et al. (2015), and 

Yusuf et al. (2019, 2021a,b)FGFR-3b,3c Serum (HD) ↓

FGF-17 β-KL/FGFR-2

N/A N/A

Supported oligodendrocyte 

precursor cell growth, inhibited 

FGF-19 pathway

MCI
Liu S. et al. (2018) and Iram 

et al. (2022)FGFR-3c

FGF-15/19 β-KL/FGFR-4

N/A N/A

Inhibited HPA axis 

hyperexcitability, reduced 

insulin resistance, regulated 

neurotransmitter homeostasis, 

promoted neurogenesis, 

regulated bile acid metabolism

AD, MCI

Marcelin et al. (2014), 

McMillin et al. (2015), Perry 

et al. (2015), Mertens et al. 

(2017), Liu S. et al. (2018), 

and Li et al. (2020)

FGF-21 β-KL/FGFR-1

Serum (AD) ↓

Improved BBB integrity, repair 

cerebrovascular endothelium, 

inhibited inflammation, 

promoted neurogenesis, 

suppressed apoptosis, 

maintained neurotransmitter 

homeostasis, regulated lipid 

metabolism and glucose 

metabolism, enhanced insulin 

sensitivity

AD, VaD

Sa-Nguanmoo et al. (2016), 

Kuroda et al. (2017), Chen 

et al. (2018), Zheng et al. 

(2019), Jiang et al. (2020), and 

Wang et al. (2020)

PPAR-γ

FGF-23 α-KL/FGFR-1c

Serum (MCI) ↑

Regulated phosphate 

homeostasis and glucose 

metabolism, promoted 

neurogenesis

MCI

Liu et al. (2011), Drew et al. 

(2014), and Drew and Weiner 

(2014)

FGFR-2c

FGFR-3c

AD, Alzheimer’s disease; BBB, blood–brain barrier; CSF, cerebrospinal fluid; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; HD, Huntington’s dementia; MCI, mild 
cognitive impairment; VCI, vascular cognitive impairment; VaD, vascular dementia; α/β-KL, α/β-klotho protein.

https://doi.org/10.3389/fnins.2023.1136266
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhai et al. 10.3389/fnins.2023.1136266

Frontiers in Neuroscience 04 frontiersin.org

2.1.2. FGF-2
FGF-2, also known as basic fibroblast growth factor (bFGF), was 

the first fibroblast growth factor to ever be identified. In the CNS, 
FGF-2 is primarily produced by ASTs and distributed throughout the 
cortex, hippocampus, and hypothalamus. Physiological concentrations 
of FGF-2 have been reported to promote proliferation, differentiation, 
migration, and maturation of neural stem cells and neuroglia, 
maintain cortical synaptic connectivity, stimulate neurogenesis, 
inhibit neuroinflammation, and exert tremendous neuroprotective 
and neurotrophic effects (Numakawa et al., 2015; Wu et al., 2017). The 
expression levels of FGF-2 are elevated in a compensatory manner in 
dementia (Stopa et al., 1990; Tennakoon et al., 2022), whereas the 
artificial modulation of FGF-2 levels improves cognitive function in 
rodents (Kiyota et al., 2011; Feng et al., 2012; Numakawa et al., 2015). 
In addition, FGF-2 has been shown to be a significant therapeutic 
target for certain anti-dementia medications, such as memantine 
(Namba et al., 2010).

Hippocampal neuronal cells are critical for the regulation of 
memory, learning, cognition, emotion, and other functions. FGF-2 
has been proposed to stimulate the growth of neuronal synapses and 

regulate tight junction proteins in vascular endothelial cells via 
activating the PI3K/AKT pathway to promote AHN and protect the 
BBB (Wang et al., 2016; Ilieva et al., 2019). Neuroglia cells are a crucial 
component of the NVU, as they maintain the stability of the 
physiological functions of the neurons in the brain and consist of 
ASTs, MG, and oligodendrocytes (OLs). In HD, FGF-2 could promote 
the proliferation and recruitment of neuronal cells and inhibit the 
neurotoxicity produced by polyglutamine protein aggregation, which 
would prolong the lifespan of neurons (Jin et al., 2005; Duff et al., 
2010; Tyebji and Hannan, 2017). ASTs, which have both an anti-
inflammatory resting state and a pro-inflammatory reactive state, are 
the most abundant and largest neuroglia in the CNS and play a key 
role in neurotransmitter regulation and energy provision. In cognitive 
disorders, the density and number of resting ASTs decrease with the 
aggravation of symptoms, which leads to a decline in neurotrophic 
factors and nerve growth factors secreted by ASTs, while the number 
of reactive ASTs, which produce large amounts of inflammatory 
factors and neurotoxins is raised (Wang et al., 2017; Lu et al., 2020). 
Excessive activation of GSK-3β can induce hyperphosphorylation of 
tau. Furthermore, spatial memory deficits and cognitive decline in AD 

