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In 2019, the International Classification of Diseases 11th Revision International

Classification of Diseases (ICD-11) put forward a new concept of “chronic primary

pain” (CPP), a kind of chronic pain characterized by severe functional disability

and emotional distress, which is a medical problem that deserves great attention.

Although CPP is closely related to depressive disorder, its potential neural

characteristics are still unclear. This paper collected EEG data from 67 subjects (23

healthy subjects, 22 patients with depression, and 22 patients with CPP) under the

auditory oddball paradigm, systematically analyzed the brain network connection

matrix and graph theory characteristic indicators, and classified the EEG and PLI

matrices of three groups of people by frequency band based on deep learning.

The results showed significant differences in brain network connectivity between

CPP patients and depressive patients. Specifically, the connectivity within the

frontoparietal network of the Theta band in CPP patients is significantly enhanced.

The CNN classification model of EEG is better than that of PLI, with the highest

accuracy of 85.01% in Gamma band in former and 79.64% in Theta band in later.

We propose hyperexcitability in attentional control in CPP patients and provide a

novel method for objective assessment of chronic primary pain.

KEYWORDS

chronic primary pain (CPP), depressive disorder, EEG, phase lag index (PLI), brain
networks, convolutional neural network (CNN)

1. Introduction

Chronic pain is defined as pain that lasts or recurs for more than 3 months, characterized
by the interaction of biological, psychological, and social factors (Treede et al., 2015).
At present, the etiology and pathogenesis of some chronic pain are not clear. The terms
“somatoform pain disorders” or “functional pain syndromes” are usually used to describe
this kind of pain. Such patients often go to various specialties of the hospital for repeatedly
checking to legitimize their suffering, consuming a lot of medical resources. However, due
to diagnostic uncertainty patients often feel guilty or angry and poorly understood. They
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are dissatisfied with the curative effect, and even have a crisis of
trust in doctors (Serbic et al., 2022). In 2019, the IASP expert
group participated in the revision and release of the International
Classification of Diseases 11th Revision (ICD-11), which proposed
the concept of “chronic primary pain (CPP)” (Nicholas et al., 2019),
advocating that it be incorporated as a disease in its own right
rather than a symptom (Treede et al., 2019). This diagnosis needs
to be considered and targeted when the cause of chronic pain is
not clear but is accompanied by significant emotional abnormalities
and functional impairment.

Although there are still some disputes on the concept of CPP,
more and more studies suggest that CPP may lead to specific
changes in brain plasticity, which could be expected to be an
objective diagnostic indicator of CPP. The recent review found that
the gray matter volume of the cingulate cortex and insula of CPP
patients decrease significantly while the right striatum gray matter
increases (Wang et al., 2022). The duration of pain symptoms is
positively correlated with the right brain volume and negatively
correlated with the volume of the right anterior cingulate cortex
and the right middle frontal gyrus gray atter. At the same time,
CPP induces dysfunction of descending pain modulation, which is
closely related to the serotonin system (Tao et al., 2019).

Clinically, patients with chronic pain have a higher risk
of having depressive symptoms (Yalcin and Barrot, 2014).
This comorbidity may indicate overlapped underlying neural
mechanisms in chronic pain and depressive disorders (DD).
As un particular type of chronic pain characterized by severe
functional disability and emotional distress, CPP may present
closer relationship with DD. However, there is still a lack of
mechanistic studies exploring the similarities and differences
between the two, which could provide the clinician with important
diagnosis and treatment tools (Burke et al., 2015; Harth and
Nielson, 2019).

Compared with other brain imaging technologies, EEG has a
time resolution of milliseconds, which can measure the changes in
brain neurophysiology (Boloukian and Safi-Esfahani, 2020; Yasin
et al., 2021). On one hand, there have been many studies on
depression-related EEG markers. Some researchers mainly use the
degree of prefrontal lateralization of normal people and patients
with depression to achieve classification (Jesulola et al., 2015;
Palmiero and Piccardi, 2017), and propose that EEG characteristics
can predict the heterogeneity of individual antidepressant drug
responses to a certain extent. It is mainly found that the activities
of Theta and Alpha frequency bands in the prefrontal and parietal
lobes are related to depression (Pigoni et al., 2019). The latest
research is based on the resting state EEG model optimized by
computer. It is found that the neural activity of the prefrontal lobe
can predict the treatment response of patients with depression to
antidepressants (Wu et al., 2020). On the other hand, important
efforts have been made in EEG biomarkers for chronic pain,
although there is still disagreement on specificity and replicability
(Mouraux and Iannetti, 2018; Ploner and May, 2018). For example,
resting-state Theta and Gamma synchrony in frontal areas (Ta
Dinh et al., 2019) and greater frontoparietal connectivity of the
alpha oscillations (Ye et al., 2019) have been involved in the
pathophysiology of chronic pain. Using the tonic pain model,
we and other researchers have demonstrated that prefrontal
cortex-related functions (i.e., cognitive task performances) and
brain activities measured by EEG are related to pain tolerance

(Zhou et al., 2015a,b, 2020) and recovery (Rustamov et al., 2021).
Therefore, the extraction of EEG features through machine learning
and other methods can help in individualized diagnosis and
therapeutic monitoring of CPP.

The auditory oddball task can study the characteristics of
attention resource allocation, working memory and information
updating (Isreal et al., 1980; Johnson, 1986; Polich, 1986; Murphy
et al., 2014). The auditory P300 evoked by this paradigm has been
well applied in psychiatric diseases, and is the main candidate
electrophysiological biomarker of psychiatric diseases (Jeon and
Polich, 2003). The functional connectivity of EEG signals, especially
the analysis of complex brain networks, may be more important
for exploring the mechanism of brain activity in a task state. It
has been used to study psychological diseases such as Alzheimer’s
disease and autism (Steinmann et al., 2018; Bosch-Bayard et al.,
2020). For functional brain networks, researchers have proposed
many coupling methods, such as correlation-based method, partial
order correlation-based method, and sparse method (Bullmore
and Sporns, 2012; Sporns, 2013; Li et al., 2015; van den Heuvel
et al., 2018). According to the existing research, the Phase Lag
Index (PLI) is insensitive to the brain volume effect and can
eliminate all indirect causality. Therefore, it is an excellent method
to obtain functional brain network connectivity since the direct
causality among the brain network nodes can be more accurately
evaluated (Stam et al., 2007). Graph theory analysis involves
filtering and transforming the functional connection matrix into a
graph, and can be applied to investigate its topological structure
or connectome of complex brain network (Farahani et al., 2019).
Using this method, a recent systematic review has found significant
group differences between chronic pain patients and healthy
controls on certain overall graphical measures rather than nodal
levels (Lenoir et al., 2021). Convolutional neural network (CNN)
was used in the field of image recognition at the early stage and
achieved very good classification results in the field of biological
signal analysis, as well as good results in the field of auxiliary
diagnosis of mental diseases (Acharya et al., 2018; Yao et al., 2020),
but it has not been applied in the analysis and auxiliary diagnosis of
chronic pain yet.

Therefore, this study will use task-state (i.e., auditory oddball
paradigm) EEG feature extraction, mainly applying CNN as a deep
learning algorithm for classification and complex brain network
analysis to identify the neurophysiological characteristics of CPP
different from DD, and meanwhile to explore its characteristic
neural representation.

