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Multi-channel EEG emotion
recognition through residual
graph attention neural network

Hao Chao*, Yiming Cao and Yongli Liu

College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China

In this paper, a novel EEG emotion recognition method based on residual

graph attention neural network is proposed. The method constructs a three-

dimensional sparse feature matrix according to the relative position of electrode

channels, and inputs it into the residual network to extract high-level abstract

features containing electrode spatial position information. At the same time, the

adjacency matrix representing the connection relationship of electrode channels

is constructed, and the time-domain features of multi-channel EEG are modeled

using graph. Then, the graph attention neural network is utilized to learn the

intrinsic connection relationship between EEG channels located in di�erent brain

regions from the adjacency matrix and the constructed graph structure data.

Finally, the high-level abstract features extracted from the two networks are

fused to judge the emotional state. The experiment is carried out on DEAP

data set. The experimental results show that the spatial domain information of

electrode channels and the intrinsic connection relationship between di�erent

channels contain salient information related to emotional state, and the proposed

model can e�ectively fuse these information to improve the performance of

multi-channel EEG emotion recognition.
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1 Introduction

Emotion is a physiological state of human beings accompanied by cognition and

consciousness. People’s daily cognitive and behavioral activities are almost driven by

emotion, which also affects interpersonal interaction and group activities (Guozhen et al.,

2016). Affective computing is a representative field, which aims to give computer systems

the ability to automatically recognize, understand and respond to human emotions, so as to

realize intelligent human-computer interaction. As the core and important component of

affective computing, emotion recognition has a wide range of applications in psychology,

emotional computing, artificial intelligence, computer vision, medical, and other fields

(Ramirez et al., 2001; Hu et al., 2019; Fürbass et al., 2020).

Physiological signals mainly include electrocardiogram (ECG), electromyography

(EMG), and electroencephalogram (EEG). Compared with facial expressions and voice

signals, physiological signals are not easy to disguise, and are more objective and reliable

in capturing the real emotional state of human beings. With the rapid development of

wearable devices, long-term monitoring of physiological signals has become a reality, which

makes it feasible and practical to judge emotional state based on EEG signals. In the medical

field, EEG classification models play a role in automatic diagnosis of psychiatric disorders.

Depression is one of the largest health problems in the world. It is a serious mental illness,

and there is a problem of untimely treatment. Severe patients often have thoughts of suicide.
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Current diagnostic criteria for depression are still based on

subjective clinical rating scales, such as The Hamilton Depression

Rating Scale (Hamilton, 1960), and require physician input (Sung

et al., 2005). Some research focuses on automatic diagnosis

of depression based on EEG (Alhaj et al., 2011; Mohammadi

et al., 2015), which can enable patients to quickly diagnose and

understand their own condition, so as to carry out scientific

treatment in advance.

The main components of the EEG signal are brain rhythm

from different brain regions, reflecting the activity of that region

(Niedermeyer and da Silva, 2005). The electrical activity of the

cerebral cortex is transmitted to the scalp through the anatomical

structure. Therefore, the acquired EEG is a mixture of source

signals from different brain regions, carrying a large amount of

spatial location information (Xing et al., 2019). In the research

field of emotion recognition based on EEG, some studies have

explored asymmetric features of brain regions, such as DASM

(differential asymmetry), RASM (rational asymmetry), DCAU

(differential causality) (Gogna et al., 2016; Li et al., 2018b). And

other works studied the connectivity of EEG signals (Nolte et al.,

2004, 2008; Supp et al., 2007; Haufe et al., 2013). Castelnovo

et al. finds that the electrical activity of the brain is mainly

concentrated in specific brain regions when people are in different

sleep states, scalp EEG analysis of all night NREM (non-rapid

eye movement) sleep revealed a localized decrease in slow wave

activity (SWA) power (1–4 Hz) over centro-parietal regions relative

to the rest of the brain in SADs compared to good sleeping

healthy controls (Castelnovo et al., 2016). Nowadays, there are

also some works that make better use of the spatial domain

information of EEG channels in EEG classification tasks. In order

to learn the spatiotemporal characteristics of EEG signals, Salama

et al. divided the original EEG signals into multiple frames, and

combined the original EEG signals of multiple channels into a

two-dimensional matrix in each frame, where the first dimension

represents the number of channels, and the second dimension

Indicates the time length of a frame. Multiple frames are then

superimposed to form a three-dimensional matrix, with the third

dimension representing time. Finally, the 3D matrix is used

as the input for 3D-CNN (3d convolutional neural networks)

training. Since the left and right hemispheres of the human

brain respond asymmetrically to emotion, a bi-hemisphere domain

adversarial neural network (BiDANN) model is proposed to

learn the discriminative emotional features of each hemisphere,

BiDANN contains one global and two local domain discriminators,

and learns discriminative sentiment features for each hemisphere

by adversarial with local domain discriminators and classifiers

(Li et al., 2018c). Li et al. (2017) captures the spatial domain

information contained in electrode positions by mapping into

EEG multidimensional feature image following a 10/20 system.