FIGURE 1

The potential therapeutic mechanism of paracrine FGFs (FGF-1, FGF-2, FGF-9). (A) FGF-1might regulate the following signaling pathways to improve 
cognition function: (1) FGF-1 activates PI3K/Akt pathway to suppress RhoA but activate Rac1, causing the upregulation of BBB integrity; (2) FGF-1 
activates ERK pathway to extend neurite for promoting neurogenesis; (3) FGF-1 activates Wnt/β-catenin/c-Myc/ HXK2 pathway to improve 
mitochondrial energy metabolism and suppress oxidative stress; (4) FGF-1 exert the activation of the AMPK/SIRT1/PGC-1α pathway to modulate the 
apoptosis. (B) (1) FGF-2 might inhibit GSK-3β through PI3K/AKT pathway to promote adult hippocampal neurogenesis; FGF-2 could also repair blood–
brain barrier integrity through the activation of PI3K/Akt/Rac1axis, but inhibiting RhoA; (2) Additionally, protect astrocytes and induce angiogenesis to 
improve cerebral blood supply by upregulating the Caveolin-1/PI3K/AKT/VEGF pathway. (C) FGF-9 might activate ERK/Nrf-2pathway to suppress 
oxidative stress and activate the ERK/NF-κB pathway to improve hippocampal neurogenesis. The solid black lines and arrows indicate the activation of 
the signaling pathway, and the dashed black lines and T-arrows indicate the inhibition of the signaling pathway. FGF, fibroblast growth factor; PI3K, 
phosphatidylinositol-3-hydroxy kinase; AKT, protein kinase B; Rac1, rac family small GTPase 1; RhoA, ras homolog family member A; BBB, blood–brain 
barrier; ERK, extracellular signal-regulated kinase; HXK2, hexokinase 2; AMPK, adenosine monophosphate activated protein kinase; SIR1, sirtuin1; PGC-
1α, peroxisome proliferator-activated receptors-γ coactivator 1-α; GSK-3β, glycogen synthase kinase-3β; VEGF, vascular endothelial growth factor; 
Nrf-2, nuclear factor erythroid-like 2; SOD2, superoxide dismutase 2; γ-GCS, gamma-glutamylcysteine synthetase; GR, glutathione reductase; NF-κB, 
nuclear factor kappa-B; MAP-2, microtubule-associated protein-2; GAP-43, growth association protein-43.
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could be ameliorated by FGF-2 through a simultaneous decrease in 
amyloid-β (Aβ) and microtubule-associated protein tau while 
increasing the number of resting ASTs in the hippocampal dentate 
gyrus (Katsouri et al., 2015). A possible explanation for this result is 
that exogenous FGF-2 may suppress the over-activated GSK-3β-
related pathway and strengthened neurogenesis (Hong et al., 2016). It 
could activate p-GSK-3β and GSK-3β, triggering tau 
hyperphosphorylation to aggravate cognitive decline, but could also 
inhibit GSK-3β via activating the Akt pathway to promote 
hippocampal neurogenesis. We  assumed that these mixed results 
might attribute to different molecular weight isoforms of FGF-2 
activating different downstream pathways. Moreover, FGF-2 could 
protect ASTs from ischemia–reperfusion injury, a common 
pathological basis of VaD, and induce angiogenesis to ameliorate 
chronic cerebral hypoperfusion by upregulating the Caveolin-1/PI3K/
AKT/vascular endothelial growth factor (VEGF) signaling pathway 
(Liu M. et al., 2018).

Neuroinflammation is a critical pathological mechanism that 
disrupts NVU homeostasis. The levels of multiple pro-inflammatory 
factors observed in both the blood and cerebrospinal fluid of patients 
with dementia were higher than those in healthy individuals (Shen 
et al., 2019). For example, MG is an integral type of neuroglia for 
maintaining the AHN process with a pro-inflammatory phenotype 
M1 and an anti-inflammatory phenotype M2. Activation of M1 
induces neuroinflammation, which inhibits FGF-2 expression and 
activates downstream ERK pathway in the hippocampal region, 
thereby restraining the AHN process. In contrast, exogenous FGF-2 
could effectively inhibit interleukin-1β (IL-1β), interleukin-6 (IL-6), 
tumor growth factor-α (TNF-α) and other pro-inflammatory factors 
produced by M1-type MG in an attempt to improve depressive-like 
behaviors (Tang et al., 2017). FGF-2 may also enhance the activation 
of M2-type MG and its phagocytosis of Aβ, thereby promoting 
neurogenesis in dementia (Kiyota et al., 2011). OLs are crucial for the 
modulation of the cerebrovascular system and the maintenance of 
white matter structure and function, while FGF-2 can promoted 
proliferation, maturation, differentiation, and migration of OLs and 
suppress their apoptosis (Miyamoto et  al., 2014). White matter 
hyperintensities (WMH) are the imaging features of white matter 
lesions, with several studies suggesting a clinically relevant link 
between WMH burden and cognitive decline in MCI and AD 
(Garnier-Crussard et al., 2022; Kamal et al., 2022). Researchers have 
also found that senescent oligodendrocyte precursor cells (OPCs) 
were the primary neuroglial cell expressed in neuritic plaques, which 
could induce cell senescence in AD, causing cognitive decline (Zhang 
et al., 2019). Therefore, modulation of neuroglial cells (OLs, ASTs, and 
MG) via the FGF-2 pathway may play a role in the treatment of 
cerebral white matter lesions and VaD via angiotensin-converting 
enzyme II (Wakayama et al., 2021). The current application of FGF-2 
is mainly in synthetic recombinant human-derived FGF-2 which has 
several limitations such as short half-life in the blood, inability to 
completely cross the BBB, or side effects on the vascular system 
(Bogousslavsky et al., 2002). However, novel synthetic compounds 
such as SUN11602 have been proposed, which mimic the structure of 
FGF-2, and could potentially avoid the aforementioned defects and 
exert neuroprotective effects of FGF-2 to a certain extent (Ogino et al., 
2014; Ardizzone et al., 2022).

In recent decades, several researchers have observed opposing 
trends in the changes of FGF-2 in serum and brain tissue in dementia. 

For example, Katsouri et al. (2015) found that the concentration of 
FGF-2 in the frontal cortical homogenates of patients with AD was 
decreased, rather than increased, contrary to previous studies (Stopa 
et al., 1990). Additionally, the original hypothesis assumed that FGF-2 
attracts neurons into plaques in AD (Cummings et al., 1993); however, 
recent studies have argued that FGF-2 confers neuroprotective effects 
(Feng et  al., 2012; Katsouri et  al., 2015). We  speculate that 
discrepancies could be  explained with the following reasons: (1) 
Numerous cells in the peripheral system, such as blood cells, bone 
marrow stromal cells, and smooth muscle cells, can also secrete 
FGF-2. Therefore, serum FGF-2 levels might be  affected by other 
systemic diseases in ways that truly reflect the level of FGF-2 in the 
CNS. (2) Subjects in the discussed studies were not receiving uniform 
treatment, which may increase the uptake of FGF-2 into damaged 
neuronal cells, resulting in a relative decrease in serum FGF-2 levels. 
(3) An increase in serum FGF-2 levels could also be  a result of 
compensatory secretion to repair nerve injury. (4) There are at least 
six different molecular weight isoforms of FGF-2 (Chlebova et al., 
2009), which may have different physiological roles, but routine 
detection could be unable to show the differences between the isomers 
(Jiang et al., 2007; Chen X. et al., 2019). Therefore, despite ample 
evidence supporting the key role of FGF-2 in cognitive impairment 
and dementia, it still fails to become an independent clinical diagnosis 
or assessment indicator. These points made above are also the 
common challenges we  face during the study of the FGF family 
members. The potential therapeutic mechanisms of FGF-2 are shown 
in Figure 1.