2. Materials and methods

2.1. Procedure

In this study, the auditory oddball task EEG data were collected
from healthy subjects (HC) and patients with DD and CPP.
First, using the PLI coupling to construct the brain functional
connectivity network, the connectivity differences between groups
of different brain regions in different frequency bands are
compared and analyzed using graph theory and CNN. Then, the
CNN algorithm is used to classify diseases based on EEG feature
extraction in different frequency bands, providing a new method
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FIGURE 1

Flow chart of research methods. Collect EEG generated by auditory oddball stimulation in three groups of subjects, and then select 23 channels of
interest for brain network analysis and CNN classification.

for objective evaluation of CPP. The processing flow of relevant
data is shown in Figure 1.

2.2. Participates

In this study, twenty-two patients with CPP (13 females,
46 ± 9.62 years), twenty-two patients with DD (11 females,
46 ± 12.33 years), and twenty-three HCs (13 females,
49 ± 10.26 years) were recruited from the Shanghai Changhai
Hospital, Shanghai Hongkou Mental Health Center and University
of Shanghai, respectively, (Shanghai, China). All participants gave
their written informed consent after the experimental procedure
had been carefully explained. The research has been approved by
the local research ethics committee.

Inclusion and exclusion criteria of subjects: chronic primary
pain concerning the diagnostic criteria proposed by ICD-11: pain in
one or more anatomical regions that (1) persists or recurs for longer
than 3 months; (2) associated with significant emotional distress
or functional disability (interference with activities of daily life and
participation in social roles); (3) cannot be better accounted for by
another chronic pain condition (American Psychiatric Association,
2013). Depressive disorder diagnosis was established according to
the Diagnostic and Statistical Manual of Mental Disorders, 5th
edition (DSM-V) criteria, as assessed by the structured clinical
interview for DSM-V and Hamilton Depression Scale (HAMD).
The two categories of patients also need to meet the following
inclusion criteria: (1) Age 18–65 years old; (2) Junior high school
degree or above; (3) Not taking medicine at the initial diagnosis
or more than 6 months after drug withdrawal; (4) Volunteer to
participate in this study and sign the informed consent form.
Exclusion criteria: (1) Serious cognitive impairment or hearing
disability, unable to cooperate in the completion of project-related
assessment tests; (2) Serious physical diseases; (3) Severe psychiatric
symptoms; (4) Abuse of psychoactive substances; (5) Suffering from
diseases that can cause secondary chronic pain.

All subjects were instructed to fill in SDS for self-evaluation of
depression level (Table 1). Two groups of patients were assessed by
the physician with HAMD. The subjective and multidimensional
experience of pain in CPP patients was quantitatively measured
using the Short-Form McGill Pain Questionnaire (Dworkin et al.,
2009). It comprises three subscales: a pain rating index (PRI)
describing the qualities of pain, a 10 cm visual analog scale (VAS)
describing the intensity of averaged daily pain during the past
2 weeks, and a present pain intensity (PPI) index describing the
intensity of current pain.

2.3. Experimental paradigm

Auditory oddball task was applied. The stimulus materials
for the auditory oddball task were composed of 30 target stimuli
(1,200 Hz, 75 dB, 50 ms) and 200 standard stimuli (1,000 Hz,
75 dB, 50 ms). The stimuli were arranged in a pseudo-random order
with an interval of 1,000–1,500 ms between each stimulus. Before
the experiment, there was a training part consisting of 10 tones,
including two target stimuli. Subjects were asked to identify the
tones with a low probability of occurrence, count them in silence,
and then report to the researchers. The experimental program was
written by E-Prime 1.0 software of Psychology Software Tools in
the United States. The presentation mode of the stimulus sequence
is shown in Figure 2.

2.4. Data acquisition and preprocessing

The experimental data acquisition equipment is 32 channels
high-density EEG acquisition equipment made by Brain
Productions Company in Germany. The recording software
is based on the Vision Recorder system developed by the above
company. During the whole experiment, the electrode was within
the range below 30 k �, and the sampling rate was 1,000 Hz. The
EEG cap was set with a 0.1–100 Hz band-pass filter in the default

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1133834
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1133834 March 20, 2023 Time: 14:22 # 4

Li et al. 10.3389/fnins.2023.1133834

TABLE 1 Number of subjects in three categories (N), average age, years
of education, sex ratio, the average score of HAMD, the average score of
SDS, and the average score of McGill Questionnaire.

HC DD CPP

N 23 22 22

Average Age/Year 49± 10.26 46± 12.33 46± 9.62

Education/Year 10± 2.72 10± 4.73 10± 4.37

Male/Female 10/13 11/11 9/13

HAMD scale 5.46± 2.37 19.61± 4.01 20.83± 3.74

SDS scale 47.25± 3.55 69.28± 6.72 70.36± 5.68

McGill Questionnaire

PRI 0.98± 0.87 1.26± 0.65 12.47± 1.59

VAS 1.21± 0.73 1.74± 0.67 6.42± 2.33

PPI 0.20± 0.20 0.25± 0.24 3.73± 0.47

setting of the headset. To reduce the calculation cost during data
processing, the data was down-sampled to 250 Hz. The impedance
of recording electrodes was kept at less than 5 k �. The collected
data were preprocessed using the EEGLAB toolbox (v2019.1) of
MATLAB (R2020a) software: select 23 electrodes were placed on
the scalp based on the international 10–20 electrode placement
system and take Cz as the reference electrode. See Figure 1 for
the selected electrodes and functional area division (Delorme
and Makeig, 2004). Take the target stimulus as 0 times, select
−0.2 s∼0.8 s data as a trial, and remove the components of eye and
muscle electricity through independent component analysis.

2.5. Brain network construction and
coupling

As Figure 3 shows: (1) First, EEG data is collected and
preprocessed; (2) To establish the functional connection, it
is necessary to obtain the time series of brain activities in
different regions; (3) According to these sequences, aggregation
measurement is used to calculate the correlation of these sequences,
so that the brain network is represented as a correlation matrix; (4)
The consistency threshold method is applied to the matrix (30%
of the connections are reserved) to retain the most significant part
of the features so that the connection strength in different brain

regions can be visually expressed; (5) Finally, the graph theory
features are calculated and analyzed.

Before calculating PLI, the analytic signal based on the Hilbert
transform is used to determine the instantaneous phase, to calculate
the phase synchronization. The calculation formula of PLI is (Stam
et al., 2007):

PLIxy
(
f
)
= | < sign(φx(f )− φy(f )) > | (1)

Where<> represents the expected value, ∅x
(
f
)
− ∅y(f )

represents the phase synchronization of x and y channels/brain
region signals at f frequency. The value range of PLI is [0,1], where
1 represents complete phase synchronization and 0 represents no
phase synchronization.

2.6. Graph theory analysis of complex
brain network

Graph theory is a method that can be applied to brain networks.
It can describe the topological structure of complex networks
and the changes in different network metrics in networks. The
diagram is composed of a group of nodes (electrode array) and
their connections (edges). For the quantification of graph topology,
there are many measures. In this study, the following indicators
were selected to conduct in-depth research on the constructed
functional brain network.

2.6.1. Node degree centrality (DC)
DC is the most direct metric to characterize node centrality in

network analysis. The calculation formula for the degree centrality
of a node is as follows (Boccaletti et al., 2006):

DCi =
ki

N − 1
(2)

Where, ki represents the number of existing edges connected
to node i, and N − 1 represents the number of edges connected to
node i and other nodes.

