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Objective: This study proposes a new hybrid brain-computer interface (BCI)

system to improve spelling accuracy and speed by stimulating P300 and steady-

state visually evoked potential (SSVEP) in electroencephalography (EEG) signals.

Methods: A frequency enhanced row and column (FERC) paradigm is proposed

to incorporate the frequency coding into the row and column (RC) paradigm so

that the P300 and SSVEP signals can be evoked simultaneously. A flicker (white-

black) with a specific frequency from 6.0 to 11.5 Hz with an interval of 0.5 Hz is

assigned to one row or column of a 6 × 6 layout, and the row/column flashes

are carried out in a pseudorandom sequence. A wavelet and support vector

machine (SVM) combination is adopted for P300 detection, an ensemble task-

related component analysis (TRCA) method is used for SSVEP detection, and the

two detection possibilities are fused using a weight control approach.

Results: The implemented BCI speller achieved an accuracy of 94.29% and an

information transfer rate (ITR) of 28.64 bit/min averaged across 10 subjects during

the online tests. An accuracy of 96.86% is obtained during the offline calibration

tests, higher than that of only using P300 (75.29%) or SSVEP (89.13%). The SVM

in P300 outperformed the previous linear discrimination classifier and its variants

(61.90–72.22%), and the ensemble TRCA in SSVEP outperformed the canonical

correlation analysis method (73.33%).

Conclusion: The proposed hybrid FERC stimulus paradigm can improve the

performance of the speller compared with the classical single stimulus paradigm.

The implemented speller can achieve comparable accuracy and ITR to its

state-of-the-art counterparts with advanced detection algorithms.
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1. Introduction

The brain-computer interface (BCI) is a communication
system that does not rely on peripheral nerves and muscles to
send information and commands to the outside world (Wolpaw
et al., 2000). The BCI system can directly control and communicate
with other entities by reading and transducing brain signals. By
providing patients with conditions such as amyotrophic lateral
sclerosis (ALS) and locked-in syndrome (LIS) with a way to
restore their communication, the BCI system can help patients
restore certain motor functions, improve their quality of life, and
even enable them to enjoy life as healthy people do. Meanwhile,
electroencephalography (EEG) signals are secure, non-invasive,
easy to use, easy to collect, and time-resolving, making them ideal
for BCI systems. At present, various BCI systems based on EEG
have been developed, such as the speller systems (Farwell and
Donchin, 1988; Cecotti, 2010), wheelchair control systems (Li J.
et al., 2013; Li Y. et al., 2013; Li et al., 2014; Kaufmann et al., 2014),
prostheses, and mechanical arm control systems (Pfurtscheller
et al., 2010; Hochberg et al., 2012; Onose et al., 2012).

Electroencephalography-based BCI systems can be divided into
two types: spontaneous or evoked. A representative of spontaneous
BCI is Motor Imagery (MI), in which the user autonomously
controls their thought activity to form certain identifiable potential
information to control an external device (Jiang et al., 2020; Chen
et al., 2021; Pei et al., 2021). However, the user often needs
sufficient training to become proficient. The representatives of
evoked BCI systems are based on the event-related potential (ERP)
and steady-state visually evoked potential (SSVEP). These BCIs
are characterized by the need to rely on external stimuli to evoke
certain specific potential information in the human brain. However,
the advantage is that the evoked signals are often stable, and the
user generally only needs to know the basic operation process, so
evoked BCIs have received more attention, and their technology is
relatively mature.

Event-related potential is a transient characteristic potential
evoked by a small probability event (Squires et al., 1975), and the
most commonly detected potential is the P300 potential. This is
excited as a positive voltage approximately 300 ms after the onset
of the target stimulus (Picton, 1992; Luck and Kappenman, 2011).
In the “Oddball” paradigm, this component is evoked when a
rare stimulus (target stimulus) appears in between several relevant
stimuli (non-target stimulus). The task of the subjects was to focus
on the target stimulus and count its occurrences (Sur and Sinha,
2009). The P300-based speller systems have been proposed early on,
and most of them are based on the “Oddball” paradigm. The earliest
P300 speller system using the row and column (RC) paradigm was
proposed by Farwell and Donchin (1988), whose paradigm is in the
form of a 6 × 6 matrix. Rows and columns are blinked once in
each stimulus trial in a random order to induce the P300 signal,
and the system determines the user’s target character (intersection
of rows and columns) by determining which row and which column
triggered the P300 signal. Most previous studies have increased
their accuracy by superimposed averaging of EEG signals, but
resulting from the inefficiency, single-trail recognition of P300 has
become a hot topic.

Steady-state visually evoked potential is a periodic response
induced by a stimulus at a specific frequency. When the subject

looks at a target flashing at a specific frequency, the subject’s
EEG signal is significantly enhanced, and significant peaks can
be observed at the harmonics of the frequency after the time-to-
frequency conversion. Meanwhile, it was shown that the SSVEP
frequency located in the center of the visual field has the most
pronounced energy increase and gradually decays toward the
periphery in an approximately Gaussian distribution (Sutter, 1992)
so that the subject needs to gaze at the stimulus target constantly. In
addition to frequency, the phase can encode the stimulus frequency
(Chen et al., 2014) and the single-stage paradigm. This can present
many targets simultaneously and is applied in the design of
SSVEP-based spellers. However, in later studies, the Multi-stage
paradigm (Multi-stage) proved more prevalent and efficient (Kick
and Volosyak, 2014; Li et al., 2021). Cecotti (2010) proposed a
multilevel paradigm-based SSVEP speller system, while Nakanishi
et al. (2014) proposed a hybrid frequency and phase coding for
a frequency and phase-based SSVEP speller system. Chen et al.
(2014) proposed a stimulus paradigm with 40 target characters and
compared two frequency-phase mixing patterns.