2.1.3. FGF-9
FGF-9 is synthesized by neurons of the CNS which binds to 

FGFR-2, FGFR-3, but not FGFR1 and FGFR4, playing a prominent 
role in angiogenesis, neurogenesis, cellular differentiation and cardiac 
development (Hecht et al., 1995; Reuss and von Bohlen und Halbach, 
2003; Wang S. et al., 2018). Nakamura et al. (1998) found that high 
levels of FGF-9 expression in the hippocampus of patients with AD 
promoted the activation of the pro-inflammatory phenotype of ASTs 
around senile plaques, thereby exacerbating cognitive impairment. 
Alternatively the expression level in the CNS of FGF-9 may decrease 
in patients with HD. Previous results of Chuang et al. (2015) which 
have identified prominent FGF-9 and FGFR-3 expression in primary 
neuron-enriched cultures, suggesting the FGF-9 effects are cell-type 
specific in brain, may be  a likely explanation for the different 
expression trends of FGF-9 in AD and HD.

It has been shown that exogenous FGF-9 may promote neuronal 
development and synaptic growth in striatal cell models of HD in 
response to anti-oxidant and anti-apoptotic effects via extracellular 
signaling that modulates the ERK/NF-κB pathway (Yusuf et al., 2019, 
2021a,b), which provides a novel insight into the treatment of 
cognitive decline due to HD. FGF-9 activates Nrf-2 to upregulate 
transcription factors (SOD2, γ-GCS, and GR) for suppressing 
oxidative stress, through the activation of the ERK pathway. 
Additionally, FGF-9 could also activate the ERK/NF-κB pathway to 
upregulate β-tubulin, MAP-2, GAP-43, and synapsin to improve the 
neuronal length and synaptic plasticity. These studies suggest that 
FGF-9 overexpression in AD might be a compensatory mechanism 
for neuroprotection.

In addition, a negative correlation was found between FGF-9 and 
adiponectin (ADPN). ADPN is a pleiotropic adipocyte-secreting 
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hormone with neurotrophic effects. Animals knocked out of the 
ADPN gene could present depressive-like behavior and cognitive 
deficits (You et al., 2021). Researchers have found that the Chinese 
herbal extract carnosic acid could simultaneously reduce FGF-9 levels 
and raise ADPN levels both in mice’s serum and hippocampal tissues, 
thereby ameliorating depression-like symptoms (Azhar et al., 2021; 
Wang et al., 2021). Interestingly, Carnosic acid could also alleviate 
AD-induced cognitive decline by inhibiting neuroinflammation, 
ameliorating cholinergic deficits, and enhancing energy metabolism 
(Chen Y. et al., 2022; Yi-Bin et al., 2022). We supposed that FGF-9 may 
also participate in carnosic acid’s anti-dementia mechanism of action, 
but it requires further study. The potential therapeutic mechanisms of 
FGF-9 are shown in Figure 1.

2.1.4. FGF-17
FGF-17 is mainly expressed in the cerebrospinal fluid, plasma, and 

cortical neurons. It binds mainly to FGFR-3 to regulate downstream 
signaling, fulfilling vital roles in embryonic development, cell 
proliferation, and early neurogenesis, which declines during 
senescence (Hoshikawa et al., 1998; Machado et al., 2015; Han et al., 
2019; Sathyan et al., 2020; Iram et al., 2022). Iram et al. (2022) recently 
observed that the growth of OPCs was suppressed after blocking the 
FGF-17/FGFR-3 pathway, which impaired hippocampal function in 
mice and provoked cognitive impairments and memory loss. 
Furthermore, they proved that exogenous injection of FGF-17 could 
enhance cognitive and memory performance in older mice. This 
finding is contrary to a previous study by Scearce-Levie et al. (2008) 
which found that young mice did not show obvious symptoms of 
cognitive impairment after knocking out the FGF-17 gene. These 
differences can be  attributed to the fact that the subjects were in 
different physiological states that were influenced by their age. Besides, 
FGF-17 has been found to bind to the β-KL/FGFR-2 homodimer in 
the hypothalamus and show antagonize FGF-15/19, which blocked the 
insulin signaling pathway regulated by FGF-15/19 and triggered a 
decrease in glucose tolerance (Liu S. et al., 2018). The following may 
indicate that FGF-17 exerts distinct effects when bound to different 
receptors separately in the hippocampus or hypothalamus. Therefore, 
the therapeutic potential and side effects of FGF-17 remain to 
be  studied over a long period of time. The potential therapeutic 
mechanisms of FGF-17 are shown in Figure 2.

2.2. Endocrine fibroblast growth factors

FGF-19, FGF-21, and FGF-23 are members of the same subgroup, 
have low affinity for HS, and require the activation of corresponding 
receptors by binding to the KL transmembrane protein, which causes 
them to diffuse into the bloodstream and exert hormone-like 
regulatory effects readily. Therefore, they are also known as endocrine-
FGFs. FGF-19 from intestinal epithelial cells and hepatocytes could 
restrain the synthesis of primary bile acids and alter the ratio of 
primary to secondary bile acids, thus indirectly regulating lipid 
metabolism and bile acid signaling (Owen et al., 2015; Al-Aqil et al., 
2018). FGF-21, produced mainly by hepatocytes and adipocytes, is a 
vital regulator for maintaining the homeostasis of lipid, glucose, and 
energy metabolism (Kharitonenkov et al., 2005; Owen et al., 2015). 
FGF-23, synthesized in osteoblasts and osteocytes, is highly expressed 
in the kidney and parathyroid glands and regulates the dynamic 

balance of phosphate, calcium, and vitamin D metabolism 
(Cunningham et al., 2011; Vervloet, 2019). The above three FGFs have 
been shown to affect metabolism in the CNS and have a relationship 
with cognitive disorders and dementia (Hsuchou et al., 2013; Hensel 
et al., 2016; Li, 2019; Jiang et al., 2020).

2.2.1. FGF-15/19
Researchers often refer to FGF-19 as FGF15/19, since FGF-19 in 

both humans and rats is expressed in mice as the homologous protein 
FGF-15. This protein is synthesized primarily in the enterocyte at the 
end of the ileum via the farnesoid X receptor (FXR) -related pathway 
and is expressed in the small intestine, liver, gallbladder, kidney, brain, 
and other tissues (Rysz et al., 2015). In tissues with rich β-KL, for 
example, the liver, FGF-15/19 binds to β-Kloth and activates FGFR-1, 
FGFR-2, FGFR-3, and FGFR-4, whereas, in tissues relatively deficient 
in β-KL like the brain, FGF-15/19 only binds to FGFR-4 (Nakamura 
et al., 2011). FGF-15/19 could stimulate the development of the heart 
and brain in the embryonic stage, regulate the production and 
circulation of bile acids (BAs) and promote glucolipid metabolism 
mainly in the liver at maturity; recently, it has also been found to have 
an insulin-like effect in the CNS, with the potential to tune sleep, 
cognition, and sensory functions (Hsuchou et al., 2013; Giacomini 
et al., 2016).

