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Extracting biological information from awake and unrestrained mice is imperative 
to in vivo basic and pre-clinical research. Accordingly, imaging methods which 
preclude invasiveness, anesthesia, and/or physical restraint enable more 
physiologically relevant biological data extraction by eliminating these extrinsic 
confounders. In this article, we  discuss the recent development of shortwave 
infrared (SWIR) fluorescent imaging to visualize peripheral organs in freely-
behaving mice, as well as propose potential applications of this imaging modality 
in the neurosciences.
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Introduction

The study of physiology in living animals is often limited by the requirement of invasive 
procedures, physical restraint, anesthesia, or even euthanasia. Tissue biopsies and blood-based 
assays require animal manipulation and restraint, increasing stress levels, which inevitably 
affects general animal physiology (Kvetnansky et al., 1978; Pare and Glavin, 1986; Glavin et al., 
1994; Buchecker et  al., 2020). Likewise, anesthesia impacts a plethora of physiological 
parameters, including brain function and energy metabolism (Dobkin et al., 1966; Grandjean 
et al., 2014; Lundgaard et al., 2015; Sano et al., 2016; Bachmann et al., 2019; Bascunana et al., 
2019). In addition, correlative or causal studies of the relationship between tissue function and 
behavior are not possible when animals are in an anesthetized state. Therefore, enabling 
non-invasive measurements without confounders induced by physical and chemical restraint 
provides striking progress on pre-clinical research (Lundgaard et al., 2015; Sano et al., 2016; 
Buchecker et al., 2020).

Most non-invasive, contact-free imaging methods, such as computed tomography (CT) and 
magnetic resonance imaging (MRI), have limited application in freely-moving mice due to their 
low temporal resolution, field-of-view requirements, and limited sensitivity for contrast agents 
(James and Gambhir, 2012; Phinikaridou et al., 2012; Lauber et al., 2017). Positron emission 
tomography (PET) measurements have overcome some of these limitations and recently enabled 
unrestrained awake mouse imaging (Miranda et al., 2019a,b). Optical techniques arise as an 
alternative given their high acquisition rate and potential to be coupled with fluorescent agents 
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to provide structural, functional, genetic, or metabolic contrast in 
freely behaving mice (Villette et al., 2019; Wang et al., 2021; Yang et al., 
2021). One major caveat of using light in biological specimens is the 
limited light penetration through tissue; however, near-infrared (NIR, 
700–1,000 nm) and shortwave infrared (SWIR, 1,000–1,700 nm) 
fluorescence imaging have excelled to provide high resolution 
visualization of biological structures through the mouse skin, 
including the brain vasculature (Cosco et al., 2017, 2020, 2021; Carr 
et al., 2018b; Zhong et al., 2019; Wang et al., 2021).

The SWIR region of the electromagnetic spectrum presents 
photophysical properties that make it the optimal regimen for optical 
in vivo imaging, given its optical properties, including (a) high tissue 
translucence; (b) deeper light penetration in tissue at longer 
wavelengths; (c) negligible tissue autofluorescence; and (d) higher 
absorbance of light by water molecules, thereby increasing superficial 
contrast (Carr et  al., 2018a,b; Ding et  al., 2018). Exploring these 
favorable properties, a number of SWIR-emissive probes, including 
the clinically-approved agent indocyanine green (ICG) and related 
organic dyes, as well as quantum dots, carbon nanotubes, and rare-
earth doped nanoparticles have been recently developed or applied to 
enable biomedical applications of SWIR imaging (Hong et al., 2014a; 
Hong and Dai, 2016; Bruns et al., 2017; Cosco et al., 2017, 2020, 2021; 
Carr et al., 2018b; Ortgies et al., 2018; Zhong et al., 2019; Xu et al., 
2020; Ximendes et al., 2021; Bandi et al., 2022). Furthermore, advances 
in the technology of SWIR-sensitive cameras, such as InGaAs-based 
detectors, have also enabled increased resolution, sensitivity and 
efficiency. In essence, the development of bright contrast agents, high-
speed and sensitive InGaAs cameras, combined with compatible 
optics, have enabled researchers to push the limits of deep tissue 
imaging with unprecedented speed and resolution (Zhong et al., 2019; 
Cosco et al., 2021).