2.6.2. Node betweenness centrality (BC)
The intermediate number can reflect the importance of a node

or edge in the network. It is the number of shortest paths through

FIGURE 2

Diagram of the experimental paradigm in this paper. This experimental paradigm includes two kinds of stimuli: 1,000 Hz majority stimulus and
1,200 Hz target stimulus. The stimuli are arranged in a pseudo-random manner, with an interval of 1,000–1,500 ms between each stimulus.
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FIGURE 3

Typical construction process of functional brain network. From left to right : (1) the electrode of interest; (2) the preprocessed EEG; (3) the
connection matrix calculated by PLI; (4) sparsely processed and mapped to the 3D human brain model; (5) carry out feature analysis on the sparse
brain network.

FIGURE 4

The data partition diagram used to create the model. Divide all data into 10-folds. The number of trials in each fold is the same, and the number of
CPP, DD, and HC are uniform. At the same time, ensure that all data of each subject only exists in onefold. Divide the 10-folds into test set, validation
set and training set according to 1:2:7. The training data is used for the training model, and the validation data is used for the parameter optimization.
After adjusting the model weights for both sets of data together, the test set is used for prediction.

a node or edge in the network (Newman, 2005). It is defined as
follows:

BC (i) =
2
∑

h < j∈V,h6=1,j6=1 ghj(i)

(N − 1)(N − 2)ghj
(3)

Where, ghj is the number of all shortest paths from node h ∈
V to nodej ∈ V , V is the set of all nodes in the network, ghj(i)
represents the number of all shortest paths from node h ∈ V to
node j ∈ V passing through node i.

2.6.3. Clustering coefficient (CC)
CC Of brain region node refers to the ratio of the number of

edges connected by all nodes adjacent to the node to the maximum
possible number of edges connected between these adjacent nodes.
CC is often used to describe the degree of network integration or
node density. The CC of node i represents the ratio of the current
number of edges between all its neighboring nodes to the maximum
number of edges that can exist between all its neighboring nodes.
The larger the CC is, the closer the local connection of the node in
the network is (Freeman, 1978):

CCi =
2ti

ki(ki − 1)
(4)

CCi is the clustering coefficient of node i, ti is the number of
triangles formed by node i, ki is the degree of node i.

2.6.4. Local efficiency (Eloc)
Eloc measures how to efficiently spread information through the

direct adjacent nodes of the node, measuring the local information
transmission capacity of the network. The local efficiency of any
node i is (Stam et al., 2007):

Eloc (i) =
1

NGi(NGi − 1)

∑
j6=k∈Gi

1
lj,k

(5)

Gi refers to the subgraph formed by the neighbors of node i, lj,k
represents the shortest path length between nodes j, k.

2.6.5. Global efficiency (Eglob)
Global Efficiency is used to represent the degree of aggregation

of nodes in the graph, and is defined as follows (Stam et al., 2007):

Eglob =
1
N

N∑
i = 1

Ei =
1
N

N∑
i = 1

∑
j∈N,j6=i d−1

ij

N − 1
(6)

Where Ei represents the efficiency of node i.

2.7. Deep learning algorithm for
classification

This paper uses a compact CNN that can be used for various
EEG signal classification tasks, including event-related potentials
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(ERP) (Prabhu et al., 2020). In addition, this article improves on
the CNN and reduces the first AvgPool2d layer kernel size and
stride by half, enabling CNN to classify the PLI matrix (22 × 22).
Its architecture is shown in Table 2. The input of this model is raw
EEG data, including channel number, and time sample. To limit the
number of trainable parameters, the architecture adopts depth and
separable convolution. The initial combination of 2D convolution
and depth convolution allows each temporal filter to learn spatial
filters (Schirrmeister et al., 2017). At the same time, the number of
spatial filters learned from each feature map is controlled by the
depth parameter. After each convolution, batch normalization is
performed to achieve model stability. In addition, the dropout layer
is used to significantly reduce overfitting (Mukhtar et al., 2021). The
final multi-category classification layer uses the SoftMax function.

2.8. Model training

When using CNN for training, this study uses 10-fold cross-
validation processing method, in which one random fold is used as
the test set, the other twofolds are used as the validation set, and the
rest as the training set. It also ensures that three types of subjects are
evenly distributed in each fold and that the data of each subject only
exists in the same fold. At the same time, each dataset (training set,
validation set, and test set) is disordered before the training stage
(Figure 4).

The network is trained using the backpropagation algorithm
(Hung and Adeli, 1993) with a batch size (the number of training
samples in iteration) of 32. An optimization algorithm, namely
adaptive moment estimation (Adam) (Mukhtar et al., 2021) is
adopted in this work to update the parameter of the proposed
network structure. It was observed it enables the network to
converge at a faster rate thereby improving the efficiency of the
training process.

TABLE 2 The improved CNN network structure that classifies the PLI
matrix, including the layer, the output shape of data, and the
number of parameters.

Layer Output shape Param

Conv2d [32, 8, 22, 22] 1,000

BatchNorm2d [32, 8, 22, 22] 16

Conv2d With Constraint [32, 16, 1,22] 352

BatchNorm2d [32, 16, 1, 22] 32

ELU [32, 16, 1, 22] 0

AvgPool2d [32, 16, 1, 11] 0

Dropout [32, 16, 1, 11] 0

Conv2d [32, 16, 1, 12] 352

Conv2d [32, 16, 1, 12] 256

BatchNorm2d [32, 16, 1, 12] 32

ELU [32, 16, 1, 12] 0

AvgPool2d [32, 16, 1, 1] 0

Dropout [32, 16, 1, 1] 0

Conv2d [32, 3, 1, 1] 51

Log SoftMax [32, 3, 1, 1] 0

The following equation is used to update the 1st-moment
estimate (Kingma and Ba, 2014). All operations on vectors are
element by element.

mt = β1mt−1 + (1− β1)

[
∂c
∂θ

]
t

(7)

TABLE 3 One-Way ANOVA analysis of the mean values of brain networks
in three groups of people (95% confidence interval).

Frequency
band

Sum of
squares

Mean
square

F P

Wide band 0.044 0.22 57.617 < 0.0001

Delta 0.008 0.004 7.670 0.001

Theta 0.027 0.014 74.315 < 0.0001

Alpha 3.984 1.992 195.245 < 0.0001

Beta < 0.0001 < 0.0001 1.560 0.218

Gamma 0.001 < 0.0001 7.662 0.001

TABLE 4 Significant P-Values for post-hoc comparisons based on
Tukey’s method of ANOVA.

Frequency
band

CPP vs. DD CPP vs. HC DD vs. HC

Wide band 0.995 < 0.0001 < 0.0001

Delta 0.025 0.500 0.001

Theta < 0.0001 < 0.0001 < 0.0001

Alpha < 0.0001 0.601 < 0.0001

Gamma 0.079 0.001 0.211

FIGURE 5

The above figure shows θ the functional connection matrix of band
CPP, DD, and HC have a value range of [0, 5], and its electrode
channels from top to bottom are FP1, FP2, F3, F4, F7, F8, FC1, FC2,
FC5, FC6, C3, C4, CP1, CP2, CP5, CP6, Pz, P3, P4, Oz, O1, and O2.
The following figure shows that the matrix values are subtracted
(from left to right are CPP-DD, DD-HC, CPP-HC) and the most
significant difference characteristics are retained by 30%, and its
value range is [–0.2, 0.2].
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Where m, t, c, θt and ∂c
∂θ are defined as the 1st-moment

vector, timestep, cost function, resulting parameters (weights), and
gradient, respectively. The parameters β1 and β2 represent the
exponential decay rates which are chosen to be 0.9 and 0.999,
respectively, (Kingma and Ba, 2014).