Due to the significant neuromodulatory, protective and nutritional 
effects of insulin on the brain, insulin resistance in the brain might 
exacerbate Aβ deposition, tau hyperphosphorylation, and vascular 
inflammation, causing cognitive impairments in AD and VaD 
(Hotamisligil, 2006; Kellar and Craft, 2020). Hypothalamic–pituitary–
adrenal (HPA) axis hyperfunction is prevalent in dementia and other 
cognitive disorders, which might be  the reason for higher 
adrenocorticotropic hormone (ACTH) and glucocorticoid (GC) 
levels, resulting in insulin resistance. Perry et al. (2015) have shown 
that intracerebroventricular injection of exogenous FGF-19 may 
improve insulin sensitivity by reducing serum ACTH and GC levels 
through inhibition of the HPA axis. This effect may arise from the 
inhibition of agouti-related protein/neuropeptide-Y (AGRP/NPY) 
neurons and the activation of the ERK1/2 pathway in the 
hypothalamus (Marcelin et al., 2014; Liu S. et al., 2018). In addition, 
recent studies have identified a link between the HPA axis dysfunction 
and cognitive decline in MCI and AD (Csernansky et al., 2006; Canet 
et al., 2019). Researchers have observed that the HPA axis dysfunction 
might emerge in the early stages of cognitive deficits, leading to 
structural damage in the hippocampus and cortex and NVU 
destabilization through the elevation of cortisol and norepinephrine 
(NE) levels with concomitant glucocorticoid receptor disruption and 
neurotoxicity (Popp et al., 2015; Canet et al., 2019). This finding was 
supported by Csernansky et al. (2006), Lara et al. (2013), and Wang 
L. Y. et al. (2018). Thus, the FGF-15/19 pathway might become a novel 
therapeutic target to maintain HPA axis function for drug discovery.

Furthermore, FGF-15/19 could affect NVU homeostasis by 
modulating BA production and circulation. The FXR for BA is found 
in neurons and ASTs in the hypothalamus and hippocampus of both 
humans and rodents (Mano et al., 2004; Huang et al., 2016; He et al., 
2021), while physiological concentrations of BA can penetrate the BBB 
and suppress hyperexcitability of the HPA axis by activating 
glucocorticoid receptors in the hypothalamus and protect NVU by 
activating the BDNF–TrkB pathway (McMillin et al., 2015; Mertens 
et al., 2017; Li et al., 2020). Brain-derived neurotrophic factor (BDNF) 
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is widely distributed in the CNS, especially in the cerebral cortex and 
hippocampus, with a significant role in the survival and maintenance 
of neurons. BDNF regulates synaptic plasticity via the autocrine 
pathway and modulates the presynaptic gamma-aminobutyric acid 
system via the paracrine pathway. BAs regulated by FGF-15/19 could 

enter hippocampal astrocytes and bind to FXR binding to promote 
BDNF synthesis, activate TrkB/PI3K/AKT pathway and TrkB/MAPK/
ERK pathway, thus promoting hippocampal neurogenesis. Al-Aqil 
et al. (2018) observed that a high dosage of GC could elevate BA levels 
and downregulate FGF-15 expression in the serum and liver of mice. 

FIGURE 2

The potential therapeutic mechanism of endocrine FGFs (FGF15/19, FGF21, FGF23) and FGF17. (A) FGF-15/19/FGFR4/β-KL might activate the ERK1/2 
pathway in hepatocytes to regulate BA metabolism for activating BDNF/TrkB/PI3K pathway and BDNF/TrkB/MAPK pathway in hippocampal ASTs, 
leading to improvement of adult neurogenesis; FGF15/19 could also penetrate the BBB to inhibit insulin resistance by activating the ERK1/2 pathway in 
hypothalamus. (B) FGF-17 could enhance the growth of OPCs to defer cell aging and suppress FGF-15/19 pathway as a competitive inhibitor. (C) FGF-
21 could enhance BBB integrity by activating PI3K/Akt pathway in MECs, and reduce neuroinflammation through the suppression of TLR4/ NF-κB 
pathway in MGs; FGF-21 could also inhibit apoptosis by activating PI3K/Caspase-3 pathway and MAPK pathway in neurons; FGF-21 could also regulate 
HPA axis function by activating ERK/CREB pathway to maintain neurotransmitter balance; Additionally, FGF-21 might defer OPCs aging for repairing 
cognitive function. (D) FGF-23/FGFR-1/α-KL might directly activate the AKT pathway to inhibit neuronal ramification but maintain synaptic plasticity; 
FGF-23 expressed in the kidney could also indirectly regulate phosphate homeostasis to promote LTP and mitochondrial energy metabolism for 
improvement of cognitive function. The solid arrows indicate the activation of the signaling pathway, and the dashed T-arrows indicate the inhibition 
of the signaling pathway. The yellow lines represent the FGF-15/19 pathway, the red lines represent the FGF-17 pathway, the green lines represent the 
FGF-21 pathway and the purple lines represent the FGF-23 pathway. FGF, fibroblast growth factor; BA, bile acid; FXR, farnesoid X receptor; GR, 
glucocorticoid receptors; KL, klotho protein; BBB, blood–brain barrier; BDNF, Brain Derived Neurotrophic Factor; PI3K, phosphatidylinositol-3-hydroxy 
kinase; Akt, protein kinase B; TrkB, tyrosine kinase receptor B; ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated protein kinase; 
CREB, cAMP-response element binding protein; TLR4, toll like receptor-4; NF-κB, nuclear factor kappa-B; OPCs, oligodendrocyte precursor cells; 
ASTs, astrocytes; MECs, microvascular endothelial cells; LTP, long-time potentiation.
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A recent metabolomics study identified that the serum concentrations 
of cholic acid (CA) and lithocholic acid (LCA) were significantly lower 
in patients with AD than in normal individuals (Pan et al., 2017). In 
contrast, the levels of CA, lithocholic acid, deoxycholic acid (DCA), 
chenodeoxycholic acid (CDCA), taurodeoxycholic acid (TDCA), and 
glycinodeoxycholic acid (GDCA) in serum, cerebrospinal fluid, and 
brain tissue have increased observably (MahmoudianDehkordi et al., 
2019; Baloni et al., 2020). Changes in the ratio of secondary to primary 
BA have also been shown to be in close correlation with cognitive 
decline. For instance, the proportion changes of GDCA to CA shows 
a positive relationship with the amount of Aβ deposition in the 
cerebrospinal fluid in animal models of AD, while the proportion of 
TDCA and GDCA to CA is negatively correlated with glucose levels 
in the prefrontal cortex and hippocampus volume 
(MahmoudianDehkordi et al., 2019; Nho et al., 2019). Meanwhile, 
mounting evidence suggests that anti-dementia effects could 
be achieved with some common medicines used to treat gallstones, 
sclerosing cholangitis, sloughy hepatitis, and other cholestatic diseases. 
For example, tauroursodeoxycholic acid (TUDCA) has been insulin 
resistance shown to possess antidepressant efficacy and effectively 
inhibit Aβ deposition in AD (Lo et al., 2013; Lu et al., 2018; Cheng 
et al., 2019); Additionally, obeticholic acid, a synthetic FXR agonist 
that was developed based on the structure of CDCA, has been shown 
to enhance memory and cognition by maintaining BBB permeability 
and retarding neuronal degeneration (Gee et al., 2022). These findings 
suggest that modulation of BA-related pathways has the potential to 
be a new approach to improve mood and cognitive function and defer 
neuronal degeneration. In physiological conditions, FGF-15/19 
activates the ERK1/2 pathway to inhibit cholesterol 7α-hydroxylase 
from preventing BA synthesis in order to bring BA concentration into 
equilibrium. In cases of dementia, disrupted endogenous 
glucocorticoids in the serum or disordered gut microbiota could 
restrict FGF-15/19 synthesis following FXR activation and 
counterbalance the inhibitory effect of FGF-15/19 on BA, thereby 
perturbing the balance of blood and tissue concentrations of BA. As a 
result, excessive BA would enter the CNS through circulation and 
cross the BBB, producing cytotoxicity, lysing the membranes of 
neuronal and endothelial cells, further disrupting NVU homeostasis. 
The following would aggravate the structural damage or lead to 
dysfunction in the hippocampus, hypothalamus, and other key 
regions, which would create a vicious cycle of cognitive impairment 
and morphological damage. Thus, FGF-15/19 may have an indirect 
regulatory role in the pathological changes seen in dementia by 
regulating glucose metabolism, HPA axis function, and BA 
homeostasis in critical brain regions. Although there is still a lack of 
direct evidence for changes in FGF-15/19 levels in dementia or other 
cognitive disorders, the above studies suggest a promising new 
therapeutic method for modulating BA synthesis, metabolism, and 
component ratios through the FGF-15/19 pathway to improve 
cognitive function. The potential therapeutic mechanisms of 
FGF-15/19 are shown in Figure 2.