Many studies have been performed to improve the performance
and create a hybrid BCI paradigm. Since both SSVEP and P300
are EEG signals and their detection regions are independent of
each other, that is, they come from the time and the frequency
domain, respectively, it is feasible to design hybrid triggered
systems combining P300 and SSVEP without additional data
acquisition equipment (Xu et al., 2016; Kundu and Ari, 2022).
Panicker et al. (2011) first introduced a hybrid P300/SSVEP BCI,
which uses a P300 signal for target detection and an SSVEP signal
for asynchronous spelling control, and only starts P300 spelling
when SSVEP reaches a certain threshold. Xu et al. (2013) developed
a hybrid BCI speller that, with the same target stimulus, evokes
P300 spelling in different ways to evoke both P300 and SSVEP
blocking (SSVEP-B). Yin et al. (2013) have developed a hybrid
BCI speller system that divides the conventional P300 speller into
six groups, each flashing at a different frequency, that combines
distinct features of P300 and SSVEP to reduce the number of errors
in the same row or column relative to the target errors that occur.
More recently, a few hybrid BCI speller systems were constructed
(Kapgate et al., 2020; Xu et al., 2020; Katyal and Singla, 2021; Han
et al., 2022). Han et al. (2023) even developed one high-speed
system with over 200 targets, greatly expanding the instruction set.

It is noted that there is a significant competing effect when P300
and SSVEP visual stimuli are presented simultaneously; SSVEP
stimuli will reduce the amplitude of the P300 signal, while P300
stimuli significantly reduce the band power of the SSVEP signal.
However, as reported in the previous study, this competing effect
will not result in a significant decrease in decoding accuracy
because the extracted features from the reduced signals are still able
to discriminate between target categories (Lee et al., 2018).

In this study, we designed and implemented a hybrid
BCI speller system with high compatibility and scalability. The
contributions are in four aspects. First, a frequency enhanced
row column (FERC) paradigm is proposed as a new hybrid
stimulus paradigm. Second, the frequency coding is incorporated
into the RC paradigm so that P300 and SSVEP signals can
be evoked simultaneously. Third, the new hybrid P300-SSVEP
speller outperforms that only using P300 or SSVEP. Fourth,
advanced detection algorithms of P300 and SSVEP and their
further fusion are done. The remainder of this work is organized
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as follows. Section “2. Experimental methods” describes our
methodology, the experimental dataset used in this work, and
the corresponding data processing methods. Section “3. Results”
describes the results. Section “4. Discussion” gives our conclusion
and provides a discussion.

2. Experimental methods

2.1. The P300/SSVEP hybrid stimulation
paradigm

A new P300/SSVEP hybrid stimulation paradigm is proposed
and named the FERC paradigm. Figure 1 shows that the
stimulation interface is divided into six rows and six columns of
36 characters or targets (A to Z, 0 to 9). Each symbol is displayed
equally spaced. To induce the P300 signal, the FERC paradigm
uses the same principle as the Oddball paradigm, where rows and
columns flash alternately in random order within a trial. Each row
or column will only flash once in the same trial.

Simultaneously, to induce the SSVEP signal, the rows and
columns were encoded with different frequencies of stimuli with
continuous flashing. The frequency ranged from 6.0 to 11.5 Hz
with an interval of 0.5 Hz, and there were 12 frequency groups.
Specifically, the frequency of columns is 6.0, 6.5, 7.0, 7.5, 8.0, and
8.5 Hz; the frequency of rows is 9.0, 9.5, 10.0, 10.5, 11.0, and
11.5 Hz. For any row or column, the flashing process lasts one
second. In this way, once the classifier recognizes the column and
row, the target can be determined. Although the information of two
stimuli is used, these stimuli are applied simultaneously in one trial.
Therefore, the FERC paradigm belongs to the one-stage rather than
the multi-stage paradigm.

In the stimulus interface, all characters are gray, and the
background is black when there is no target flashing. The font size
of characters will be enlarged by 16.67% (from 60 to 70), and their
background intensity will change according to the time when the
stimulus flashes appear.

Intensity =
Cos

(
2π × f × t

)
+ 1

2
(1)

where f is the frequency of the stimulus and t is the duration
of the visual stimulus. The reason for taking the cosine function
is to ensure that the background intensity of the target character
constantly changes periodically at any moment of the screen refresh
and is not subject to frame loss because of the phase difference
between the screen refresh and the operation.

2.2. Subjects

Eleven healthy volunteers (male, 19–24 years old, mean
20.7 years old) participated in our experiment, and data from 10
subjects were analyzed. All subjects provided written notification
permission. They had no history of eye problems or neurological
disorders, and nine subjects had no experience with the BCI
system. The Medical Ethics Committee of Northeastern University
approved this study. The participants provided their written
informed consent to participate in this study. Before the start of the

experiment, subjects were asked to minimize eye movements and
to sit comfortably in a chair facing the screen.