In vivo SWIR imaging has been applied to detect vascular 
networks, assess metabolic activity, visualize lymphatic vessels, and 
monitor vital signs in mouse models (Bartelt et al., 2011, 2018; Bruns 
et al., 2017; Cosco et al., 2020; Bandi et al., 2022). While most of these 
applications have been demonstrated in anesthetized animals, a few 
reports have shown the ability to employ SWIR imaging to freely-
moving mice (Bruns et al., 2017; Li et al., 2018; Cosco et al., 2020). 
Here we present data on the application of SWIR fluorescence imaging 
to visualize biological parameters in fully awake and freely moving 
mice. Combining high contrast SWIR-emitting fluorophores with 
SWIR-detecting technology, we  enabled real-time, multi-channel 
video recording of up to 4 different channels with subsequent tracking 
of organs of interest, including liver, brown adipose tissue (BAT), 
intestines, vasculature and peritoneal space, from freely roaming and 
behaving mice. In context of these new results, we  discuss the 
challenges and perspectives of deploying this modality to complement 
brain imaging or to directly image brain activity.

Experimental strategy for optical imaging 
in freely behaving mice

In this study, we  employ recently-established bright SWIR-
emissive organic dyes which enabled acquisition with exposure times 
in the range of 1–10 ms for non-invasive awake mouse imaging. For 
optimal dye excitation, we  chose those with absorption spectra 
matched to commercially available NIR and SWIR laser lines. We thus 
selected the contrast agents ICG, JuloChrom5, Chrom7, and JuloFlav7 

to, respectively, match lasers with peak at 785, 892, 962, and 1,064 nm 
(Cosco et al., 2020, 2021) (Supplementary Figure S1). Apart from ICG, 
which is water soluble, the dyes were encapsulated in lipid micelles for 
injection in vivo. To detect SWIR fluorescence emission of organs 
from awake mice, we  used a 35-mm F/1.4 lens providing mouse 
whole-body field of view and a monochrome InGaAs detector with 
maximal frame rate of 300 frames per second (fps) at 640 × 512 pixels 
resolution. The detection window was selected by 1,000- or 1,150-nm 
long-pass filters, depending on the fluorophores and laser lines used 
in each experiment.

Fast acquisition is required for imaging 
freely behaving mice

Imaging awake and freely moving mice requires high temporal 
and spatial resolution as well as favorable contrast settings to resolve 
biological parameters of interest while accounting for the animal 
motion. For example, in a natural movement such as a mouse shaking 
and itching its head, we show that an exposure time in the order of 
10 ms (equivalent to 100  fps) is necessary to resolve major 
fluorescently-labeled blood vessels. However, some smaller vessels can 
only be observed at 3 ms (in this case acquired at 300 fps) (Figure 1A). 
Novel SWIR-emitting fluorophores with enough brightness to achieve 
this exposure time at safe laser power densities (International 
Commission on Non-Ionizing Radiation P, 2013) have been recently 
developed (Zhong et al., 2019; Santos et al., 2020; Cosco et al., 2021), 
and the current SWIR detection technology surpasses the required 
frame rates, therefore paving the way for SWIR fluorescence imaging 
in freely-behaving mice.

Labeling and visualizing major blood 
vessels in awake and freely moving mice

To enable vasculature labeling, a long-circulating micelle 
formulation of Chrom7 was intravenously (i.v.) injected, allowing for 
imaging sessions for at least 1 h post-injection. Imaging at 45 min after 
injection, we observed signal concentrated in major vessels around the 
orbits, the base of the skull and hind limbs (dorsal view, Figure 1B and 
Supplementary Video S1). These images were acquired at 300 fps, 
using a 968-nm illumination source and 1,000 nm long-pass filtering. 
To showcase the resolution maintained when acquiring at this frame 
rate, we slowed down the video display speed from 300 to 30 fps; the 
fast mouse movement was then showed in slow motion, and most of 
the vessels could still be resolved (Supplementary Video S2). This 
highlights that fluorescence SWIR imaging can be used to resolve fine 
structures in a mouse exhibiting its natural behavior, while 
maintaining a large, whole-mouse field of view.