2.2.2. FGF-21
Fibroblast growth factor 21 (FGF-21) is primarily synthesized in 

the liver and adipose tissue, which is distributed throughout the bone, 
muscle, heart, kidney, and brain. FGF-21 is regulated by peroxisome 
proliferator-activated receptor-α (PPAR-α) and binds mainly to 

PPAR-γ, FGFR-1, and other receptors (Kuroda et al., 2017). FGF-21 
has been proven to enhance glucose tolerance and insulin sensitivity, 
inhibit lipid synthesis and exert anti-inflammatory, antioxidant, and 
anti-apoptotic effects (Hui et al., 2018; Dolegowska et al., 2019). It 
could also penetrate the BBB to bind to FGFR-1 in the CNS and exert 
potent neuroprotective effects (Kuroda et al., 2017; Jiang et al., 2020). 
Researchers have currently identified that FGF-21 exerts 
neuroprotective effects through the following five significant pathways. 
(1) Protection of the BBB integrity: the FGF-21/β-KL/FGFR-1 
pathway is automatically activated after cerebral microvascular injury 
or focal ischemia to mitigate neural and vascular endothelial damage. 
In addition, FGF-21 protects BBB integrity through the activation of 
PPAR-γ/PI3K/AKT/Rac1 pathway in cerebral microvascular 
endothelial cells and upregulation of tight junction proteins and 
adherent junction proteins expressions (Chen et al., 2018; Jiang et al., 
2020). (2) Inhibition of neuroinflammation: FGF-21 could inhibit the 
pro-inflammatory phenotype of MG and NF-κB signaling pathway by 
suppressing the expression of pro-inflammatory factors such as IL-1β, 
IL-6, and TNF-α, in a way that nerve cells are protected from the 
damage caused by inflammation (Wang et al., 2020). (3) Promotion of 
neurogenesis: FGF-21 could activate PI3K/Caspase-3 signaling 
pathway and alleviate the apoptosis of neuronal cells (Zheng et al., 
2019). In addition, FGF-21 may enhance hippocampal synaptic 
plasticity, increase dendritic spine density, promote restoration of 
mitochondrial function in the brain tissue, and inhibit apoptosis 
(Sa-Nguanmoo et al., 2016). Furthermore, since OPCs are widely 
distributed in the CNS, OLs differentiated from OPCs could be a 
crucial link between neural regeneration and myelin restoration. More 
specially, Kuroda et al. (2017) showed that the regulation of OPCs 
proliferation and differentiation by the FGF-21/β-KL/FGFR-1 
pathway would be beneficial for neuroprotection. (4) Neurotransmitter 
regulation: FGF-21 could activate the HPA axis through the ERK/
CREB pathway and induce the expression of corticotropin-releasing 
hormone (CRH) and ACTH, thereby regulating the secretion of 
serum corticosterone (Kuroda et al., 2017).

Researchers have gradually identified a close link between lipid 
metabolism disorders and dementia, especially AD. Disturbed lipid 
metabolism leads to aberrant levels and types of lipids such as fats, 
cholesterol, fatty acids, lipoproteins, and phospholipids. These 
abnormal changes affect the gut microbiota, brain-gut peptides, and 
neurotransmitter signaling and cause BBB disruption, mitochondrial 
dysfunction, oxidative stress, and inflammation, which eventually 
combine to cause a decline in synaptic plasticity and cognitive 
impairment (Kao et al., 2020). Lipidomics is a novel technique for 
researching the mechanism of lipid metabolism, which Akyol et al. 
(2021) have utilized to compare the biochemical profiles of brain 
tissues from patients with different degrees of AD. They found that 
different subgenera of lipids in AD were significantly disturbed, 
including neutral lipids, glycerolipids, glycerophospholipids, and 
sphingolipids (Akyol et al., 2021).