2.3. Data acquisition

In this study, an actiCHamp EEG signal amplifier from
Brainproducts (actiCHamp 32ch, Gilching, Germany), was used,
along with the accompanying EasyCap electrode cap, which has
an electrode setup in the cap corresponding to the internationally
accepted standard 64 leads and a signal sampling rate of 250 Hz. In
some other studies, only single-channel EEG signals have been used
for BCI detection (Gao et al., 2003), but we found that multichannel
data would not only yield better and more stable performance. The
multichannel method is convenient for BCI applications because all
users can use the same electrode cap (Bin et al., 2009).

In practice, 15 electrodes were used, including one ground
electrode and one reference electrode (Figure 2). The ground
electrode is located in the FPz of the international standard
electrode, and the reference electrode is located in TP10 of the
International standard electrode. The other electrodes were used
to collect EEG signals. Fz, Cz, P3, P4, PO7, PO8, Pz, and Oz were
used to collect P300 signals located in the parietal and occipital
regions. Nine electrodes, PO7, PO8, Pz, Oz, O1, O2, PO3, PO4, and
POz, were used to collect SSVEP signals in the occipital region. It is
known from previous studies that P300 signals are mostly collected
from the parietal and occipital regions (Luck and Kappenman,
2011) and SSVEP signals are mostly collected from the occipital
region (Allison et al., 2014). Therefore, we selected the most helpful
electrodes for the experimental results from the above regions and
finally determined the above 15 electrodes.

The stimulus is displayed on a 27-inch monitor with a refresh
rate of 240 Hz. All operational analysis is carried out in Matlab
2018b. After the collection, the data will be sent to Matlab software
in the data processing equipment through TCP/IP protocol by
the Remote Data Access (RDA) module, and the marked data
will be shunted.

2.4. Signal preprocessing

There are four main steps in the preprocessing stage of EEG
signals. Firstly, the raw EEG signal was filtered with a 60 Hz
notch filter in order to remove the effects of the industrial
frequency interference. Secondly, the filtered data were corrected
to the baseline by “Detrending.” Thirdly, the data were cut into
approximately 0–800 ms segments after stimulus onset. Finally, the
data were divided into two channels, P300 and SSVEP, and entered
into the next step of the experiment.

2.5. Feature extraction and classification

The data processing procedure for a single trial in our
speller system is given in Figure 3. The triaged P300 and
SSVEP data are passed into their respective data processing
modules and analyzed separately with different processing methods
to extract the feature vectors. The processed P300 data are

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1133933
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1133933 March 9, 2023 Time: 14:29 # 4

Bai et al. 10.3389/fnins.2023.1133933

FIGURE 1

The proposed frequency enhanced row and column stimulus paradigm. A flicker (white-black) with a specific frequency is assigned to one row or
column of a 6 × 6 layout, and the row/column flashes are carried out in a pseudorandom sequence. In this figure, Column 2 and Row 6 are
activated, and the target output is the number “5”.

FIGURE 2

Schematic diagram of arrangements of the 15 electrodes used in the experiment.

passed into the five support vector machine (SVM) classifiers
trained in advance, and then the classification results are fed
into the modified weight controller to derive the P300 score.

For SSVEP data, they are fed into the pre-trained task-related
component analysis (TRCA) model at the end of the pre-
processing procedure to derive the SSVEP score. The two scores
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FIGURE 3

The data processing process for a single trial in the hybrid speller system. The gray blocks in the data section indicate target stimuli, and the white
blocks indicate non-target stimuli. The two models and one weight controller are pre-trained by the calibration data.

are passed into the total weight controller to get the final
output.

2.5.1. P300 feature extraction and classification
The superimposed averaging helps to improve the signal-to-

noise ratio of P300 but often implies a more extended output
character period, which is very detrimental to the efficiency of
online systems. Therefore, a single detection of the P300 signal
is chosen to improve the overall efficiency. It is well known that
detecting single-trial P300 is a complex problem, so we used a
follow-up operation to improve the accuracy.

The pre-processed data were used for feature extraction by
wavelet transform. Since the frequency domain of the P300 signal
ranges from 0.3 to 15 Hz, which is a low-frequency signal, the
original signals are decomposed to a frequency scale of 0–12.5 Hz
by wavelet transform. Them low-frequency wavelet coefficients of n
channels are concatenated to form a feature vector of length m× n
as the features of P300 and fed into the classifier for classification.
Here, m and n are 13 and 8, respectively.

After the feature extraction, the SVM method is adopted to
detect the occurrence of P300 because of its better generalization
ability compared with other machine learning algorithms
(Theodoridis and Koutroumbas, 2006). The principle of SVM is to
find the hyperplane with the maximum distance that can separate
sample categories from the high-dimensional space after mapping
samples to the high-dimensional space. The Gaussian kernel is
selected as the kernel function of SVM, which mainly considers
the unique advantages in solving nonlinear problems when we are
uncertain whether the P300 single detection problem is linearly
separable.