Fluorophore multiplexing enables 
orthogonal imaging of biological tissues in 
socially interacting mice in up to 4 
channels

One way to exploit the speed enabled by SWIR-emitting 
fluorophores is by acquiring images in multiple channels, a pivotal 
feature in pre-clinical imaging studies (Li et al., 2020; Tian et al., 2020; 
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Bandi et  al., 2022). For multiplexed imaging, we  made use of the 
excitation-multiplexing concept: fluorophore excitation-matched laser 
wavelengths were turned on in alternating sequence while fluorescence 
emission was collected in a single detection window using a single set 
of long-pass filters (Figure 2A and Supplementary Figure S1). This 

multiplexing strategy (thoroughly discussed by Cosco et al. (2020)) not 
only favors speed, given the absence of moving parts to change emission 
filters, but also maintains consistent resolution and contrast, which are 
strongly dependent on detection wavelength in the NIR and 
SWIR windows.

FIGURE 1

Fast acquisition speed is required for imaging of fine mouse vasculature in awake and freely moving mice. A freely behaving mouse with its vasculature 
labeled with Chrom7 micelles was dorsally imaged with an InGaAs detector (3 ms exposure time; 1100-nm long-pass filter; excitation at 968 nm 
(100 mW/cm2). (A) Comparison between a single frame acquired at 3 ms, and the average of this frame with its adjacent ones, comprising simulated 
exposure times of 9, 21, 33, 99, and 201 ms. (B) Selected frames of SWIR fluorescence vascular imaging in the mouse freely moving in the imaging 
chamber. Minimum and maximum displayed values are 0 and 65, respectively. Scale bar: 1 cm.
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To label different biological structures of interest, we deployed 
different injection strategies and exploited the distinct biodistribution 
of the fluorophores’ formulations. Circulating ICG molecules are 
rapidly taken up by hepatocytes in the liver, from which it is excreted 
through the biliary tract to the intestinal tract (Meijer et al., 1988; 
Bahmani et al., 2013). Depending on the time after injection, the liver 
and/or the intestines can be  visualized with a high signal-to-
background ratio (Bahmani et  al., 2013; Cosco et  al., 2021). To 

visualize the intestines, mice were imaged 5–6 h after an intravenous 
(i.v.) ICG injection. Macrophage-rich organs, such as liver, lymph 
nodes, and bones, are rich in signal 24 h after JuloChrom5 micelles 
intravenous (i.v.) injection (Cosco et al., 2021); we used this strategy 
to provide bone/anatomical contrast. JuloFlav7 micelles were injected 
intraperitoneally 30–90 min before imaging, to provide 
complementary information in the peritoneal cavity, alongside the 
ICG-labeled intestines. Finally, to label the vasculature, the 

FIGURE 2

Four-color SWIR fluorescence imaging of socially interacting mice. (A) Diagram of the multiple-fluorophore imaging strategy, showing four different 
lasers matching the excitation spectra of four selected fluorophores were synchronized with an InGaAs detector using an 1150 nm long-pass filter 
(7.8 ms exposure time per frame; 32 frames per second effective framerate in the four-channel, merge images). (B) Two mice had ICG labeling in the 
intestines (magenta, 6 h after intravenous (i.v.) injection), JuloChrom5 in macrophage-rich organs, such as liver, bones, and lymph nodes (red, 24 h 
after i.v. injection), Chrom7 in the blood vasculature (green, 15-30 min after i.v. injection), and JuloFlav7 in the intraperitoneal space (30-45 min after 
i.p. injection). Lasers 785 nm (49 mW/cm2), 892 nm (81 mW/cm2), 968 nm (113 mW/cm2), and 1064 nm (165 mW/cm2) were used to excite ICG, 
JuloChrom5, Chrom7, and JuloFlav7, respectively. These mice were imaged ventrally while exploring the imaging chamber and socially interacting. 
Minimum and maximum displayed values are: a) ICG: 1000 and 1900; b) JuloChrom5: 400 and 850; c) Chrom7: 300 and 1750; d) 100 and 1750. Scale 
bar: 1 cm.