Interestingly, serum FGF-21 levels were reduced in both animal 
models and patients of AD but increased following cognitive 
improvement (Tournissac et al., 2019; Conte et al., 2021). Recombinant 
human FGF-21 could reduce the concentrations of total cholesterol, 
low-density lipoprotein, and high-density lipoprotein, inhibit 
neuroinflammation, and correct cognitive decline in cognitive 
impairment caused by hyperlipidaemia (Wang Q. et al., 2018). This 
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result may be  attributed to the capacity of FGF21 to regulate the 
lipolytic signaling pathway, or insulin signaling pathway, in 
hepatocytes (Gimeno and Moller, 2014). Researchers also found that 
the administration of exogenous FGF-21 suppressed the expression of 
β-site amyloid precursor protein cleaving enzyme1 (Bace1), reduced 
Aβ deposition, and improved manifestations of dementia by inhibiting 
neuroinflammation through the TLR4/NF-κB signaling pathway, 
which could also restrain apoptosis via the MAPK signaling pathway 
(Amiri et al., 2018; Chen S. et al., 2019; Taliyan et al., 2019). These 
suggest a correlation between FGF-21 and AD, which makes it a 
potential biomarker for exploring new biomarkers, developing new 
drug targets, and providing new directions for in-depth exploration 
of AD metabolic mechanisms. Besides, since FGF21 could improve 
neuronal metabolism and energy supply in the CNS, enhance 
neuronal plasticity, and repair cerebrovascular endothelium to relieve 
symptoms of cognitive impairment, developing new drugs based on 
FGF-21 might be the most suitable choice to explore a new therapy for 
VaD. The potential therapeutic mechanisms of FGF-21 are shown in 
Figure 2.

2.2.3. FGF-23
FGF-23 is a bone-released endocrine growth factor and a member 

of the FGF-19 subgroup. FGF-23 is synthesized by osteoblasts and 
osteoclasts that are distributed primarily in the kidney, cortex, 
hippocampus, hypothalamus, thyroid gland, and bone, but also to a 
small degree in the spleen, liver, and other tissues (Hensel et al., 2016; 
Kuro-O, 2021; Ursem et al., 2021). FGF-23 primarily binds to α-KL/
FGFR-1 to exert physiological effects, including regulating phosphate 
homeostasis and glucose metabolism, promoting neurogenesis, and 
maintaining emotional and cognitive functions (Beenken and 
Mohammadi, 2009; Kuro-O, 2021). FGF-23 overexpression in the 
serum may induce impaired hippocampal long-time potentiation 
(LTP) and reduce hippocampal adenosine-triphosphate (ATP) content 
with cognitive and memory decline, especially in people with chronic 
kidney disease (Liu et al., 2011; Drew et al., 2014; Drew and Weiner, 
2014). Although Zhu et al. (2018) arrived at the opposite conclusion 
as they observed no significant differences between the levels of serum 
FGF-23 in individuals with mild cognitive impairment and healthy 
individuals, however, they assayed FGF-23 in a different way compared 
to previous experiments, which may explain the discrepancy in the 
results. The difference might also be attributed to the fact that FGF-23, 
like FGF-21, is affected by sex, and it is also possible that FGF-23 levels 
in the cerebrospinal fluid and blood are different. FGF-23 knockout 
mice also exhibited cognitive impairment in several in vivo studies, 
which may be associated with dysregulation of phosphate homeostasis 
and cytotoxicity (Laszczyk et al., 2019). As for the in vitro studies, the 
FGF-23/α-KL/FGFR-1 pathway was shown to increase hippocampal 
neuronal synaptic density but inhibits neuronal ramification via 
activating the downstream Akt signaling pathway, leading to memory 
deficits (Hensel et al., 2016; Zhu et al., 2018). These difference between 
animal and cellular experiments suggest that FGF-23 may have 
bidirectional modulatory effects on cognitive function.

On the other hand, intracranial atherosclerosis may trigger 
endothelial injury in blood vessels, induce neuroinflammation, and 
thus damage the structure and function of key brain regions where 
emotion and cognition are regulated, such as the hippocampus 
(Castello et al., 2022). In the vascular system, FGF-23 could bind 

directly to FGFR-2 or FGFR-3 without α-KL to induce vascular 
calcification (Vervloet, 2019). Thus, FGF-23 is highly associated with 
atherosclerosis and is a significant risk factor for atherosclerosis and 
stroke (Fakhri et al., 2014; Chang et al., 2020; Zheng et al., 2020). In 
other words, FGF-23 may indirectly trigger cognitive impairment by 
aggravating cerebrovascular damage. The potential therapeutic 
mechanisms of FGF-23 are shown in Figure 2.

3. Fibroblast growth factor receptors 
in cognitive disorders and dementia

The four main fractions of the transmembrane receptor tyrosine 
kinase FGFR, including FGFR-1, FGFR-2, FGFR-3, and FGFR-4, can 
mediate the signaling of FGFs via HS or KL-dependent pathways. 
Although all FGFRs are widely distributed in the CNS, existing 
evidence suggests that the main receptor that has been observed to 
change significantly in cognitive disorders is FGFR-1 (Goswami 
et al., 2013).

3.1. FGFRs

FGFR-1 is predominantly expressed in the hippocampus, and 
mediates downstream pathways by inhibiting neuroinflammation 
and maintaining LTP to protect learning and cognitive abilities 
(Rajendran et  al., 2021). FGF-2, FGF-9, and FGF-22 can bind 
directly to FGFR-1 in the CNS. For example, the BBB protective 
effect on the BBB exhibited by FGF-2 is achieved by activating 
FGFR-1 (Lin et  al., 2018), whereas the involvement of β-KL is 
required for binding FGF-21 and FGF-23 to FGFR-1, as mentioned 
above. Alternatively, dramatic AHN restriction, diminished 
amplitude of LTP, and hypomnesia could be observed in FGFR-1 
knockout mice, and these changes were reversed with FGFR-1 
agonists (Zhao et  al., 2007; Pereda-Pérez et  al., 2019). A 
compensatory increase in FGFR-3 expression can be observed in 
ASTs in the vicinity of “senile plaques” in AD patients (Ferrer and 
Martí, 1998). Moreover, FGF-2 binding to FGFR-3 could activate the 
anti-inflammatory phenotype of MG, inhibit excitatory toxicity, and 
exert neuroprotective effects through regulation of the ERK1/2 
signaling pathway (Noda et al., 2014). Although the expression of 
FGFR-4 is low in the CNS and mainly concentrated in specific brain 
areas, especially the hypothalamus, FGF-15/19 could only inhibit the 
HPA axis and exert insulin-like effects by specifically binding to 
FGFR-4 due to the relatively low number of β-KL in the 
hypothalamus. Experiments by Ryan et  al. (2013) showed that 
FGF-15/19/β-KL/FGFR-4 in the hypothalamus plays an integral role 
in regulating glucose metabolism throughout the body. As previously 
mentioned, abnormal glucose metabolism is strongly associated with 
the development of cognitive impairment and dementia. FGFRs 
demonstrate high homology and overlapping recognizability, which 
means there is no corresponding relationship between FGFRs and 
FGFs. Thus, it is difficult to study the changes in FGFRs. However, 
the future progressive exploration of the correspondence between 
FGFs and FGFRs and their downstream pathways will have profound 
implications for the study and application of the FGFs/FGFRs 
system in the field of neuroscience.
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3.2. Co-receptor KL protein