First, the spatial features, frequency domain and time features

of the EEG signal are integrated, and mapped into a feature

matrix according to the international 10/20 system, and then

the EEG multidimensional feature image is generated using the

interpolation method, using a combination of convolutional neural

network (CNN) and long-term and short-term A hybrid deep

network of memory (LSTM) recurrent neural network (RNN)

recognizes emotional states. Li et al. (2018a) also used the

distribution of electrodes on the scalp to extract the spatial

domain information of electrode locations. First, the differential

entropy features from 62 EEG signal channels are organized

into a two-dimensional map of 8×9, and are mapped to a

20×20 input map through sparse operations to avoid information

leakage in convolution and pooling operations. Finally, hierarchical

convolutional neural network (HCNN) is used to classify positive,

neutral and negative emotional states.

To a certain extent, the above research has applied the

extraction of the spatial domain information of the EEG

channel, and used the multi-dimensional feature matrix mapped

according to the international 10/20 system and CNN to fuse

the information of the neighbor nodes. However, there still

exist several challenges in multi-channel EEG-based emotion

recognition. First of all, the brain activity in emotional state

is complex, and multiple brain regions are involved in the

interaction. How to effectively characterize the interaction between

brain regions is a problem to be considered. Furthermore,

due to the local perception characteristics, CNN (Convolutional

Neural Networks) tends to pay more attention to adjacent

electrode channels and is good at learning local spatial patterns.

Therefore, in the process of extracting electrode spatial position

information, CNN can mine the significant information of

correlation and interaction of different EEG signals in the

same brain region. However, it cannot effectively capture the

intrinsic connection relationship between EEG channels located

in different brain regions and the global spatial position

information of electrodes. Finally, the features extracted from

the EEG signal and the distance between different electrodes

are a kind of non-Euclidean data, only mapping the features

extracted from each channel into a multi-dimensional sparse

feature matrix according to the international 10/20 system

ignores the distance information between electrodes, and ignores

that all electrodes are not positioned in an absolute plane on

the scalp.

To solve the above problems, this paper proposes a noval

emotion recognition method based on residual graph attention

neural network (ResGAT). In the proposed method, the residual

network is utilized to achieve the spatial position information

of the electrode channel and the correlation information of the

adjacent EEG channels through the 3D feature matrix. Considering

that the graph neural network (GAT) can update the state of

vertices by periodically exchanging neighborhood information

without being limited by vertex distance, it is employed to

learn the neural functional connections between different brain

regions, and the multi-head self-attention mechanism is used to

adaptively adjust the adjacency matrix in the network. Therefore,

the ResGAT model makes full use of the electrode spatial position

information and the intrinsic connection relationship between

EEG channels located in different brain regions. Moreover, when

the EEG channel aggregates the characteristics of neighboring

nodes, it pays more attention to the channel that is more relevant

to itself. Finally, the high-level abstract features representing

electrode space domain information and the high-level abstract

features representing intrinsic connection relationship between

EEG channels located in different brain regions are fused to judge

the emotional state.
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2 Datasets and feature extraction

2.1 Data set

The DEAP data set used in the experiment is an open data set

collected through experiments by Koelstra et al. from Queen Mary

University of London, University of Twente, University of Geneva,

Switzerland, and Swiss federal Institute of Technology in Lausanne

to analyze human emotional states (Koelstra et al., 2011). The

dataset records multimodal physiological signals of 32 volunteers

under the stimulation of selected music videos, including EEG and

peripheral physiological signals, and 22 of the 32 volunteers also

record facial expression videos. Each volunteer needs to watch 40

1-min long videos using 32 active AgCl electrodes (Fp1, AF3, F3,

F7, FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, Oz, Pz, Fp2,

AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, CP6, CP2, P4, P8, PO4,

and O2) recording EEG signals, these electrodes were placed on

the scalp according to the international 10/20 system. At the end

of each trial, the valence, arousal, dominance, and liking of the

video were evaluated on a scale of 0–9. Physiological signals were

sampled at 512 Hz and resampled at 128 Hz. The physiological

signal matrix of each subject is 40×40×8064 (40 trials, 40 channels,

8,064 sampling points). Eighty thousand and sixty-four is 63 s data

at 128 Hz sampling rate, 3 s silent time.

In addition, the effectiveness of ResGAT was verified using

the SEED-IV brain emotion dataset (Zheng et al., 2018). This

data set selected 72 movie clips containing 4 emotions (Happy,

Sad, Neutral, and Fear) as EEG-induced materials. A total of 15

subjects recorded 62-channel EEG signals and eye movements

when watching movie clips.