Considering the single detection of the P300 signal, a weighted
ensemble SVM method is further proposed to counteract the
instability of the individual classifier to enhance the classification
accuracy. Determined by the proposed paradigm in this study, the
ratio of Target Stimulus Signal (TSS) samples containing the P300
signal to Non-target Stimulus Signal (NSS) samples in the collected
EEG data is 1:5. Therefore, an undersampling method similar to
the “EasyEnsemble” algorithm is adopted. Specifically, the NSS
samples are randomly and evenly divided into five parts, the TSS

samples are copied five times, and one part of NSS samples and
one copy of TSS samples are combined into a training set to train
one SVM classifier. In this way, the problem of sample imbalance is
transformed into a problem of combining five classifiers (SVM1,
SVM2, . . ., SVM5) with different training sets, which requires
ensemble learning techniques.

The core idea of ensemble learning is to combine multiple
individual learners to solve the same problem. A modified weighted
ensemble method is used based on the theory of ensemble learning
and the actual situation of the paradigm used in this study. It can
dynamically adjust the weights of the classifiers according to the
actual situation.

Suppose there are n trained classifiers (classifier1, classifier2, . . .
. . ., classifiern), where (n > 0) and their cross-validation accuracies
are (acc1, acc2, . . . . . ., accn), let their weights be (w1, w2, . . . . . .,
wn) respectively, and the sum of the weights is 1. To make the
weight of the classifiers with high accuracy greater, one can make
their weights proportional to the accuracy distribution.{

w1
acc1
=

w2
acc2
=

w3
acc3
= . . . = wn

accn∑n
i = 1 wi = 1

(2)

Then for any m ∈[1, n], the system of equations has the
following solutions.

wm =
accm∑i = 1
n acci

(3)

However, suppose weights are assigned directly according to
Equation 3. In that case, there is the problem that classifiers with
better performance do not receive higher weights, which may make
the result after integration inferior to using a single sub-classifier
with better performance and render the integration useless.
Therefore, this study improves on Equation 3 by introducing
a theoretical accuracy to correct the weights to ensure the
performance of the integration method.

Knowing the accuracy P of the classifier in the case of
completely random target selection, we can assume that the
classifier with classification accuracy acci > P plays a positive role.
The classifier with acci < P is ineffective and cannot play a role,
and the classifier with acci = P plays a negative role. Based on this

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1133933
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1133933 March 9, 2023 Time: 14:29 # 6

Bai et al. 10.3389/fnins.2023.1133933

conclusion, we improve the set of equations in Equation 2 and
obtain the following equation.{

w1
acc1−P =

w2
acc2−P =

w3
acc3−P = . . . = wn

accn−P∑n
i = 1 wi = 1

(4)

For any m∈[1, n], wm can be calculated by

wm =
accm − P∑i = 1

n (acci − P)
(5)

According to the modified assignment method, the weights
of those with higher classification accuracy are effectively scaled
up, which is more helpful in improving the minimum level of
the integrated classifier and saving it from being affected by the
classification performance of classifiers with low accuracy.

2.5.2. SSVEP feature extraction and classification
For the SSVEP data, the filter bank technique is utilized first.

The filtered data are input in the TRCA model pre-trained by the
calibration data. Ten sub-bands (Sub1–Sub10) are set as Sub(k):
[k × fa, 90] Hz, k = 1, 2,..., 10. To avoid distortion resulting
from bandpass filtering, each sub-band filter has an extra width
of 2 Hz on the low-frequency side, such as the actual sub-bands
have a lower frequency limit of (k × fa − 2) Hz. Subsequently,
a set of bandpass filters for these sub-bands are designed, and the
Chebyshev I-type bandpass filter is used. The filter bank processing
enhances the relative strength of the stimulus frequency harmonics,
improving its detection accuracy and making the harmonics of
the stimulus frequency much more usable for SSVEP detection.
This data up-dimensioning method can improve the accuracy
of recognition when the time required for calculation is not
much or not limited.

The TRCA has previously been used for the BCI speller by
Nakanishi et al. (2017). In our study, the calibration data of
stimulus “n” used to perform SSVEP detection are defined as
a four-dimension tensor x = (χ)njkh∈RNf × Nc × Ns × Nt, and its
corresponding test data or data to be detected are defined as a two-
dimensional matrix X∈Rc × Ns. Here n and Nf denote the identifier
and number of target stimuli, j and Nc denote the identifier and
number of channels, k and Ns denote the identifier and number of
sampling points, and h and Nt denote the identifier and number
of experimental trials. TRCA extracts task-relevant components by
spatially filtering the training data. The spatial filter ωf ∈RNc × 1

at the stimulus frequency f can be calculated by the following
equation.

argωf
max

ωT
f A

TAωf

ωT
f B

TBωf
(6)

where A ∈ RNs × Nc denotes the result of averaging over Nt blocks
at a frequency f in Z.

A =
1
Nt

Nt∑
i = 1

Zi,f (7)

B=[ZT
1,f ZT

2,f ZT
3,f . . . ZT

Nt,f]T
∈ RNt ×Ns × Nc, and

Zi,f ∈RNs × Nc denotes the multichannel EEG signal with
stimulation frequency f in block i. After calculating the spatial filter
ωf at frequency f, TRCA uses the Pearson correlation coefficient

between the averaged training data across trials for n-th visual
stimulus and the test signal X ∈ RNs × Nc as the final discriminant.

p′ = corr(Xωf ,Aωf ) (8)

The pre-trained TRCA model is a classifier with 12 categories.