Endocrine FGFs have a poor affinity to HS, and all have to form 
different homodimers by binding the co-receptor KL protein to the 
corresponding FGFR to activate the downstream pathways, such as 
FGF-19/β-KL/FGFR-4, FGF-21/β-KL/FGFR-1, or FGF-23/α-KL/
FGFR-1. Subsequently, endocrine FGFs exert beneficial cognitive 
effects by inhibiting the HPA axis activation, suppressing 
neuroinflammation, facilitating BA metabolism, enhancing insulin 
sensitivity, and promoting neurogenesis. KL is divided into three 
categories according to the protein-coding genes, namely low 
molecular weight α-KL, high molecular weight β-KL, and γ-KL 
(Massó et al., 2015; Zhou et al., 2015). The α-KL can be further divided 
into transmembrane (m-KL), free, and secretory type, with the latter 
two referred to as soluble KL (s-KL), which is one of the hot spots in 
current dementia research. Researchers have only observed γ-KL in 
brown adipose tissue and eyeballs and have not yet found an 
association with the FGFs/FGFRs system (Zhang et al., 2017; Ma et al., 
2021). Although much evidence suggests that α-KL has essential 
effects on cognition and memory, these studies have focused on s-KL 
rather than m-KL as a ligand for FGF-23 (Cararo-Lopes et al., 2017; 
Li et al., 2017; Zhao et al., 2020; Tank et al., 2021). These two α-KL 
have different structural features and physiological roles. However, 
recent studies have also identified, that hydrolyzed m-KL is a 
significant source of s-KL (Chen et al., 2007). β-KL protein is mainly 
distributed in the liver, gallbladder, kidney, brain, and other tissues, 
synthesized by ependymal cells in the hippocampus in CNS, and 
excreted into the cerebrospinal fluid, where it can exert antioxidant, 
anti-inflammatory, and neuroprotective effects (Paroni et al., 2019). 
These effects may be  attributed directly to inhibiting 
neuroinflammation, reducing oxidative stress, and correcting vascular 
endothelial dysfunction or indirectly by activating pathways related to 
endocrine FGFs (Gold et al., 2013).

4. Discussion

FGFs and their receptors constitute a complex network of 
endocrine functions, and the dynamic balance between FGFs and 
their receptors may be  a critical link that our understanding of 
cognitive regulation. When the FGFs/FGFRs system is out of balance, 
pathological changes such as disturbance of glucose metabolism 
disorder, neuroinflammation, hyperfunction of the HPA axis, 
disruption of the BBB, reduced neuroplasticity, inhibition of 
neurogenesis, and apoptosis may occur in the body, which in turn can 
affect the structure and function of the cerebral cortex, hippocampus, 
hypothalamus, pituitary gland, and other tissues, resulting in cognitive 
decline. Therefore, maintaining the stability of the FGF-FGFR system 
might have the potential to be a new therapeutic strategy for retarding 
neurodegeneration and improving cognitive function. Endocrine 
FGFs could be distributed through the blood circulation to multiple 
organs throughout the body, so they can exert a comprehensive 
neuroprotective effect by intervening in multiple systems. Besides, The 
physiological characteristics of endocrine FGFs allow them to 
penetrate the BBB to act on the brain parenchyma and exert 
neuroprotective effects easier than paracrine FGFs, including FGF-1, 
FGF-2, and FGF-9, via multiple metabolic pathways.

In recent years, FGFs-based drugs have been widely used in the 
clinical treatment of wound healing, osteoarthritis, malignancies, 
hepatitis, diabetes, cardiovascular disease and cerebrovascular disease 
(Zhang and Li, 2016; Sanyal et al., 2019; Abou-Alfa et al., 2020; Chen 
K. et al., 2022; Subbiah et al., 2022). Although the relevance of the 
FGF-FGFR system to neurodegenerative diseases has been identified, 
the application of FGF-based drugs remains in vivo and in vivo 
experiments which are still far from clinical application for treating 
cognitive disorders. Moreover, the use of FGFs as biomarkers for 
detecting neurodegenerative diseases is also limited by many factors. 
Although researchers are still unable to elucidate the specific 
mechanisms of the FGFs/FGFRs system, they have noted the trends 
and therapeutic potential of multiple FGFs in various diseases and 
have discovered or developed drugs, such as synthetic human 
recombinant FGFs (Bogousslavsky et al., 2002), synthetic analogs of 
FGFs (Sanyal et al., 2019; Ardizzone et al., 2022), molecular inhibitors 
or agonists of FGFs/FGFRs (Bahleda et al., 2020; van Brummelen 
et  al., 2020; Subbiah et  al., 2022), or extracts of natural herbal 
medicines (Hong et al., 2016; Yuan et al., 2019; Cheng et al., 2021; 
Wang et al., 2021) that could effectively modulate this system. In the 
current literature review, we  found that the difficulties faced by 
previous studies on the application of FGFs/FGFRs systems in 
treatment and diagnose mainly focus on the following four aspects 
(Figure 3): (1) Different FGFs isoforms: some FGFs have different 
molecular weight isoforms with different physiological effects, but 
their individual microscopic expression changes cannot be reflected 
by the overall changes, for example, High molecular weight (HMW) 
FGF-2 and Light molecular weight (LMW) FGF-2 (Chlebova et al., 
2009; Katsouri et al., 2015; Chen X. et al., 2019). (2) Inhomogeneous 
space distribution of FGFs: the spatial distribution of FGFs in serum, 
cerebrospinal fluid and brain parenchyma is inhomogeneous, because 
some FGFs cannot completely penetrate the BBB. The following may 
obscure particular properties of FGFs in various tissues under 
pathological state, and render the statistical assessment their 
heterogeneity inaccurate (Katsouri et al., 2015; Liu et al., 2017; Chang 
et al., 2018; Tennakoon et al., 2022). (3) Correspondence between 
FGFs and FGFRs: single FGF could bind to different FGFRs in 
different microenvironments and regulate different signaling 
pathways, thus exerting distinct physiological or pathological effects, 
due to the overlapping recognition of FGFRs and discrepancy in 
expression sites (Lee et al., 2011; Noda et al., 2014; Lin et al., 2018; 
Vervloet, 2019). (4) Competitive inhibition between FGFs: FGFs are 
highly homologous, and subtypes with similar physiological structures 
may compete with one another for the same receptors, thereby 
inhibiting the regulation of downstream signaling pathways such as 
FGF-17 and FGF-15/19 (Liu S. et  al., 2018), FGF-2 and FGF-9 
(Aurbach et al., 2015).