2.2 Feature extraction

In the DEAP set, each person watched 40 emotion-inducing

videos, and the duration of EEG signals recorded in each video

was 60 s. In the experiment, a sliding window divides the raw

EEG signal of each channel into several segments, and the duration

of each sliding window is set to 6 s. The segments do not over

lap. Each segment is considered an independent sample, and the

six new samples inherited the labels of the original. Thus, 12,800

samples were be obtained. A set of time domain features can

be extracted from the 32-channel EEG signals of each sample,

specifically including mean, variance, first difference value, second

difference value, standard deviation, and fuzzy entropy. Among

them, Fuzzy Entropy was proposed by Chen et al. (2007) and

applied to the representation of EMG signals. Fuzzy Entropy

introduces the concept of fuzzy sets. Based on the exponential

function and its shape, the similarity of vectors is vaguely defined

in FuzzyEn, compared with ApEn and SampEn, the FuzzyEn is

an effective measure algorithm for analyzing chaotic sequence

complexity, it has better robustness andmeasure value continuities.

The soft continuous boundary of the fuzzy function ensures

the continuity and effectiveness of the fuzzy entropy under small

parameters, so the more details obtained by the fuzzy function

also make the fuzzy entropy a more accurate definition of entropy.

Assuming that the EEG signal of each channel is represented

by s(T), t = 1, 2..., T, T is the signal length, which is 128×60

(frequency×second), the measure of the length of the EEG signal

subsequence in fuzzy entropy m is 2. By reconstructing the original

sequence, we can get

Xm
i =

{

s(i), s(i+ 1), ..., s(i+m− 1)
}

− s0(i) (1)

Among them, i=1,2,...,N-m+1. Xm
i represents m consecutive s

values, s0(i) represents the average value, calculated as follows,

s0(i) =

∑m−1
j=0 s(i+ j)

m
(2)

Define the maximum difference dmij between elements in two

m-dimensional vectors Xm
i and Xm

j as the distance between them,

dmij = max
k∈(0,m−1)

{

| s(i+ j)− s0(j)− (s(i+ k)− s0(i)) |
}

(3)

The similarity between Xm
i and Xm

j can be defined by a

fuzzy function,

Dm
ij = µ(dmij , r) (4)

Structure ϕm(r) and ϕm+1(r),

ϕm(r) = (N −m)−1

N−m
∑

i=1

φm
i (r) (5)

ϕm+1(r) = (N −m)−1

N−m
∑

i=1

φm+1
i (r) (6)

Then can define the parameter FuzzyEn(m, r) of the time

series as:

FuzzyEn(m, r) = lim
x→−∞

[lnϕm(r)− lnϕm+1(r)] (7)

Among them, when N is finite, it can be estimated by statistics,

FuzzyEn(m, r,N) = lnϕm(r)− lnϕm+1(r) (8)

Two emotion dimensions are used in the experiments. For each

sample, if the self-assessment value of the arousal is greater than

5, the category label of the sample is set as the high arousal (HA),

otherwise it is set as the low arousal (LA). In the valence-sentiment

dimension, the same label division is used for samples, including

the high valence (HV) and the low valence (LV).

3 ResGAT emotion recognition
framework

The structure of the proposed ResGAT model is described

in Figure 1. The framework includes feature extraction and

feature mapping module, ResNet modules, GAT modules and

Classification modules. The first part is feature extraction and

feature mapping modules, which extracts 6 kinds of temporal

features from 32 EEG signals. Then, a 2D electrode position

mapping matrix and a 3D sparse feature matrixand are constructed

according to the temporal features. The 2D electrode position

mapping matrix is input into the GAT modules to extract high-

level abstract features, which contain the intrinsic connection
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FIGURE 1

ResGAT emotion recognition framework.

FIGURE 2

International 10/20 system, 9×9 mapping matrix and 3D sparse feature matrix.

relationships between EEG channels located in different brain

regions. The ResNet modules is employed to receive the 3D

sparse feature matrix and generate high-level abstract features

representing electrode spatial position information. Finally, the

classification modules is utilized to fuse the two high-level abstract

features and judge the emotional state.

3.1 Extraction of spatial domain
information based on ResNet Module

Figure 2 shows the international 10/20 system plan, 2D

electrode position mapping matrix and 3D sparse feature matrix

XR ∈ R
h×w×c. The values of parameter h and parameter w are

both set to 9, and the value of parameter c is 6, indicating that

the shape of the 3D feature matrix is. The left side of Figure 2

shows the International 10/20 system, where the EEG electrodes

marked by green circles are the test points used in the DEAP

dataset. Some researches (Li et al., 2017; Chao and Dong, 2020;

Cui et al., 2020) have found that spatial features of EEG channels

can improve the performance of emotion recognition. In order

to represent the spatial location information of all EEG signal

channels, a feature matrix is constructed according to the positions

of electrodes on the brain, and the spatial parts of different EEG

signal channels are mined. In the feature matrix, the time-domain

features extracted from different EEG channels are put into the

corresponding positions in the matrix by name, and the positions
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of unused electrodes in the matrix are set to 0. Finally, a 9×9×6

three-dimensional feature matrix is constructed according to the

six extracted features, as shown in the right of Figure 2. For each

9×9×1 matrix, different time domains are arranged according to

the mapping rules shown in Figure 2 mapping matrix. Finally, the

extracted 3D sparse featurematrix is represented byXR, h = w = 9,

c = 6, indicating that the shape of the 3D feature matrix is 9×9×6.