https://doi.org/10.3389/fnins.2023.1135494
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Arús et al. 10.3389/fnins.2023.1135494

Frontiers in Neuroscience 05 frontiersin.org

long-circulating Chrom7 micelles were injected intravenously (i.v.) 
15–30 min before imaging. Using the same experimental approach, 
we imaged two cage mates socially interacting in the imaging arena 
(Figure 2B; Supplementary Figure S2; Supplementary Videos S3, S4), 
which is naturally not possible if mice are anesthetized. For this 
experiment, we used an 1,150 nm long pass filter which reduced the 
total collected light, hence we increased the exposure time to 7.8 ms. 
The effective frame rate of the final 4-channel video is 30 fps, therefore 
maintaining video rate speed, but decreasing our ability to resolve 
small structures when the mouse exhibits particularly 
quick movements.

The excitation spectra of these dyes present some overlap/
crosstalk among the excitation channels. In previous three- and four-
color multiplexed reports on anesthetized mice we  used linear 
unmixing to separate each channel and circumvent these issues. 
However, linear unmixing relies on the assumption that the emission 
response of fluorophores is linear across different excitations 
[discussed in detail by Cosco et al. (2021)]. Fluorophore response, 
however, turns out to mildly deviate from linearity in geometrically 
different organs (e.g., vessels vs. liver vs. deep lymph nodes). While 
not affecting the visual separation of the channels in the published 
multi-color image of anesthetized mice, this effect does make the 
images no longer quantitative. Notably, organ geometry considerably 
changes according the various poses presented by the mice while 
roaming around. Therefore, to minimize fluorophore crosstalk and 
avoid the need of post-processing tools to differentiate the channels, 
we  progressively decreased contrast agent concentration while 
increasing the incident laser power density in a wavelength-
dependent manner. This resulted in distinguishable imaging channels 
(Figure 2B), without the need of unmixing algorithms, despite the 
presence of some fluorophore crosstalk in the individual channels 
(Supplementary Figure S2). Improving raw data acquisition processes 
provides a next step to enable future quantitative multiplexed imaging 
of awake mice.

Organ tracking from freely behaving mice

In order to extract physiologically relevant data from a video with 
labeled organs, the location of each organ needs to be determined. A 
number of approaches to tackle this challenge in anesthetized mice 
have been developed, for instance using manual annotation/selection 
of regions of interest (ROIs), PCA analysis, or image segmentation 
(Wang et al., 2006; Hillman and Moore, 2007; Schoppe et al., 2020). 
PCA analysis relies on the temporal signature of the contrast agent, 
which requires the organs to be immobile, hence being not applicable 
to datasets with awake and freely moving mice (Hillman and Moore, 
2007). Manual ROI selection proves cumbersome to perform in large 
datasets, for example when acquiring at 300 fps.

We initially tried to solve this by thresholding the whole awake 
mouse dataset according to a pre-set intensity value. However, 
we found this approach inconsistent due to the reliance on intensity 
values, difference in mouse pose/posture, remains of contrast agent 
in the tail, and poor performance in low signal-to-background 
samples. Reckoning that delineation of organs contour by 
segmentation would also face similar challenges, we opted to track 
mouse organs using mouse tracking algorithms which are typically 
used for pose estimation.

Mouse tracking and pose estimation are widely investigated 
problems in computer vision with particular application in 
neuroscience and ethological studies (Dell et al., 2014; Gris et al., 2017; 
Abbas and Masip, 2019; Datta et al., 2019). These techniques are used 
to predict and track an animal position and orientation, usually 
providing behavioral and motion information after the application of 
different stimuli. Here, we adopted DeepLabCut (Mathis et al., 2018), 
a deep learning approach, to predict the position of an organ in freely 
moving mice. Particularly, models were trained which were capable 
of  tracking, for example the paws, BAT, liver, intestines and 
heart regions.