The following equation is used to update the 2nd-moment
estimate (Kingma and Ba, 2014).

vt = β2vt−1 + (1− β2)

[
∂c
∂θ

]2

t
(8)

The following equations are used to compute the 1st and 2nd-
moment estimates, respectively, (Kingma and Ba, 2014).

m̂t =
m̂t

1− β t
1

(9)

v̂t =
m̂t

1− β t
2

(10)

In addition, the following equation is used to update the
weights of links connecting the layers (Kingma and Ba, 2014).

θt =

[
1−

αλ(1− β1)
√

υ̂t + ε

]
θt−1 −

αm̂t
√

υ̂t + ε
(11)

Where α and ε denote the learning rate and numerical value
and are set at 1 × 10−4 and10−8, respectively, in this work. The
variable λ, known as the regularization parameter, is also one of the
essential parameters during training to prevent data overfitting. It
is tuned to 0.2 in this work.

To avoid overfitting and improve the generalization, the
dropout (Srivastava et al., 2014) technique is applied to the fully-
connected layers 6 and 12. During training for each mini-batch,
some of the neurons from these layers are selected randomly and
dropped. This forces the model to learn from a subset of input
features and not the entire input features. The value is set to 0.5,
i.e., the probability of a neuron being retained during training is
50% and the probability of a neuron being rejected is 50%.

In this paper, the negative log-likelihood loss function is used
to deal with multi-classification problems (de Boer et al., 2005). The
input is the logarithmic probability value. For the batch data D(x, y)
containing N samples, x is the output of the neural network and is
normalized and logarithm zed. y is the category label corresponding
to the sample, and each sample may be one of C categories.

ln is the loss corresponding to the nth sample, the value range is
[0, C-1]:

ln = − wyn xn,yn (12)

w is used for sample imbalance between multiple categories:

wc = weight[c] · 1{c 6= ignore_index} (13)

The default value of reduction is mean, and the corresponding
l(x, y) is:

1
(
x, y

)
=

N∑
n=1

1∑N
n=1 wyn

ln (14)

2.9. Technology validation

F1 Score is an indicator used to measure the accuracy of the
two-class model in statistics. It can be seen as a weighted average of

the model’s accuracy and recall. Its value range is [0, 1]. The larger
the value is, the better the model is.

F1− score =
2(recall ∗ precision)

recall+ precision
(15)

In multi-classification problems, Macro-F1 is usually used
(Supratak et al., 2017).

macro− F1 =
1
n

n∑
i=1

F1− scorei (16)

Where n is the number of categories and i is the
number of categories.

2.10. Statistical analysis

SPSS software was used for statistical analysis. One-way analysis
of variance analysis (ANOVA) was used for the comparative
analysis of brain networks of three groups, where group category
was used as a factor, and the average value of each channel after
the superposition of the brain network connection matrix was used
as a dependent variable. The Tukey method was used as a post hoc
analysis for testing differences between groups.

3. Results

3.1. Functional connectivity

One-way ANOVA found that the brain networks of the three
groups are statistically different except for the Beta band (Table 3).
Further post hoc analysis based on the Tukey method (Table 4)
shows that in the Gamma band there was difference in network
characteristics between CPP and HC subjects but not between CPP
and DD or DD and HC. In Delta and Alpha bands, a significant
difference was present between CPP and DD, DD and HC, but
not between CPP and HC. In the Theta frequency band only, the
P-values between groups were all less than 0.05, indicating that
different groups possess independent brain network characteristics
in this frequency band.

To further explore the specific differences in brain networks
among the three groups, we carried out a functional connectivity
matrix analysis of CPP, DD, and HC and compared the differences
after subtraction and the consistency threshold method. See
Figure 5 for Theta band results (see Supplementary material
for results in other bands). The results show that in the CPP
group, the Theta frequency band connection between parieto-
occipital electrodes (P3, O2) and prefrontal electrodes (FP1, FP2) is
significantly enhanced (the connection strength of 4–5); in the HC
group, the connections between electrode Cp5 and O2, electrode
FC2 and F4 are slightly enhanced (the connection strength of
3–4); in DD group, the connection strength is the weakest (the
connection strength of 1–3). Further difference comparison shows
that the CPP group has significantly increased connectivity between
the prefrontal area and the posterior parietal area compared with
the DD group, while the difference between CPP and HC groups
is mainly reflected in the stronger connectivity of CP5-O2 and
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FIGURE 6

Statistical comparison chart of overall efficiency of three groups of people in six frequency bands. The error interval takes the value of 95%.
*P < 0.05.

F4-FC2; Compared to HC group, the connectivity strength of
brain network in DD subjects is inhibited, mainly in the form of
weakened connectivity between the parieto-occipital area and the
prefrontal area.

3.2. Complex brain network

We further analyzed and compared the global feature revealed
by Eglob, as shown in Figure 6. The Eglob of DD subjects in Delta
and Alpha bands is higher than the other two groups of subjects,
while it is inhibited in the Theta band. This is also verified by
the classification results of the PLI matrix using CNN (see Section
“3.3. Classification accuracy of different frequency bands”). The
difference between CPP and HC subjects is mainly reflected in the
significant enhancement of the Theta band.

At the node level, DC, BC, Eloc, and CC of the three groups
in the Theta band is also different, as shown in Figure 7. The
DC intensity of CPP subjects is higher in the right frontal and
left parieto-occipital region than in the other two groups. This
result is consistent with the aforementioned trend of brain network
connection intensity in the Theta band. In the distribution of BC,
the intensity in the central area of CPP subjects is lower than that of

the other two groups, and the intensity of BC in the prefrontal and
temporal areas of CPP and DD is lower than that of HC subjects.
Similarly, the Eloc intensity in the central area of CPP subjects
is also lower than that of the other two groups, and the overall
Eloc intensity of DD subjects is lower than that of the other two
groups. In the distribution of CC, the overall distribution of the
three groups is similar, but the left frontal lobe intensity is higher
in the CPP and DD groups.

3.3. Classification accuracy of different
frequency bands

CNN was first used to classify the EEG of three groups of
subjects. Further, this paper used the improved CNN model to
classify the PLI matrix of three groups of subjects to verify the above
brain network analysis results. After 1,000 training epochs, the loss
rate, and verification loss rate of the two classifications began to
converge to 0 and 0.8, respectively, while the training accuracy and
verification accuracy converged to 1 and 0.3, respectively, which
proved that the network structure was stable (Figure 8). Figure 9
shows that both sets of classifications have achieved ideal accuracy
in six frequency bands: in the classification of EEG, the Gamma
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band has the highest accuracy of 85.01%, followed by the Theta
band with 81.37%; in the classification of PLI, the highest frequency
band of Theta is 79.64%, followed by Delta and Gamma with 77.81
and 77.47%. The results of Macro-F1 in Figure 10 show that the
classification model of EEG is better than that of PLI. Except for the
Beta frequency band, the Macro-F1 evaluation of other frequency
bands are above 0.65, and the PLI classification model is also above
0.6 except for the Beta frequency band.