After constructing the three-dimensional sparse mapping

matrix, it is input into the residual network to extract high-

level abstract features. The residual network structure adopted is

shown in Figure 1. It is composed of multiple residual blocks.

Each residual block is composed of multiple convolution layers,

batch normalization layers and activation layers. The size of the

convolution kernels used in this part is 3×3. The residual block is

calculated as follows:

First, the 3D sparse feature map U ∈ R
h′×w′×c′ is obtained

from XR ∈ R
h×w×c by transforming Ftr . For transform Ftr , it is

a Convolution operation. Use V = [v1, v2, ..., vc′ ] to represent the

filter set, where vi refers to the parameter of the ith filter. The output

is U = [u1, u2, ..., uc′ ], and

ui = vi ∗ X
R (9)

Here, * means convolution, the filter can learn the

spatial position information of electrodes and the interaction

information between electrodes in local spatial position through

convolution operation.

The normalized network response after batching is Z =

BN(U) = [z1, z2, ..., zc′ ].

Batch normalization can effectively prevent the gradient

explosion and gradient disappearance in the network, and speed

up the convergence speed of the network. Finally, the nonlinear

interaction between the feature map channels is learned through

the activation layer, and the complete dependence between the

channels is obtained. It is expressed by the following formula:

S = WZ,W ∈ R
c′ (10)

Among them, δ refers to the relu activation function. After

multiple convolutions and activation calculations, the final EEG

signal characteristics are expressed as SR = [s1, s2, ..., sc′ ].

3.2 Dynamic learning of the intrinsic
connection relationship between EEG
channels located in di�erent brain regions

As the basis of ResGAT method, some basic knowledge about

graph representation is introduced first. A directed connected

graph can be defined as G = V ,E,W, where V represents the

node set with the number of |V| = N, and E represents the

edge set connecting these nodes. Let W ∈ R
N×N represents the

adjacency matrix describing the connection between any two nodes

in V , in which the entry of W in row i and column j measures

the importance of the connection between node i and j. Figure 3

shows five nodes and edges connecting those nodes, as well as the

adjacency matrix associated with the graph. The different colored

arrows on the left side of the figure represent the edges connecting

the source node and the target node, while the corresponding

adjacency matrix is on the right side of the figure.

In the past, convolutional neural networks have been applied

in many fields due to their powerful modeling capabilities, such

as computer vision, speech recognition, and natural language

processing. Due to its locality and translation invariance properties,

it is very suitable for processing Euclidean data.However, many

elements in the real world exist in the form of graph data, such as

social networks, transportation networks, and drug discovery.The

features extracted from the EEG signal and the distance

between different electrodes are non-European data. Although

the number of features on each signal channel is consistent, the

distance between each adjacent electrode is uneven, and brain

functional connectivity tends to capture global relationships among

EEG channels. Therefore, the graph neural network is more

suitable for learning the potential internal connections between

different channels.At present, the graph attention network (GAT)

(Veličković et al., 2017) is a widely used graph neural network.

GAT achieves information aggregation in the spatial domain

by introducing an attention mechanism, making the model pay

more attention to the mutual influence between neighbor nodes,

and applying it to EEG data to make the channels aggregate

the characteristics of neighbor nodes and pay more attention to

channels that are more relevant to themselves. Each EEG electrode

can be regarded as a node of the graph, and the connection between

the electrodes corresponds to the edge of the graph. The weights of

all edges, which representing the functional relationship between

electrodes, constitute the adjacency matrix of the graph. Therefore,

GAT can learn the internal relationship between different EEG

electrodes. As shown in the attention neural network in Figure 1,

although GAT can describe the connection between different nodes

according to their spatial positions, the connection between EEG

channels should be determined in advance before applying it to

the construction of emotion recognition model. In addition, it

should be noted that the spatial location connection between EEG

channels is different from the functional connection between them.

In other words, closer spatial relationships may not guarantee

closer functional relationships.