DeepLabCut is a deep convolutional neural network used for 
mouse tracking and pose estimation (Mathis et al., 2018). It relies on 
a user-defined pre-selection of coordinates delineating a structure of 
interest (usually the whole mouse) to predict its shape and location in 
the remaining video frames. To apply the algorithm to organ tracking, 
we first defined manual ROI selection (markers) around the organ of 
interest on a fraction of the dataset (typically 10% of the frames per 
experiment). These markers were placed not only on the target 
structure, but also on peripheral structures to enable the alignment of 
the entire mouse (dorsal side or ventral side). This initial selection was 
then used by DeepLabCut to train its own convolutional neural 
network, and finally use the trained model to predict the location of 
each region on the remaining frames, providing as output an 
XY-coordinate list of the predicted ROI location for each frame 
(Supplementary Figure S3). The likelihood values associated with the 
markers were used to filter out incorrectly labeled frames.

To help future data extraction, we  added a few steps to the 
processing pipeline, with the aim to output a stack of frames of 
transformed (translated and rotated) mice facing up. To achieve that, 
each marker for the target structure was translated to the center of the 
field of view, and peripheral markers were rotated about the central 
marker so that the posture of the mouse was aligned across different 
frames (Supplementary Figure S3). Finally, ROIs can be drawn over the 
target structure of the resulting aligned image stack to eventually 
be used to extract quantitative information from the tracked organs. 
Using this processing pipeline, one could generate tracking videos of, 
e.g., the BAT, liver or paw blood vasculature regions of awake mice 
roaming around the imaging chamber, ten-fold faster than with manual 
annotation, with room for scalability and efficiency improvement.

Challenges and perspective to the use of 
SWIR fluorescence imaging in 
neuroscience research

The pipeline for macroscopic SWIR fluorescence imaging 
presented here might seem far off from neuroscience applications, 
which typically rely on data from single cells, neuronal populations, 
or at the very least brain regions. The macroscopic resolution shown 
above clearly does not compare to that obtained by surgically-
implanted sensors, such as patch-clamp, photometry, or optogenetic 
probes, which enable awake imaging, but possess an invasive character, 
despite recent advances to bypass invasive surgical procedures (Cui 
et al., 2014; Chen et al., 2021; Noguchi et al., 2021; Linders et al., 2022). 
The same is true for the resolution of other optical methods, such as 
two-photon microscopy and miniaturized microscopes, which require 
cranial window implantation and mouse restraining (Dombeck and 
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Tank, 2014; Ozbay et al., 2018), and fMRI, which has low temporal 
resolution and also rely on restraining (Desjardins et al., 2019). Of 
note, mesoscopic SWIR imaging has been used to visualize small 
brain vessels or blood–brain-barrier leakage through skin and skull in 
anesthetized mice (Hong et al., 2014b; Zhang et al., 2016; Carr et al., 
2018b). Nevertheless, non-invasive imaging of brain dynamics or 
parameters which complement brain imaging in freely behaving mice 
indicates a plausible perspective for a number of potential applications.