4. Discussion

In this study, the CNN algorithm was used to classify CPP, DD,
and HC through EEG activities evoked by the auditory oddball
paradigm, and the brain network and complex connectivity of the
three groups were investigated. Our main results show that the
deep learning approach of CNN exhibits successful classification
for all the three groups, with the highest classification accuracy in
the Gamma band and the second highest classification accuracy in
the Theta band. Brain network analysis reveals a stronger phase-
based connection within the frontoparietal network in the Theta
band in CPP subjects. The same trend is also reflected in the degree
centrality and global efficiency.

The analysis of the characteristics of CPP brain network
connectivity in this study reveals that the connectivity of the
brain networks in the prefrontal and posterior area of CPP
patients is significantly increased in the Theta band. Graph
theory analysis shows that CPP patients has increased the overall
efficiency and stronger centrality at the node level in the right
frontal regions and left parietal occipital regions. Despite the
limited spatial resolution of the EEG, it has been found that
the area with increased network connectivity in the Theta band
characteristic of CPP is highly overlapped with frontoparietal
network (FPN). This network is also often referred as the
central executive network, whose activity is important for goal-
directed cognitive tasks, including working memory, planning,
judgment, and decision-making (Kelly et al., 2008; Menon,
2011). Important FPN regions are the dorsolateral prefrontal
cortex and the posterior parietal cortex. Previous studies have
shown that the increased functional connectivity in the prefrontal
cortex is crucial for the chronicity of pain (Baliki et al., 2012;
Hashmi et al., 2013; Vachon-Presseau et al., 2016). At the same
time, the function of prefrontal cortex is closely related to the
perception of chronic pain and its related negative emotions,
cognitive changes, and avoidance behaviors (Baliki and Apkarian,
2015; Kragel et al., 2018; May et al., 2019). Theta event-related
synchronization (ERS) observed in prefrontal regions during the
oddball task is thought to primarily reflect activation of neural
networks involved in allocation of attention related to target
stimuli (Missonnier et al., 2006). Migraine patients presented
an enhanced phase-synchronization in the theta frequency range
during auditory attention tasks (Vilà-Balló et al., 2021). Similar
to our results, these findings could indicate the presence of
a hypersensitivity to auditory stimuli and hyperexcitability in
attentional control in CPP patients. Therefore, the neurological
profile of CPP patients may be characterized by impaired
FPN function, resulting in dysfunctional adaptive strategies for
individuals to perceive stimulus (including pain) both cognitively

FIGURE 7

The average distribution of degree centrality, median centrality,
local efficiency, and clustering coefficient of the three groups of
people in Theta band.

(how the individual feels) and behaviorally (what the individual
does).

EEG has been used to classify depression correctly with great
accuracy in many studies (de Aguiar Neto and Rosa, 2019). Many
previous studies analyzed the oscillatory power spectrum at rest.
We first investigate neural response induced by oddball task in
CPP and DD patients. Our deep learning results show that the
classification accuracy of EEG activities in the theta, alpha, beta
and gamma bands can reach more than 80% during the oddball
task for the three groups, with the best classification accuracy in
the gamma band. Furthermore, the classification model of EEG is
better than that of connectivity (i.e., PLI). Neural activity evoked by
deviant stimuli in oddball paradigm has been related to attention
and memory updating for discrete events. A significant increase
in the relative power of theta can be observed in healthy subjects,
while a decrease in the higher frequency bands (Gomez-Pilar et al.,
2016). Theta oscillatory response induced by oddball paradigm
is restricted to the bilateral frontal cortex, particularly in the
dorsolateral, and medial prefrontal areas, while 30–60 Hz bands can
be visualized over the bilateral central region (Ishii et al., 2009).
Theta oscillation is considered to be closely related to cognitive
functions, such as attention and memory processing (Buzsáki, 2002;
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FIGURE 8

(A) Accuracy and loss rate change curve of training set and validation set trained with EEG, (B) accuracy and loss rate change curve of the training
set and validation set trained with PLI matrix.

Wang and Ding, 2011). Gamma oscillation may represent the basic
characteristics of neuron signal and communication, which seems
to be particularly relevant to the local processing and feedforward
communication of current important stimuli (Donner and Siegel,
2011; Fries, 2015; Ploner et al., 2017). Interestingly, resting-state
Gamma in prefrontal cortex, on one hand, has been considered
as a reliable marker for major depression, as this brain region is
heavily implicated in mood and emotional regulation (Fitzgerald
and Watson, 2018). On the other hand, a latest systematic review
reports Gamma oscillations in the prefrontal cortex as a promising
biomarker for tonic and chronic pains (Li et al., 2023). Considering
resting-state activities could impact task-induced activities, the
results we found for optimal classification accuracy in the gamma
band may be interpretable.

Our findings reveal that significant difference in brain network
connectivity (i.e., PLI) is in Theta band, while the second highest
accuracy in EEG classification is achieved in the Theta band, and
the highest classification accuracy is in the Gamma band. This
could be explained by following reasons. First, the classification
accuracy of PLI matrix is generally lower than that of EEG. This
difference is due to the loss of characteristic information such
as the time domain and frequency domains when using PLI to
calculate brain network connection matrix. Second, it has been

observed that there is significant phase synchronization between
frontal and posterior electrodes during auditory oddball task in
the Gamma and Theta bands, which has been interpreted as a
functional connectivity among cortical regions devoted to the task
execution (Choi et al., 2010). Given the vital role of Gamma
activity in the neural communications between different brain
structures and networks (Fries, 2015), our result could be related
to this Theta-Gamma synchronization. Future analysis on Theta-
Gamma synchronization may further explore the underlying neural
mechanisms.

The current deep learning method shows that it is of great
significance to apply CNN to EEG data of auditory stimulation state
to distinguish among CPP, DD, and HC subjects with an accuracy
rate of more than 80%. First, it suggests that the EEG of each
frequency band may play a role in the pathophysiology of CPP.
Second, the current approach may be a step toward an EEG-based
auxiliary diagnosis of CPP. Third, the abnormal pattern of EEG
activity in CPP patients may represent a potential new therapeutic
target, such as intervention through non-invasive brain stimulation
technology or neural feedback methods. In particular, the emerging
transcranial magnetic stimulation can modulate the oscillation and
synchronization of neurons at specific frequencies, so it may be a
promising method for pain modulation (Polanía et al., 2018).
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FIGURE 9

Accuracy distribution of classification of EEG and PLI matrices of three groups of people using CNN in six frequency bands.

FIGURE 10

Use Macro-F1 to evaluate the model obtained from two kinds of data in six frequency bands.

5. Conclusion

In conclusion, our results indicate that there are significant
differences among CPP, DD, and HC subjects in the characteristics
of auditory oddball-induced EEG activities, suggesting that
CPP has its unique neuroelectrophysiological manifestations.
The connectivity of theta band in FPN-related brain regions

is significantly enhanced in CPP patients, thus contributing
to better understanding of the brain mechanism of CPP.
Our research provides a novel approach for the objective
assessment of CPP. The non-invasive brain stimulation
and neural feedback approaches targeting Theta and
Gamma oscillation and FPN networks may be a potential
treatment scheme.