The flow of processing EEG signal features with GAT is

shown in Figure 1. After data acquisition, preprocessing and

feature extraction, EEG data are represented by undirected graph

G = V ,E,W. The data on can be represented as feature matrix

XG ∈ R
n×d, where n represents the number of electrodes and

d represents the number of features extracted on each electrode

channel. The constructed initial adjacency matrix WG ∈ R
n×n,

where n represents the number of electrode channels, characterizes

the correlation between 2D space electrodes. Assume that each

electrode channel has an internal relationship with the other 31

electrode channels, and is initialized as a diagonal matrix with the

main diagonal of 0 and other values of 1. The feature combination

extracted from each EEG channel is represented as a node in the

graph neural network model, can be expressed as:

XG =
→
x1,

→
x2, ...,

→
xn,

→
xi ∈ R

d (11)

In order to obtain sufficient expression ability to transform

input features into higher-level features, at least one learnable linear
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FIGURE 3

A directed graph and the corresponding adjacency matrix.

transformation is needed. A shared H ∈ R
d′×d applies to all nodes

to increase the expression ability of node features.

Then, a self attention mechanism is used on all nodes. At this

time, the dimension of features on the nodes remains unchanged,

which is Rd′ . The self attention mechanism is described as:

eij = Att(H
→
xi ,H

→
xj ) (12)

where Att stands for self attention mechanism, and eij
represents the importance of the characteristics of node j to i. Only

the first-order neighbors of each node is calculated. In order to

make the coefficients easy to compare between different nodes, the

softmax function is used to normalize the attention coefficients of

node j to other neighbor nodes.

aij = softmax(eij) =
exp(eij)

∑

k∈Ni
exp(eik)

(13)

where aij is the coefficient of attention mechanism. In fact, the

attention mechanism a is composed of a single-layer feedforward

neural network, and the leakyrelu activation function is used

for non-linear processing. Finally, the coefficient of attention

mechanism can be expressed as:

aij =
exp(eij)

∑

k∈Ni
exp(eik)

=
exp(LeakyReLU(

→

aT[H
→

xi ‖H
→

xj]))

∑k∈Ni

k=1
exp(exp(LeakyReLU(

→

aT[H
→

xi ‖H
→

xj])))

,
→
a ∈ R

2d (14)

where ‖ indicates connection operation.

Then apply the normalized attention coefficient to the

features corresponding to the node, and get the output after

feature recalibration:

→

x′i = σ (
∑

j∈Ni

aijH
→
xj ) (15)

Veličković et al. (2017) found that it is beneficial to use multi

head attention mechanism in graph neural network. Using K

independent attention mechanisms at the same time, Formula 14

will produce K outputs. Then splice the above K outputs together,

as shown in the following formula:

→

x′i = ‖Kk=1σ (
∑

j∈Ni

akijH
k →
xj ) (16)

The output of each node changes to Kd′. In the experiment, the

K is 2.

The aggregation process of multi head attention mechanism on

nodes is shown in Figure 4.

The above is a complete graph convolution process. After

multi-layer graph convolution, the EEG features will be further

transmitted to the full connection layer, fused and classified with

the extracted high-level abstract spatial features, and the SG is

obtained by batch normalization before full connection.

3.3 Feature fusion

The deep features extracted from convolution network and

graph network are flattened and spliced, as shown below:

Output(SR, SG) = Concat(flatten(SR), flatten(SG)) (17)

Finally, the softmax function is used to output the emotional

state. The loss function of this model is the cross-entropy function,

and the loss function is minimized using the Adam optimizer with

an initial learning rate of 0.0001.

4 Experimental results and analysis

4.1 Performance analysis

The emotion classification network in the experiment consists

of residual network and graph attention neural network. The

residual network consists of multiple blocks, and each block

contains two convolutional layers. In order to increase the fitting

ability of the network, an activation layer is added after all

convolutional layers. The first two residual blocks employ 64 filters

with a size of 3×3 for convolution calculations, and the last two

residual blocks use 128 filters of the same size.
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FIGURE 4

(A) The attention mechanism a(H
→
xi ,H

→
xj ) is parameterized by the weight vector a ∈ R

2d′ . (B) Illustration of multi headed attention (k = 2) of node 1 in

its neighborhood. Arrows of di�erent colors indicate independent attention calculation. Aggregate features from each head are connected

to obtain
→

x′
i
.

FIGURE 5

The training process of the proposed network in the two dimensions of Arousal and Valence.

The effect of the proposed network is verified on the DEAP

dataset. In order to make the experimental results more objective,

10-fold cross-validation technique is used.

Figures 5, 6 show the training process of the proposed network

on the dataset, Figure 5 shows the training process of the two

emotional dimensions of arousal and valence on the DEAP data

set, and Figure 6 shows the training process of the SEED data set

process. Among them, when the training period is less than 750 in

the DEAP dataset, the training accuracy and validation accuracy

increase with the increase of the epoch. When the epoch is greater

than 750, the training accuracy and validation longitude tend to

be stable.