2.6. Weight controller combining P300
with SSVEP

The probability of each category is obtained and represented as
the SSVEP score in the form of a 12× 1 vector. Similarly, the P300
score is also represented by a 12 × 1 vector. The weight controller
combines these two scores to yield the final prediction. The weights
in the controller are determined by Equations 9, 10.{

wP
accP−E =

wS
accS−E

wP+wS = 1
(9)

{
wP =

accP−E
accP+accS−2∗E

wS =
accS−E

accP+accS−2∗E
(10)

where accP and accS are the system’s recognition accuracy for
the P300 and SSVEP signal, respectively; wP and wS are the
weights of the kinds of signals; E is the accuracy of the completely
randomized system.

2.7. Experimental setup

The experimental procedure was divided into two phases for
each subject: offline calibration and online testing. In the first
phase, 11 epochs of data are collected, and the procedure is shown
in Figure 4. During the experiment, the subjects only need to
focus on their target and keep their eyes on the target location,
ignoring the rest of the stimuli. Each epoch consists of 12 trials
corresponding to a character input. Before each trial, two seconds
are given to the subject for identifying, locating, and gazing at
the target character. Each trial contains 12 flash stimuli (6 rows
and 6 columns). The order and flashing frequency of the flashing
stimulus were determined by the paradigm defined in section “2.1.
The P300/SSVEP hybrid stimulation paradigm.” The duration of
each visual stimulus flashing is 1 s, and the stimulus interval is
100 ms.

No feedback is given to subjects throughout the calibration
phase. For each subject, 1,584 trials (samples) were collected. Using
these samples, the two models (Pre-trained weighted ensemble
SVM model and Pre-trained TRCA model) and one weight
controller are trained and tested offline in a cross-validation
fashion. Specifically, 10 trials of data are used for training, and 1
trial of data is used for testing with 11 cross-validations.

The second phase of the test was divided into two parts: a
copy speller test and a free spelling test. In the copy speller test,
subjects are asked to type “BCISPELLER,” “HELLOWORLD,” and
“NEUBMIE” in sequence (27 characters in total). For each subject,
972 flashes (27 characters× 12 flashes× 3 repetitions) are collected.
The EEG signal of each flash collection is called a data sample and
is sequentially input to the trained models and weight controller
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FIGURE 4

The time sequence diagram of the offline calibration.

for real-time online judgment. In the free input test, subjects are
asked to spell any number of arbitrary characters and to inform
the experimenter of the characters in mind at the end of the
experiment, which the experimenter recorded.

During the test phase, at the end of each trial, as real-time
feedback, the characters identified from the EEG signal of that trial
will be displayed on the screen. In summary, the graphical user
interface used by the hybrid speller system is given in Figure 5.

In both the offline calibration and online testing phases,
subjects are given a 3–7 min break between each epoch of the test
to relieve visual fatigue and relax their mind to avoid the impact of
nervousness or excitement on the subsequent test, with the exact
duration of the break determined by the subject.

2.8. Evaluation and comparison

Two important metrics are usually used to evaluate the
performance of a BCI speller system: accuracy (ACC) and the
information transfer rate (ITR). These two metrics represent the
input accuracy and speed of the system, respectively. ACC is
defined as the ratio of the number of successful target selections
(X1) to the total number of system inputs (X)

ACC =
X1

X
× 100% (11)

The input speed and the number of characters should also be
considered, so Wolpaw introduced the metric ITR, which shows the
amount of information that can be transmitted in 1 min (Wolpaw,
2007)

ITR = {log2N + Plog2P + (1− P)log2
1− P
N − 1

}/T (12)

here N is the number of categories of output commands available
in the system, P is the probability of correctly selecting the target
option, and T denotes the time of each trial of experiments.

The performance of the weighted ensemble SVM model for
P300 and the ensemble TRCA model for SSVEP is compared
with that of its three counterparts. They are FLDA (Fisher Linear

Discriminant Analysis), BLDA (Bayesian Linear Discriminant
Analysis), and CCA (Canonical Correlation Analysis). FLDA
projects the data to lower dimensions, projects mean values of
classes far apart, and the diffusion of projected data has been used
for P300 detection (Panicker et al., 2011). BLDA uses regularization
to prevent the overfitting of noisy data sets. With Bayesian analysis,
the degree of regularization can be estimated automatically and
quickly from the training data without time-consuming cross-
validation (Hoffmann et al., 2008). CCA is a standard algorithm
in SSVEP BCI (Lin et al., 2006; Bin et al., 2009), a multivariate
statistical algorithm that attempts to reveal the correlation between
two data sets. Moreover, our hybrid speller is compared with some
state-of-the-art counterparts regarding the number of subjects,
detection algorithms, stimulus paradigms, ACC, and ITR.

3. Results

3.1. Performance of the hybrid speller in
the offline calibration tests

Table 1 presents the performance of the hybrid speller and its
counterparts in the offline calibration tests, the standard deviation
of ACC and ITR is also given for different classification methods.
Among the 10 subjects, the hybrid speller accuracy ranges from
93.89 to 99.31%, and the mean reaches 96.86%, much higher
than that only by P300 (75.29%) and only SSVEP (89.13%).
Meanwhile, the hybrid speller yields a mean ITR of 30.08 bits/min,
outperforming P300 only (19.36 bits/min) and SSVEP only
(25.83 bits/min). The speller by SSVEP alone outperforms P300
alone.