5. Conclusion

In summary, despite the induced cell proliferation, survival and 
differentiation, angiogenesis promotion, inflammation inhibition, 
immune and metabolic modulation, and antioxidant effects possessed 
by the FGF/FGFR system have been applied in the treatment of 
tumors, trauma, and renal, hepatic, and cardiovascular diseases, there 
is still a substantial unexplored gap area, especially for the modulatory 
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effects and diagnostic value of central nervous system diseases and 
psychiatric disorders. Considering the extensive range of actions and 
the many targets of the FGF/FGFR system intervention, we should 
also be aware of the potential risk associated with its long-term or 
high-dose use, such as adverse effects, resistance, and addiction, when 
used to treat cognitive or mood disorders. Here, we  propose to 
conduct more clinical and basic studies in combination with new 
technologies to investigate the structural and functional characteristics 
of the FGFs/FGFRs system and its specific mechanism in cognitive 

disorders and dementia to find new biomarkers and therapeutic 
approaches for these diseases.
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FIGURE 3

Four potential explanations for the hampered FGF in-depth study. (A) Different isoforms of FGF-2: injection of HMW FGF-2 into AMI rats could induce 
cardiomyocyte hypertrophy, whereas injection of LMW FGF-2 only promoted angiogenesis in rat heart; A decrease in HMW FGF-2 expression could 
be detected in the anterior cortical homogenate of AD patients, while the expression level of LMW FGF-2 remained unchanged, and the level of total 
FGF-2 in the CSF was significantly increased. (B) Inhomogeneous space distribution of FGF21: the expression level of FGF-21 was elevated in the serum 
of depressed patients, while decreased in both CSF and hippocampus homogenate. (C) Correspondence between FGFs and FGFRs: when FGF-1 
bound to FGFR-1, it could exert neuroprotective effects, while binding to FGFR-2 could provoke neuroinflammation; The binding of FGF-23 to α-KL/
FGFR-1 protects neuronal cells, on the contrary it directly binds to FGFR-2 to induce vascular calcification. (D) Competitive inhibition between FGF17 
and FGF19: FGF-17 could bind to the β-KL/FGFR-2 homodimer and shown antagonism against FGF-19. LMW, light molecular weight; HMW, high 
molecular weight; AMI, acute myocardial infarction; CSF, cerebrospinal fluid; AD, Alzheimer’s disease; FGF, fibroblast growth factor; FGFR, fibroblast 
growth factor receptor; α/β-KL, α/β-klotho protein.
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Glossary

ACTH Adrenocorticotropic hormone

AD Alzheimer’s disease

ADPN Adiponectin

aFGF Acidic fibroblast growth factor

AGRP/NPY Agouti-related protein/neuropeptide-Y

AHN Adult hippocampal neurogenesis

AKT Protein kinase B

AMI Acute myocardial infarction

AMPK Adenosine monophosphate activated protein kinase

AST Astrocytes

ATP Adenosine-triphosphate

Aβ Amyloid-β

BA Bile acid

BBB Blood–brain barrier

BDNF Brain-derived neurotrophic factor

bFGF Basic fibroblast growth factor

CA Cholic acid

CDCA Chenodesoxycholic acid

CNS Central nervous system

CREB cAMP-response element binding protein

CSF Cerebral spinal fluid

DCA Deoxycholic acid

ERK Extracellular signal-regulated kinase

FGF-1 Fibroblast growth factor-1

FGF-2 Fibroblast growth factor-2

FGF-9 Fibroblast growth factor-9

FGF-15/19 Fibroblast growth factor-15/19

FGF-17 Fibroblast growth factor-17

FGF-21 Fibroblast growth factor-21

FGF-23 Fibroblast growth factor-23

FGFR-1 Fibroblast growth factor receptor-1

FGFR-2 Fibroblast growth factor receptor-2

FGFR-3 Fibroblast growth factor receptor-3

FGFR-4 Fibroblast growth factor receptor-4

FGFRs Fibroblast growth factor receptors

FGFs Fibroblast growth factors

FXR Farnesoid X receptor

GAP-43 Growth association protein-43

GC Glucocorticoid

GDCA Glycinodeoxycholic acid

GR Glutathione reductase

GSK-3β Glycogen synthase kinase-3β

HD Huntington’s disease

HMW High molecular weight

HPA Hypothalamic–pituitary–adrenal
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HS Heparan sulfate

HXK2 Hexokinase 2

IL-6 Interleukin-6

IL-β Interleukin-1β

LCA Lithocholic acid

LMW Light molecular weight

LTP Long-time potentiation

MAP-2 Microtubule-associated protein-2

MAPK Mitogen-activated protein kinase

MCI Mild cognitive impairment

MG Microglial

m-KL Membrane Klotho

NE Norepinephrine

NF-κB Nuclear factor kappa-B

NMDAR N-methyl-D-aspartic acid receptor

Nrf-2 Nuclear factor erythroid-like 2

NVU Neurovascular unit

OL Oligodendrocyte

OPC Oligodendrocyte precursor cell

PGC-1α Peroxisome proliferator-activated receptors-γ coactivator 1-α

PI3K Phosphatidylinositol-3-hydroxy kinase

PPAR-α Peroxisome proliferator-activated receptor-α

PPAR-γ Peroxisome proliferator-activated receptor-γ

Rac1 Rac family small GTPase 1

RhoA Ras homolog family member A

SIR1 Sirtuin1

s-KL Soluble Klotho

SOD2 Superoxide dismutase 2

TDCA Taurodeoxycholic acid

TLR4 Toll like receptor-4

TNF-α Tumor growth factor-α

TrkB Tyrosine kinase receptor B

TUDCA Tauroursodeoxycholic acid

VaD Vascular dementia

VEGF Vascular endothelial growth factor

WMH White matter hyperintensities

α/β/γ-KL α/β/γ-Klotho protein

γ-GCS Gamma-glutamylcysteine synthetase
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