Calcium imaging, widely used by neuroscientists to visualize 
neuronal dynamics, is one immediate such candidate (Yang and Yuste, 
2017). Genetically-encoded calcium indicators, such as those based on 
GCaMP and more recent red-shifted probes, are used as surrogate for 
activity of specific neuronal subtypes (Qian et al., 2019; Shemetov et al., 
2021; Kim and Schnitzer, 2022). While a remarkable application of this 
technique is based on three-dimensional and/or single-cellular imaging, 
it is also used at a larger scale in wide-field imaging to detect coordinated 
activity in specific brain regions, particularly in the cerebral cortex (Ren 
and Komiyama, 2021). The latter has also been applied to restrained 
awake mice with an implanted cranial window (Barson et al., 2020). 
We  here report the ability of SWIR fluorescence imaging to clearly 
visualize the cerebral sinuses in awake and freely-moving mice, and to 
image multiple channels in these mice. Using a similar acquisition setup 
and processing pipeline to correct for motion, it is conceivable to track 
slow-moving signals like the neuronal activity waves seen with GCaMP, 
while the mouse exhibits certain behaviors, especially natural ones 
prevented by head-fixing. A related potential approach is the measurement 
of brain hemodynamics under different conditions and stimuli, or the 
combination of such studies with neuronal activity modulators, such as 
chemogenetic tools, which use conserved signaling pathways and also 
have a non-invasive nature (Zhang et al., 2016; Bruns et al., 2017; Atasoy 
and Sternson, 2018). Moreover, blood–brain-barrier leakage studies could 
also be pursued in freely-moving animals. Performing such studies in 
awake animals, besides enabling correlative measurements between 
behavior and physiology, eliminates confounders introduced by 
anesthesia and stress by restraining (Aksenov et  al., 2015; Sano 
et al., 2016).

The ability of non-invasive macroscopic SWIR imaging to 
visualize other organs, such as the intestines and liver, also indicates 
that chemogenetic studies could be designed to investigate the causal 
factor of neuronal excitation/inhibition in the physiology of peripheral 
organs, therefore enabling the non-invasive direct visualization of 
brain-organ crosstalk studies in freely behaving mice. For instance, 
ICG is a SWIR-emissive fluorophore clinically used to evaluate liver 
physiology (Schwarz et al., 2019); thus, combining these techniques, 
brain-liver crosstalk studies could be pursued without the interference 
of restraining and anesthesia. Also in the context of brain-organ 
crosstalk, fluorescent agents targeting pathogenic or commensal 
bacterial species could be applied in gut microbiota-brain axis studies, 
similarly to PET tracers (Giron and Mazzi, 2021). SWIR fluorescence 
has also been used to label glioma cells (Bruns et al., 2017; Li et al., 
2022). We envision that labeled glioma could be monitored in parallel 
with behavioral measurement and/or in combination with 
hemodynamic or chemogenetic measurements.

Recent efforts have enabled the leap in mouse brain PET imaging 
studies from restrained and head-fixed to freely-moving animals 
(Takuwa et al., 2016; Miranda et al., 2019a). Combining the non-invasive 
properties of PET and SWIR imaging would allow the measurement of 
correlated signals in freely behaving mice. One example is the 

simultaneous assessment of blood flow changes with SWIR fluorescence 
and fluorodeoxyglucose uptake with PET, while the mice exhibit certain 
behaviors. Despite deviating from the non-invasive character enabled 
by SWIR imaging, we finally mention the orthogonality of this modality 
with other traditional neuronal activity recording and manipulating 
methods, such as fiber photometry, electrophysiology and optogenetics. 
The applications here mentioned could be combined with these classical 
tools to, for instance, combine a peripheral physiological measurement 
with the real-time on/off optogenetic remote control of specific 
neuronal populations.

Conclusion

The application of SWIR imaging enables the removal of 
anesthesia, restraints, implants, and other non-invasive steps to study 
the animal in a state of being and environment which is as close to 
natural as possible. In addition, due to its noninvasive nature, SWIR 
imaging potentially enables the longitudinal investigation of 
physiological changes in each animal under study, instead of requiring 
the sacrifice of large populations at each time point. As a result, it 
would be possible to resolve the individual reaction of each animal to 
intervention, revealing key features lost in population averaging.

Here we  presented the combination of high-contrast SWIR-
emitting contrast agents with SWIR-detecting technology to enable 
real-time, multi-channel video recording of up to 4 different channels 
with subsequent tracking of organs of interest from freely roaming 
and behaving mice. Although yet to be demonstrated, the techniques 
here shown have the strong potential to enable non-invasive brain 
activity and brain-peripheral organ crosstalk imaging in freely moving 
mice, therefore unburdening neuroscientists from invasive procedures, 
anesthesia, or mouse restraining.
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