The classification accuracy (Acc) and F1 score (F1) are used

to evaluate the performance of the proposed model. The emotion

recognition results are shown in Figure 7, respectively. In the

arousal dimension, the accuracy is 0.8706 and the F1 score is 0.8833.

In the valence dimension, the recognition accuracy and F1 score are

0.8926 and 0.9042, respectively. In addition, 0.9773 Acc and 1.0 F1
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FIGURE 6

The training process of the proposed network in the SEED-IV.

FIGURE 7

Emotion recognition results of the proposed network for binary

classification.

were achieved on the four-category task of the SEED-IV dataset.

The results of three classified tasks demonstrate the effectiveness of

the proposed method.

The receiver operating curve (ROC) is also used to evaluate

the performance of the proposed network. The ROC curve is

located at the upper left triangle of the square, which reflects

a more satisfactory classification rule. The higher the area

under ROC Curve (AUC) value, the better the classification

effect. Figure 8 shows the receiver operating curves on the

two classifications of arousal and valence. The values of AUC

in the two dimensions are 0.9378 and 0.9565, respectively.

The relatively convex curve and high AUC value prove the

FIGURE 8

ROC curve of the proposed network.

excellent classification performance of the proposed classification

network.

4.2 Comparison between the ensemble
method and the single network

In the experiment, an independent GAT model and an

independent ResNet model are constructed, respectively. The

network structures of the independent GAT and the independent

ResNet used in the experiment are consistent with those in

the proposed ensemble ResGAT network. When these two

independent models are used for emotion classification, the

high-level abstract features are flattened and fed into a fully

connected layer for classification. The 10-fold cross-validation

technique are also used here, and other hyperparameters remain

the same.

Firstly, the comparison is carried out on the emotion

recognition accuracy. Compared with the GAT model, the

proposed ResGAT improves the emotion recognition accuracies

by 21.85% in the arousal dimension and 24.68% in the valence

dimension. Compared with the ResNet model, the proposed

ResGAT improves the emotion recognition accuracies by 1.64%

in the arousal dimension and 2.99% in the valence dimension.

Secondly, the comparison is carried out on the F1 scores.

Compared with the GAT model, the proposed ResGAT improves

the emotion recognition accuracies by 17.5% in the arousal

dimension and 21.54% in the valence dimension. Compared

with the ResNet model, the proposed ResGAT improves the

emotion recognition accuracies by 0.9% in the arousal dimension

and 2.26% in the valence dimension. The results show that

the performance of the proposed ResGAT is obviously better

than that of GAT, and it is also improved compared with

ResNet.

In addition, it was also verified on the SEED-IV dataset,

and the model recognition results are shown in Table 2. The
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TABLE 1 The results of ResGAT and the two single networks.

Recognition results

Emotion dimension ResGAT GAT ResNet

Accuracy F1 Accuracy F1 Accuracy F1

Arousal 0.8706 0.8833 0.6521 0.7083 0.8542 0.8743

Valence 0.8926 0.9042 0.6458 0.6888 0.8627 0.8816

TABLE 2 The results of ResGAT and the two single networks (SEED-IV).

Recognition results

Emotion dimension ResGAT GAT ResNet

Accuracy F1 Accuracy F1 Accuracy F1

Four classification 0.9773 0.9973 0.9522 0.9635 0.9021 0.9251

FIGURE 9

Recognition results of the single networks and the ensemble models integrated by the single networks.

experimental results in Tables 1, 2 show that the performance of the

integrated network is better than that of a single network, because

each network in the integrated network can extract different

information, that is, the spatial position information of electrodes

and the internal relationship of EEG channels in different brain

regions. These two kinds of information complement each other

to improve the model recognition performance.

To further verify the complementarity between the electrode

spatial position information and the intrinsic connection

relationship between EEG channels, a variety of CNN networks,

graph convolution network (GCN) (Kipf and Welling, 2016),

vision in transformer network (VIT) (Dosovitskiy et al., 2020)

and the ensemble models integrated by the above networks are

constructed. The CNN networks constructed specifically include

Alex (Krizhevsky et al., 2017), VGGNet (Simonyan and Zisserman,

2014), DenseNet (Huang et al., 2017), and GoogLeNet (Szegedy

et al., 2015), which focus on extracting the electrode spatial position

information. Similar to GAT, GCN and VIT focus on extracting

the intrinsic connection relationship between EEG channels. An

ensemble model is constructed by a CNN network and GCN, or

by a CNN network and VIT, which means these ensemble models

can capture both the electrode spatial position information and the

intrinsic connection relationship between EEG channels.

In the CNN networks, the AlexNet structure is affected by

the size of the input data. Compared with the structure in the

reference (Krizhevsky et al., 2017), the maximum pooling is

removed, and the size of the convolution kernel is modified. Other

structures remain unchanged. Compared with the residual network

in this paper, the structure of VGG only removes the spanning

connection. DenseNet employs 1×1 convolutions for better data

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1135850
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chao et al. 10.3389/fnins.2023.1135850

representation, where the depth of the convolutional layers is 9.