Frontiers in Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1133834
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1133834 March 20, 2023 Time: 14:22 # 12

Li et al. 10.3389/fnins.2023.1133834

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed
and approved by the experimental procedures involving human
subjects described in this paper were approved by the Shanghai
Changhai Hospital Review Board. The patients/participants
provided their written informed consent to participate in this study.

Author contributions

YL: software, validation, writing – original draft, and
visualization. BY: conceptualization, methodology, resources,
project administration, and funding acquisition. ZW: resources,
data curation, and project administration. RH and XL: data
curation. XB: conceptualization, investigation, and project
administration. SZ: methodology, validation, writing – review and
editing, and funding acquisition. All authors contributed to the
article and approved the submitted version.

Funding

The project is supported by the National Key Research
and Development Program of China (Nos. 2022YFC3602700
and 2022YFC3602703), National Natural Science Foundation of
China (No. 81801093), Clinical Research Foundation of Shanghai

Municipal Health Commission (No. 20204Y0417), Shanghai
Major Science and Technology Project (No. 2021SHZDZX),
National Defense Basic Scientific Research Program of China
(Defense Industrial Technology Development Program) (grant
No. JCKY2021413B005), and Shanghai Industrial Collaborative
Technology Innovation Project (No. XTCX-KJ-2022-2-14).

Conflict of interest

BY was employed by Shanghai Shaonao Sensing Technology
Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.2023.
1133834/full#supplementary-material

References

Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., and Adeli, H. (2018). Deep
convolutional neural network for the automated detection and diagnosis of seizure
using EEG signals. Comput. Biol. Med. 100, 270–278. doi: 10.1016/j.compbiomed.2017.
09.017

American Psychiatric Association (2013). Diagnostic and statistical manual of
mental disorders. DSM-5-TR. Virginia, VA: American Psychiatric Association.

Baliki, M. N., and Apkarian, A. V. (2015). Nociception, pain, negative moods, and
behavior selection. Neuron 87, 474–491. doi: 10.1016/j.neuron.2015.06.005

Baliki, M. N., Petre, B., Torbey, S., Herrmann, K. M., Huang, L., Schnitzer, T. J., et al.
(2012). Corticostriatal functional connectivity predicts transition to chronic back pain.
Nat. Neurosci. 15, 1117–1119. doi: 10.1038/nn.3153

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D. (2006). Complex
networks: Structure and dynamics. Phys. Rep. 424, 175–308. doi: 10.1016/j.physrep.
2005.10.009

Boloukian, B., and Safi-Esfahani, F. (2020). Recognition of words from brain-
generated signals of speech-impaired people: Application of autoencoders as a neural
Turing machine controller in deep neural networks. Neural Netw. 121, 186–207.
doi: 10.1016/j.neunet.2019.07.012

Bosch-Bayard, J., Girini, K., Biscay, R. J., Valdes-Sosa, P., Evans, A. C., and
Chiarenza, G. A. (2020). Resting EEG effective connectivity at the sources in
developmental dysphonetic dyslexia. Differences with non-specific reading delay. Int.
J. Psychophysiol. 153, 135–147. doi: 10.1016/j.ijpsycho.2020.04.021

Bullmore, E., and Sporns, O. (2012). The economy of brain network organization.
Nat. Rev. Neurosci. 13, 336–349. doi: 10.1038/nrn3214

Burke, N. N., Finn, D. P., and Roche, M. (2015). Neuroinflammatory mechanisms
linking pain and depression. Mod. Trends Pharmacopsychiatry 30, 36–50. doi: 10.1159/
000435931

Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron 33, 325–340.
doi: 10.1016/S0896-6273(02)00586-X

Choi, J. W., Jung, K.-Y., Kim, C. H., and Kim, K. H. (2010). Changes in
gamma- and theta-band phase synchronization patterns due to the difficulty of
auditory oddball task. Neurosci. Lett. 468, 156–160. doi: 10.1016/j.neulet.2009.1
0.088

de Aguiar Neto, F. S., and Rosa, J. L. G. (2019). Depression biomarkers using non-
invasive EEG: A review. Neurosci. Biobehav. Rev. 105, 83–93. doi: 10.1016/j.neubiorev.
2019.07.021

de Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y. (2005). A tutorial
on the cross-entropy method. Ann. Oper. Res. 134, 19–67. doi: 10.1007/s10479-005-
5724-z

Delorme, A., and Makeig, S. (2004). EEGLAB: An open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis. J. Neurosci.
Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Donner, T. H., and Siegel, M. (2011). A framework for local cortical oscillation
patterns. Trends Cogn. Sci. 15, 191–199. doi: 10.1016/j.tics.2011.03.007

Dworkin, R. H., Turk, D. C., Revicki, D. A., Harding, G., Coyne, K. S., Peirce-
Sandner, S., et al. (2009). Development and initial validation of an expanded and
revised version of the short-form McGill pain questionnaire (SF-MPQ-2). Pain 144,
35–42. doi: 10.1016/j.pain.2009.02.007

Frontiers in Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1133834
https://www.frontiersin.org/articles/10.3389/fnins.2023.1133834/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2023.1133834/full#supplementary-material
https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1016/j.neuron.2015.06.005
https://doi.org/10.1038/nn.3153
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.neunet.2019.07.012
https://doi.org/10.1016/j.ijpsycho.2020.04.021
https://doi.org/10.1038/nrn3214
https://doi.org/10.1159/000435931
https://doi.org/10.1159/000435931
https://doi.org/10.1016/S0896-6273(02)00586-X
https://doi.org/10.1016/j.neulet.2009.10.088
https://doi.org/10.1016/j.neulet.2009.10.088
https://doi.org/10.1016/j.neubiorev.2019.07.021
https://doi.org/10.1016/j.neubiorev.2019.07.021
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.tics.2011.03.007
https://doi.org/10.1016/j.pain.2009.02.007
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1133834 March 20, 2023 Time: 14:22 # 13

Li et al. 10.3389/fnins.2023.1133834

Farahani, F. V., Karwowski, W., and Lighthall, N. R. (2019). Application of graph
theory for identifying connectivity patterns in human brain networks: A systematic
review. Front. Neurosci. 13:585. doi: 10.3389/fnins.2019.00585

Fitzgerald, P. J., and Watson, B. O. (2018). Gamma oscillations as a biomarker for
major depression: An emerging topic. Transl. Psychiatry 8:177. doi: 10.1038/s41398-
018-0239-y

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Soc.
Netw. 1, 215–239. doi: 10.1016/0378-8733(78)90021-7

Fries, P. (2015). Rhythms for cognition: Communication through coherence.
Neuron 88, 220–235. doi: 10.1016/j.neuron.2015.09.034

Gomez-Pilar, J., Martín-Santiago, O., Suazo, V., de Azua, S. R., Haidar, M. K.,
Gallardo, R., et al. (2016). Association between electroencephalographic modulation,
psychotic-like experiences and cognitive performance in the general population: EEG
modulation, cognition and PLE. Psychiatry Clin. Neurosci. 70, 286–294. doi: 10.1111/
pcn.12390

Harth, M., and Nielson, W. R. (2019). Pain and affective distress in arthritis:
Relationship to immunity and inflammation. Exp. Rev. Clin. Immunol. 15, 541–552.
doi: 10.1080/1744666X.2019.1573675

Hashmi, J. A., Baliki, M. N., Huang, L., Baria, A. T., Torbey, S., Hermann, K. M., et al.
(2013). Shape shifting pain: Chronification of back pain shifts brain representation
from nociceptive to emotional circuits. Brain 136, 2751–2768. doi: 10.1093/brain/
awt211