3.2. Performance of the hybrid speller in
the online tests

In the online tests, our hybrid speller achieves a mean accuracy
of 94.29% and a mean ITR of 28.64 bits/min (Table 2). One out of
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FIGURE 5

The graphical user interface used by the hybrid speller system. The area marked in red (A) is the visual stimulus interface; the area marked in yellow
(B) is the control panel; the area marked in blue (C) is the input target prompt text box, and the area marked in green (D) is the input text box.

TABLE 1 Performance of the hybrid speller and its counterparts in the
offline calibration tests.

Subject ACC (%) ITR (bits/min)

P300 SSVEP Hybrid P300 SSVEP Hybrid

S1 76.51 87.12 95.33 19.86 24.72 29.11

S2 75.00 95.83 98.33 19.23 29.41 31.01

S3 75.00 80.42 93.89 19.23 21.58 28.28

S4 74.31 87.50 98.03 18.94 24.91 30.81

S5 72.92 96.67 99.31 18.36 29.93 31.72

S6 75.00 87.50 95.14 19.23 24.91 29.00

S7 74.31 88.75 97.50 18.94 25.53 30.46

S8 79.17 89.17 96.53 21.02 25.75 29.84

S9 76.37 86.25 96.80 19.81 24.29 30.01

S10 74.31 92.08 97.78 18.94 27.28 30.64

Mean (SD) 75.29
(1.63)

89.13
(4.51)

96.86
(1.58)

19.36
(0.69)

25.83
(2.35)

30.08
(0.99)

10 subjects has an accuracy of 100% at an ITR of 32.31 bits/min,
and nine subjects have an accuracy higher than 90%. In addition,
all subjects had an ITR greater than 25 bits/min.

Figure 6 shows the accuracy of the hybrid speller with the
number of tests in the online testing phase. In the copy speller tests,
the accuracy increases with the number of tests, and the accuracy in
the copy speller test 3 (mean value, 96.48%) is significantly higher
than that in the copy speller test 1 (mean value, 89.07%). This
may indicate that most subjects become increasingly proficient in
using the hybrid speller system as the number of tests increases and

TABLE 2 Performance of the hybrid speller in the online tests.

Subject ACC (%) ITR (bits/min)

S1 88.89 25.61

S2 94.90 28.86

S3 90.74 26.56

S4 92.59 27.56

S5 100.00 32.31

S6 98.15 30.89

S7 93.75 28.20

S8 90.48 26.43

S9 95.31 29.10

S10 98.15 30.89

Mean (SD) 94.29 (3.51) 28.64 (2.08)

the learning and training have performance-enhancing effects for
speller users.

Interestingly, in a few cases, spelling the same character too
much caused a decrease in accuracy. For example, for S5, the
average accuracy of three copy speller tests is 100, 98.14, and
96.30%. The possible reason might be visual fatigue.

The free spelling test yields higher accuracy than the copy
speller test 1 (89.07 versus 95.69%, p< 0.05). There is no significant
difference between the free spelling test and the second and third
copy speller tests (p > 0.05). This situation may be related to
the subjects’ attention; specifically, too much input from the same
character causes inattention, and free input may encourage the
subjects to focus more actively on the target.
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FIGURE 6

The accuracy of the hybrid speller with the number of tests in the online tests. Asterisk represents a significant difference (p < 0.05), 1–3 are the
copy speller tests, and 4 is the free spelling test.

Many studies present the difference in the average accuracy and
average ITR between the online and offline experiments (Chang
et al., 2016; Katyal and Singla, 2021). In line with our results, the
online performance is worse than the offline. The reason for this
difference is unclear. We speculate that the performance might
be affected by the subjects’ emotional state at different times, the
wearing of soft electrode caps, and other issues. It is noted that the
differences are within acceptable limits.

Figure 7 shows the corresponding confusion matrix in the
online experiments to compare the recognition accuracy of
different targets. The diagonal line in this matrix shows the
accuracy when the predicted value is true. Because the rows and
columns are calculated separately, there are no elements in the
upper right and lower left parts of the confusion matrix. In
most cases (10/12), the wrong identification usually occurs at the
adjacent targets. Here is an example: the highest 3% error appears
in the adjacent column (the third column) while the real target is
located in the second column with a frequency of 6.5 Hz. There are
only two special cases (the first column and the third row) and the
highest error does not appear within two adjacent targets.

3.3. Results of the comparative
experiments and spellers

Using the same dataset collected in our calibration tests,
three comparative algorithms are compared with our SVM and

TRCA methods (Table 3). Our SVM method achieves higher ACC
compared with FLDA and BLDA in P300 detection (75.29 versus
72.22 and 61.90%) and higher ITR (19.36 versus 18.08 and 14.11).
Our TRCA outperforms CCA in SSVEP detection (ACC: 89.13
versus 73.33%; ITR: 25.83 versus 18.53).

Our hybrid speller is compared with eight counterparts
regarding the number of subjects, detection algorithms, stimulus
paradigms, ACC, and ITR (Table 4). The number of subjects
in previous studies ranged between three and twenty. The ACC
is between 79.17 and 9.90%, and ITR is between 19.8 and
164.00 bits/min. Our hybrid speller performs comparably to
the-state-of-art hybrid spellers (P300 and SSVEP). It is worth
mentioning that we use a single-trial P300 to increase ITR and
our counterparts use the method of superimposed averaging. Our
hybrid speller uses a one-stage paradigm similar to the other
four studies (Panicker et al., 2011; Yin et al., 2013; Xu et al.,
2014; Jalilpour et al., 2020), and the other four spellers use the
multi-stage paradigm (Yin et al., 2015; Chang et al., 2016; Xu
et al., 2020; Katyal and Singla, 2021). The one-stage paradigm
has the outstanding feature of high speed, while the multi-stage
paradigm can have a higher capacity of characters (Li et al.,
2021).