GoogLeNet contains a multi-branch convolution structure, which

uses convolution kernels of 3×3, 5×5, and 7×7, respectively.

GCN is a natural extension of convolutions on graph structure.

Because GCN is suitable for extracting structural features of graphs

and can customize local receptive fields, it is widely used in network

analysis, traffic prediction. and recommender systems. Inspired by

the reference (Kipf and Welling, 2016), a spectral domain-based

graph convolutional network is constructed, which contains two

convolutional layers. Transformer has been successfully applied in

FIGURE 10

Recognition results of ResGAT1, ResGAT2, ResGAT3, and ResGAT4.

TABLE 3 Recognition results using residual networks.

3D 2D

DEAP-Arousal 0.8542 0.6203

DEAP-Valence 0.8627 0.6136

SEED-IV 0.9021 0.9020

natural language processing and computer vision. Therefore, in the

experiment, the standard transformer is directly applied to the EEG

signal features with minimal modification. Similar to the reference

(Dosovitskiy et al., 2020), the 3D feature matrix is divided into

small blocks, and the linear embedding sequence of these blocks

is provided as the input of the transformer.

The recognition results of the above networks and the

ensemble models are shown in Figure 9. Most of the ensemble

models have higher classification accuracy than the corresponding

single network, which proves that the electrode spatial position

information and the intrinsic connection relationship between

EEG channels are complementary to emotion classification. ResNet

has the highest classification accuracy in a single network, which

achieves 85.42% classification accuracy in arousal dimension and

86.27% classification accuracy invalence dimension, respectively. In

the integrated models, ResGAT achieves the highest classification

accuracy in the valence dimension, and ResNet-VIT achieves the

highest classification accuracy in the arousal dimension. Among

the above ensemble models, the ensemble models including

GAT performs well in emotion recognition tasks. Combining

GAT with any kind of CNN, the classification accuracy can be

improved. The experimental results show that GAT has better

information capture ability than GCN and VIT, and is more

suitable for combining with convolutional networks, which makes

the extracted high-level abstract features contain relatively less

redundant and irrelevant components.

4.3 ResGAT with di�erent model structures

In addition to the ResGAT (ResGAT1) proposed in this

paper, three other ResGAT models (ResGAT2, ResGAT3, and

ResGAT4) are also constructed. In the ResGAT1, all 3×3 filters

are used in the residual network, and the number of multi-

head attention in all graph attention layers in GAT is 2.

ResGAT2 sets the multi-head attention number of GAT to 4.

ResGAT3 is twice as deep as ResGAT1. ResGAT4 uses 3×3

FIGURE 11

Heatmap representation of adjacency matrices in GAT on DEAP-Arousal and DEAP-Valence a�ective dimensions.
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FIGURE 12

Heatmap representation of adjacency matrices in GAT on SEED-IV.

and 5×5 filters to cross the residual structure on the basis of

increasing the network depth. The other parameters in ResGAT

for the three comparisons remain unchanged. All samples of

subjects and 10-fold cross-validation technique are also used

here. The recognition results of ResGAT with different structures

under the two sentiment annotation schemes are shown in

Figure 10.

Compared with ResGAT2, ResGAT3, and ReGAT4, the

recognition accuracy of the proposed ResGAT in the arousal

dimension is improved by 1.02, 1.85, and 0.24%, respectively. In

the dimension of valence, the recognition accuracy of the proposed

ResGAT is improved by 0.59, 3.36, and 1.61%, respectively.

It can be seen from the comparison results that increasing

the complexity and depth of the network will not necessarily

improve the accuracy, but will increase the calculation of the

model. Therefore, it is very important to choose the appropriate

network structure.

4.4 Sensitivity analysis

To further prove that the proposed network can extract the

spatial domain information of EEG signal channels and learn

the internal relationship of different EEG signal channels, the

information extraction ability of the proposed model is analyzed.

In the proposed method, the three-dimensional sparse feature

matrix and deep residual network are used to capture the

dependence between local EEG signal channels. As a contrast,

the deep residual network model is also used to deal with the
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FIGURE 13

t-SNE analysis on the emotional dimensions of DEAP-Arousal and DEAP-Valence.

FIGURE 14

t-SNE analysis on the emotional dimensions of SEED-IV.

same time-domain characteristics without mapping and arranging

according to the international 10/20 standard. Six features of 32

channels can construct a two-dimensional feature matrix with

a size of 32×6. The hyperparameters in the experiment remain

unchanged. The recognition results using 3D feature matrix and

2D feature matrix, respectively, are shown in Table 3.
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TABLE 4 Details of previous research.