Hung, S. L., and Adeli, H. (1993). Parallel backpropagation learning algorithms on
CRAY Y-MP8/864 supercomputer. Neurocomputing 5, 287–302. doi: 10.1016/0925-
2312(93)90042-2

Ishii, R., Canuet, L., Herdman, A., Gunji, A., Iwase, M., Takahashi, H., et al. (2009).
Cortical oscillatory power changes during auditory oddball task revealed by spatially
filtered magnetoencephalography. Clin. Neurophysiol. 120, 497–504. doi: 10.1016/j.
clinph.2008.11.023

Isreal, J. B., Wickens, C. D., Chesney, G. L., and Donchin, E. (1980). The event-
related brain potential as an index of display-monitoring workload. Hum. Factors 22,
211–224. doi: 10.1177/001872088002200210

Jeon, Y.-W., and Polich, J. (2003). Meta-analysis of P300 and schizophrenia:
Patients, paradigms, and practical implications. Psychophysiology 40, 684–701. doi:
10.1111/1469-8986.00070

Jesulola, E., Sharpley, C. F., Bitsika, V., Agnew, L. L., and Wilson, P. (2015). Frontal
alpha asymmetry as a pathway to behavioural withdrawal in depression: Research
findings and issues. Behav. Brain Res. 292, 56–67. doi: 10.1016/j.bbr.2015.05.058

Johnson, R. (1986). For distinguished early career contribution to psychophysiology:
Award address, 1985. A triarchic model of P300 amplitude. Psychophysiology 23,
367–384. doi: 10.1111/j.1469-8986.1986.tb00649.x

Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., and Milham,
M. P. (2008). Competition between functional brain networks mediates behavioral
variability. Neuroimage 39, 527–537. doi: 10.1016/j.neuroimage.2007.08.008

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
[Preprint]. doi: 10.48550/ARXIV.1412.6980

Kragel, P. A., Kano, M., Van Oudenhove, L., Ly, H. G., Dupont, P., Rubio, A., et al.
(2018). Generalizable representations of pain, cognitive control, and negative emotion
in medial frontal cortex. Nat. Neurosci. 21, 283–289. doi: 10.1038/s41593-017-0051-7

Lenoir, D., Cagnie, B., Verhelst, H., and De Pauw, R. (2021). Graph measure
based connectivity in chronic pain patients: A systematic review. Pain Physician 24,
E1037–E1058.

Li, Y., Cao, D., Wei, L., Tang, Y., and Wang, J. (2015). Abnormal functional
connectivity of EEG gamma band in patients with depression during emotional face
processing. Clin. Neurophysiol. 126, 2078–2089. doi: 10.1016/j.clinph.2014.12.026

Li, Z., Zhang, L., Zeng, Y., Zhao, Q., and Hu, L. (2023). Gamma-band oscillations
of pain and nociception: A systematic review and meta-analysis of human and rodent
studies. Neurosci. Biobehav. Rev. 146:105062. doi: 10.1016/j.neubiorev.2023.105062

May, E. S., Nickel, M. M., Ta Dinh, S., Tiemann, L., Heitmann, H., Voth, I., et al.
(2019). Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back
pain patients. Hum. Brain. Mapp. 40, 293–305. doi: 10.1002/hbm.24373

Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying
triple network model. Trends Cogn. Sci. 15, 483–506. doi: 10.1016/j.tics.2011.08.003

Missonnier, P., Deiber, M.-P., Gold, G., Millet, P., Gex-Fabry Pun, M., Fazio-Costa,
L., et al. (2006). Frontal theta event-related synchronization: Comparison of directed
attention and working memory load effects. J. Neural Transm. 113, 1477–1486. doi:
10.1007/s00702-005-0443-9

Mouraux, A., and Iannetti, G. D. (2018). The search for pain biomarkers in the
human brain. Brain 141, 3290–3307. doi: 10.1093/brain/awy281

Mukhtar, H., Qaisar, S. M., and Zaguia, A. (2021). Deep convolutional neural
network regularization for alcoholism detection using EEG signals. Sensors 21:5456.
doi: 10.3390/s21165456

Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H., and Balsters, J. H.
(2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum.
Brain Mapp. 35, 4140–4154. doi: 10.1002/hbm.22466

Newman, M. E. J. (2005). A measure of betweenness centrality based on random
walks. Soc. Netw. 27, 39–54. doi: 10.1016/j.socnet.2004.11.009

Nicholas, M., Vlaeyen, J., Rief, W., Barke, A., Aziz, Q., Benoliel, R., et al. (2019). The
IASP classification of chronic pain for ICD-11: Chronic primary pain. Pain 160, 28–37.
doi: 10.1097/j.pain.0000000000001390

Palmiero, M., and Piccardi, L. (2017). Frontal EEG asymmetry of mood: A mini-
review. Front. Behav. Neurosci. 11:224. doi: 10.3389/fnbeh.2017.00224

Pigoni, A., Delvecchio, G., Madonna, D., Bressi, C., Soares, J., and Brambilla, P.
(2019). Can machine learning help us in dealing with treatment resistant depression?
A review. J. Affect. Disord. 259, 21–26. doi: 10.1016/j.jad.2019.08.009

Ploner, M., and May, E. S. (2018). Electroencephalography and
magnetoencephalography in pain research—current state and future perspectives.
Pain 159, 206–211. doi: 10.1097/j.pain.0000000000001087

Ploner, M., Sorg, C., and Gross, J. (2017). Brain rhythms of pain. Trends Cogn. Sci.
21, 100–110. doi: 10.1016/j.tics.2016.12.001

Polanía, R., Nitsche, M. A., and Ruff, C. C. (2018). Studying and modifying brain
function with non-invasive brain stimulation. Nat. Neurosci. 21, 174–187. doi: 10.
1038/s41593-017-0054-4

Polich, J. (1986). P300 development from auditory stimuli. Psychophysiology 23,
590–597. doi: 10.1111/j.1469-8986.1986.tb00677.x

Prabhu, S., Murugan, G., Cary, M., Arulperumjothi, M., and Liu, J.-B. (2020). On
certain distance and degree based topological indices of Zeolite LTA frameworks.
Mater. Res. Express 7:55006. doi: 10.1088/2053-1591/ab8b18

Rustamov, N., Sharma, L., Chiang, S. N., Burk, C., Haroutounian, S., and Leuthardt,
E. C. (2021). Spatial and frequency-specific electrophysiological signatures of tonic
pain recovery in humans. Neuroscience 465, 23–37. doi: 10.1016/j.neuroscience.2021.
04.008

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M.,
Eggensperger, K., Tangermann, M., et al. (2017). Deep learning with convolutional
neural networks for EEG decoding and visualization: Convolutional neural networks
in EEG analysis. Hum. Brain Mapp. 38, 5391–5420. doi: 10.1002/hbm.23730

Serbic, D., Evangeli, M., Probyn, K., and Pincus, T. (2022). Health-related guilt in
chronic primary pain: A systematic review of evidence. Br. J. Health Psychol. 27, 67–95.
doi: 10.1111/bjhp.12529

Sporns, O. (2013). Network attributes for segregation and integration in the human
brain. Curr. Opin. Neurobiol. 23, 162–171. doi: 10.1016/j.conb.2012.11.015

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15, 1929–1958.