The FERC paradigm is proposed and implemented in our
speller. This paradigm differs from the four previous one-stage
paradigms (Panicker et al., 2011; Yin et al., 2013; Xu et al., 2014;
Jalilpour et al., 2020). To the best of our knowledge, this paradigm
has not been used for the speller though a similar paradigm has
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FIGURE 7

The confusion matrix in the online experiments to compare the recognition accuracy of different targets.

been used for the BCI for other purposes (Allison et al., 2014; Wang
et al., 2015).

Our work is different from previous studies mainly in two
aspects: (1) the stimulation paradigm; (2) the method of feature
extraction and classification of EEG signals. First, our paradigm
triggers both P300 and SSVEP signals simultaneously by the
flickers (white-black) of row/column with different frequencies. It
is different from the previous four one-stage paradigms (Panicker
et al., 2011; Yin et al., 2013; Xu et al., 2014; Jalilpour et al., 2020).
Despite belonging to the same category of paradigms, they have
significantly distinct features. In the paradigm of Panicker et al.
(2011), P300 and SSVEP signals have different roles and P300
spelling started only when SSVEP reached a certain threshold. Yin
et al. (2013) directly combined SSVEP and P300 signals triggered
by different stimuli (i.e., the flashing of row/column and orange
crosses, respectively). Xu et al. (2014) used the paradigm suitable
for capturing signals of P300 and SSVEP blocking, while Jalilpour
et al. (2020) specified the paradigm using the spatial characteristics
of the SSVEP signal response. Second, for the method of feature
extraction and classification of EEG signals, our work combined
SVM for P300 and TRCA for SSVEP with the more advanced
fusion algorithm. In previous studies, different linear discriminant
analysis (LDA) algorithms [e.g, FLDA, SWLDA (step-wise LDA),
RLAD (regularized LDA), BLAD] have been commonly utilized for
P300 signal (Panicker et al., 2011; Yin et al., 2013, 2015; Xu et al.,
2014; Chang et al., 2016; Jalilpour et al., 2020; Katyal and Singla,
2021). For SSVEP signals, the CCA method is usually adopted

TABLE 3 Performance comparison of the proposed algorithm and
its counterparts.

Performance P300 SSVEP

FLDA BLDA SVM
(our

method)

CCA TRCA
(our

method)

ACC [Mean (SD)] 72.22 (2.44) 61.90 (4.62) 75.29 (1.63) 73.33 (3.13) 89.13 (4.51)

ITR [Mean (SD)] 18.08 (1.14) 14.11 (2.89) 19.36 (0.69) 18.53 (1.87) 25.83 (2.35)

(Panicker et al., 2011; Yin et al., 2013, 2015; Xu et al., 2014; Chang
et al., 2016; Katyal and Singla, 2021) while SVM is also used
(Jalilpour et al., 2020).

4. Discussion

This article proposes a FERC as a new hybrid stimulus
paradigm, and a hybrid speller is implemented. The frequency
coding is incorporated into the RC paradigm so that P300 and
SSVEP signals can be evoked simultaneously. The new hybrid
P300-SSVEP speller outperforms that using P300 or SSVEP alone.
Advanced detection algorithms of P300 and SSVEP (such as the
weighted ensemble SVM model and the ensemble TRCA model)
and their further fusion by the weight controller are crucial. In
the end, the implemented hybrid speller presents a comparable
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TABLE 4 Comparison of our hybrid speller to the previous ones.

Study Key aspects Performance

Our method Subjects: 10; P300: SVM; SSVEP: ensemble TRCA
Our paradigm causes both P300 and SSVEP signals to be hybrid by weights.

ACC = 94.29%
ITR = 28.64

Panicker et al.,
2011

Subjects: 3; P300: FLDA; SSVEP: CCA
It uses a P300 signal for target detection and an SSVEP signal for asynchronous spelling control and only starts P300 spelling when
SSVEP reaches a certain threshold.

ACC = 97.00%
ITR = 20.13

Yin et al., 2013 Subjects: 12; P300: SWLDA; SSVEP: CCA
SSVEP is stimulated by flashing between white and black at different frequencies, and P300 is stimulated by highlighting rows and
columns using orange crosses.

ACC = 93.85%
ITR = 56.44

Xu et al., 2014 Subjects: 11; P300: SWLDA; SSVEP: CCA
P300 and SSVEP blocking were simultaneously evoked in different ways under the same target stimulus.

ACC = 87.80%
ITR = 54.00

Jalilpour et al.,
2020

Subjects: 6; P300: RLDA; SSVEP: SVM
The P300 signal determines the target symbol group, and the character position is determined by the spatial characteristics of the SSVEP
signal response.

ACC = 93.06%
ITR = 23.41

Yin et al., 2015 Subjects: 13; P300: SWLDA; SSVEP: CCA
In the multi-step SSVEP paradigm, the frequencies of SSVEP stimuli switch once midway through each selection, such as the first half of
the selection is for step one and the second half for step two.