Study Feature Classifier DEAP SEED-IV

Arousal Valence

Samara et al. (2016) Band power SVM 0.7367 0.8599 –

Guo et al. (2017) DWT SVM 0.6279 0.6021 –

Alhagry et al. (2017) Raw EEG signals LSTM 0.8565 0.8545 –

Yang and Liu (2019) Differential entropy TCN 0.7140 0.7440 –

Tripathi et al. (2017) Statistical parameters DNN 0.7313 0.7578

CNN 0.7336 0.8141 0.8599

Gao et al. (2022) Differential entropy GCN 0.8193 0.8177 -

Zhong et al. (2020) Differential entropy RGNN - - 0.7750

Du et al. (2022) Differential entropy MD-GCN - - 0.9083

Li et al. (2023) Differential entropy FGCN - - 0.7714

Vafaei et al. (2023) Time domain features SAETM 0.8037 0.8173 -

The proposed method Time domain features ResGAT 0.8706 0.8926 0.9773

Compared with the two-dimensional feature matrix, the

accuracy of emotion recognition of the three-dimensional feature

matrix in the arousal dimension is increased by 23.39%, the

accuracy of emotion recognition in the valence dimension is

increased by 24.91%, 0.01% improvement on the SEED-IV dataset.

The results show that three-dimensional feature matrix and

deep residual network can effectively extract local dependency

information of signal channels.

In order to illustrate the intrinsic connection relationship

between EEG channelsmined byGAT, the adjacencymatrix learned

during the training process is displayed. The adjacency matrix is

affected by the input data. Input all training data into the GAT in

turn to obtain the adjacency matrix corresponding to each sample.

The average value of all adjacency matrices can construct a heat

map, as shown in Figures 11, 12.

It can be clearly seen that the graph neural network is not

limited by distance when collecting neighbor node information in

32 electrode channels. In terms of arousal and valence emotion,

C4 electrode channel pays more attention to FC5 channel when

aggregating neighbor node information, and FC2 channel pays

more attention to F7 and FC5 channels, and CP5 pays more

attention to FP2 channel. In the SEED-IV dataset, all nodes focus

more on the four channels CZ, CPZ, PZ, and POZ.

4.5 t-SNE analysis

In order to demonstrate the effectiveness of ResGAT in

extracting high-level abstract features, the t-SNE tool is used

to visually analyze the features in two-dimensional space, these

features extract all data from a single person. As shown in

Figures 13, 14, the input data of the model and the high-level

abstract features extracted by ResGAT are displayed in the two

emotional dimensions of arousal and valence. The results in the

figure demonstrate the effectiveness of the proposed ResGAT in

extracting affective state discriminative features.

4.6 Comparison with existing methods

The recognition performance of the proposed method is

compared with several existing studies. The dataset and labeling

scheme are the same for all reported studies. Table 4 details

the features and classifiers used in the comparative study. Since

recognition accuracy and F1 score are the most commonly used,

these two indicators are adopted for comparison. As shown in

Table 4, the performance of our approach is better than the

comparisonmethods in both the arousal dimension and the valence

dimension. The comparison results show that our approach is

excellent in multichannel EEG emotion recognition.

5 Conclusion

A novel ensemble deep learning framework is proposed in this

work. In the framework, the residual network is employed to extract

the spatial position information of the electrode channel through

the 3D characteristic matrix. The graph neural network is utilized

to learn the neural functional connections between different brain

regions, and the multi-head self-attention mechanism is used to

adaptively adjust the adjacency matrix in the network. The results

show the proposed ResGAT framework makes full use of the

electrode spatial position information and the intrinsic connection

relationship between EEG channels located in different brain

regions. Moreover, the emotion recognition performance of the

proposed method is compared with some existing methods and

shows advantages, which proves the feasibility and effectiveness of

the proposed emotion recognition method.

The experiments in this manuscript were conducted on public

datasets DEAP and SEED, and the proposed emotion recognition

method demonstrated good performance. However, the number

of subjects on the dataset is limited, and the effectiveness of

its use in a large population needs further verification. The

monitoring and regulation of emotional state is of great significance
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for the psychological and physiological health of individuals.

For example, in clinical treatment, monitoring and regulating

emotional states can help doctors better understand patients’

emotional states, thereby providingmore personalized and effective

treatment plans for patients. In daily life, monitoring and

regulating emotional states can help individuals better manage

their emotions and improve their quality of life. Moreover, the

emotion recognition performance of the proposed method is

compared with some existing methods and shows advantages,

which proves the feasibility and effectiveness of the proposed

emotion recognition method. In addition, the proposed emotion

recognition classification model can also be applied in disease

diagnosis, such as identification of patients with depression;

issuing execution commands to control external devices, helping

patients to carry out active rehabilitation training; diagnosis

of schizophrenia; quantifying the neurophysiological changes

associated with a variety of work-related physical activities (Ismail

et al., 2023).
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