ACC = 95.18%
ITR = 50.41

Chang et al.,
2016

Subjects: 10; P300: SWLDA; SSVEP: CCA
In the multi-stage paradigm, the flickering stimulus and periodic change of the character evoke dual-frequency SSVEP, while the oddball
stimulus of the target character evokes P300.

ACC = 93.00%
ITR = 31.80

Xu et al., 2020 Subjects: 10; ensemble TRCA
In the multi-stage paradigm, different sub-spellers use different frequencies and initial phases, and different characters blink at different
times.

ACC = 79.17%
ITR = 164.00

Katyal and
Singla, 2021

Subjects: 20; P300: BLDA; SSVEP: CCA
In the multi-stage paradigm, P300 estimates the tier of alpha-numeric symbol sets intended by the subject. The secondary selection
phase used a traditional SSVEP paradigm to elicit SSVEP markers.

ACC = 96.42%
ITR = 131.00

performance in terms of both ACC and ITR to the-state-of-art
hybrid spellers (P300 and SSVEP).

Although P300 spellers have been extensively studied and can
achieve good accuracy with multiple trials per symbol, using single-
trial spellings is still a challenging problem. In our study, the
hybrid system incorporating SSVEP achieved an online spelling
performance of 94.29% accuracy, ITR of 28.64 bits/min using a
single trial, and 96.8% accuracy after two training sessions. These
results show that our BCI speller is expected to enable fast spelling
in stimulus-driven BCI applications.

We used data acquisition in parallel with stimulus generation
and labeling for the system’s design to speed up the feedback.
For the choice of paradigm, we designed the FERC to incorporate
frequency coding into the RC paradigm to achieve the effect
of evoking P300 and SSVEP signals simultaneously. For the
selection of frequency, we chose a relatively low 6.0–11.5 Hz
with a spacing of 0.5 Hz to get the best possible classification
results while also considering the problem of visual fatigue
of the subjects. For the page layout, we used the classic
6 × 6 layout and finally simplified all the operations into a
few buttons, making it easy for people without professional
training to operate.

Simultaneously, the system is not dependent on existing
external platforms, so it is highly scalable and compatible,
supporting many different application scenarios, and can be used
within the system, in-text editing software, and social software. The
application of a virtual keyboard in the feedback control module
allows the system to support the input of text in various languages
using the input methods already installed on the computer, meeting
the user’s needs while ensuring that it is as consistent as possible

with the input habits of healthy people in their lives. In subsequent
performance tests, the system performed well.

The most likely explanation for the performance improvement
is three aspects. First, the clever design of the hybrid stimulus
mechanism can detect both signals without causing performance
degradation. Second, the modified weighted integrated SVM
method can classify P300 signals more efficiently compared with
the traditional SVM algorithm for processing EEG signal effects.
Third, the addition of the SSVEP component provides additional
information that helps predict targets versus non-targets. These
analyses conclude that our hybrid BCI method yields better
and more stable performance than the P300-only and SSVEP-
only methods.

One of the 11 subjects was discarded because of the low
accuracy (33.33%). By reviewing the literature, we identified a
phenomenon called “BCI Illiteracy,” which refers to the presence
of a proportion of people who cannot trigger the two signal-evoked
signals P300 or SSVEP, as well as the spontaneous signal MI (Lee
et al., 2019). However, there is still no standardized definition of
BCI blindness, so we believe this is a possible explanation.

We collected feedback from subjects after the experiment on
their feelings about using the system and their experience with the
experimental process and stimulation paradigm. The following two
main feedback comments are obtained. First, all subjects reported
significant visual fatigue during the overall length of data collection
in the first phase of the experiment, and some subjects would feel
annoyed or lose focus uncontrollably during the process. However,
from an experimental design perspective, if the number of training
sessions is reduced, it may lead to poor generalization of the model.
During model calibration, we found that the accuracy of model
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cross-validation improved with the increase in data. Second, several
volunteers reported that their attention was affected to some extent
by the flickering of adjacent characters while gazing at the target
characters, both during calibration and testing. They indicated that
they would unconsciously shift their eyes to gaze at or look at
these targets with their afterglow when the adjacent characters were
illuminated, and the low accuracy of some volunteers may have
been related to this factor.

Combined with the above feedback, the study of reducing the
collected training data is an important future research direction
in which the generated spurious data will supplement the missing
training data. In addition, to further improve the performance
of our BCI speller, in the future, we will conduct more research
with more advanced signal processing algorithms (Pei et al., 2022),
reduce the current electrode set, and select the optimal stimulus
onset asynchrony for the flash frequency.

5. Conclusion

A hybrid BCI speller system based on a single-trial P300
and SSVEP has been designed and implemented. The frequency
coding is incorporated into the RC paradigm so that the P300
and SSVEP signals can be evoked simultaneously. Advanced
detection algorithms of P300 (the weighted ensemble SVM) and
SSVEP (the ensemble TRCA) and their further fusion lead to
good performance (average 94.8%, maximum accuracy of 100%,
and ITR of 28.64 bits/min). The new hybrid P300-SSVEP speller
outperforms the P300 or SSVEP alone and shows comparable
performance to its state-of-the-art counterparts. These results
demonstrate that our speller system has specific application
prospects and practical value.
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