Stam, C. J., Nolte, G., and Daffertshofer, A. (2007). Phase lag index: Assessment of
functional connectivity from multi channel EEG and MEG with diminished bias from
common sources. Hum. Brain Mapp. 28, 1178–1193. doi: 10.1002/hbm.20346

Steinmann, S., Meier, J., Nolte, G., Engel, A. K., Leicht, G., and Mulert, C. (2018). The
callosal relay model of interhemispheric communication: New evidence from effective
connectivity analysis. Brain Topogr. 31, 218–226. doi: 10.1007/s10548-017-0583-x

Supratak, A., Dong, H., Wu, C., and Guo, Y. (2017). DeepSleepNet: A model for
automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans. Neural
Syst. Rehabil. Eng. 25, 1998–2008. doi: 10.1109/TNSRE.2017.2721116

Ta Dinh, S., Nickel, M. M., Tiemann, L., May, E. S., Heitmann, H., Hohn, V. D.,
et al. (2019). Brain dysfunction in chronic pain patients assessed by resting-state
electroencephalography. Pain 160, 2751–2765. doi: 10.1097/j.pain.0000000000001666

Tao, Z.-Y., Wang, P.-X., Wei, S.-Q., Traub, R. J., Li, J.-F., and Cao, D.-Y. (2019). The
role of descending pain modulation in chronic primary pain: Potential application of
drugs targeting serotonergic system. Neural Plasticity 2019, 1–16. doi: 10.1155/2019/
1389296

Treede, R. D., Rief, W., Barke, A., Aziz, Q., Bennett, M. I., Benoliel, R., et al. (2015).
A classification of chronic pain for ICD-11. Pain 156, 1003–1007. doi: 10.1097/j.pain.
0000000000000160

Treede, R.-D., Rief, W., Barke, A., Aziz, Q., Bennett, M. I., Benoliel, R., et al.
(2019). Chronic pain as a symptom or a disease: The IASP classification of chronic
pain for the international classification of diseases (ICD-11). Pain 160, 19–27. doi:
10.1097/j.pain.0000000000001384

Vachon-Presseau, E., Tétreault, P., Petre, B., Huang, L., Berger, S. E., Torbey, S., et al.
(2016). Corticolimbic anatomical characteristics predetermine risk for chronic pain.
Brain 139, 1958–1970. doi: 10.1093/brain/aww100

van den Heuvel, M. I., Turk, E., Manning, J. H., Hect, J., Hernandez-Andrade, E.,
Hassan, S. S., et al. (2018). Hubs in the human fetal brain network. Dev. Cogn. Neurosci.
30, 108–115. doi: 10.1016/j.dcn.2018.02.001

Vilà-Balló, A., Marti-Marca, A., Torres-Ferrús, M., Alpuente, A., Gallardo, V. J.,
and Pozo-Rosich, P. (2021). Neurophysiological correlates of abnormal auditory
processing in episodic migraine during the interictal period. Cephalalgia 41, 45–57.
doi: 10.1177/0333102420951509

Wang, X., and Ding, M. (2011). Relation between P300 and event-related theta-
band synchronization: A single-trial analysis. Clin. Neurophysiol. 122, 916–924. doi:
10.1016/j.clinph.2010.09.011

Frontiers in Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1133834
https://doi.org/10.3389/fnins.2019.00585
https://doi.org/10.1038/s41398-018-0239-y
https://doi.org/10.1038/s41398-018-0239-y
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1111/pcn.12390
https://doi.org/10.1111/pcn.12390
https://doi.org/10.1080/1744666X.2019.1573675
https://doi.org/10.1093/brain/awt211
https://doi.org/10.1093/brain/awt211
https://doi.org/10.1016/0925-2312(93)90042-2
https://doi.org/10.1016/0925-2312(93)90042-2
https://doi.org/10.1016/j.clinph.2008.11.023
https://doi.org/10.1016/j.clinph.2008.11.023
https://doi.org/10.1177/001872088002200210
https://doi.org/10.1111/1469-8986.00070
https://doi.org/10.1111/1469-8986.00070
https://doi.org/10.1016/j.bbr.2015.05.058
https://doi.org/10.1111/j.1469-8986.1986.tb00649.x
https://doi.org/10.1016/j.neuroimage.2007.08.008
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1038/s41593-017-0051-7
https://doi.org/10.1016/j.clinph.2014.12.026
https://doi.org/10.1016/j.neubiorev.2023.105062
https://doi.org/10.1002/hbm.24373
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1007/s00702-005-0443-9
https://doi.org/10.1007/s00702-005-0443-9
https://doi.org/10.1093/brain/awy281
https://doi.org/10.3390/s21165456
https://doi.org/10.1002/hbm.22466
https://doi.org/10.1016/j.socnet.2004.11.009
https://doi.org/10.1097/j.pain.0000000000001390
https://doi.org/10.3389/fnbeh.2017.00224
https://doi.org/10.1016/j.jad.2019.08.009
https://doi.org/10.1097/j.pain.0000000000001087
https://doi.org/10.1016/j.tics.2016.12.001
https://doi.org/10.1038/s41593-017-0054-4
https://doi.org/10.1038/s41593-017-0054-4
https://doi.org/10.1111/j.1469-8986.1986.tb00677.x
https://doi.org/10.1088/2053-1591/ab8b18
https://doi.org/10.1016/j.neuroscience.2021.04.008
https://doi.org/10.1016/j.neuroscience.2021.04.008
https://doi.org/10.1002/hbm.23730
https://doi.org/10.1111/bjhp.12529
https://doi.org/10.1016/j.conb.2012.11.015
https://doi.org/10.1002/hbm.20346
https://doi.org/10.1007/s10548-017-0583-x
https://doi.org/10.1109/TNSRE.2017.2721116
https://doi.org/10.1097/j.pain.0000000000001666
https://doi.org/10.1155/2019/1389296
https://doi.org/10.1155/2019/1389296
https://doi.org/10.1097/j.pain.0000000000000160
https://doi.org/10.1097/j.pain.0000000000000160
https://doi.org/10.1097/j.pain.0000000000001384
https://doi.org/10.1097/j.pain.0000000000001384
https://doi.org/10.1093/brain/aww100
https://doi.org/10.1016/j.dcn.2018.02.001
https://doi.org/10.1177/0333102420951509
https://doi.org/10.1016/j.clinph.2010.09.011
https://doi.org/10.1016/j.clinph.2010.09.011
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1133834 March 20, 2023 Time: 14:22 # 14

Li et al. 10.3389/fnins.2023.1133834

Wang, Z., Yuan, M., Xiao, J., Chen, L., Guo, X., Dou, Y., et al. (2022). Gray
matter abnormalities in patients with chronic primary pain: A coordinate-based
meta-analysis. Pain Physician 25, 1–13.

Wu, W., Zhang, Y., Jiang, J., Lucas, M. V., Fonzo, G. A., Rolle, C. E., et al.
(2020). An electroencephalographic signature predicts antidepressant response in
major depression. Nat. Biotechnol. 38, 439–447. doi: 10.1038/s41587-019-0397-3

Yalcin, I., and Barrot, M. (2014). The anxiodepressive comorbidity in chronic
pain. Curr. Opin. Anaesthesiol. 27, 520–527. doi: 10.1097/ACO.000000000000
0116

Yao, Q., Wang, R., Fan, X., Liu, J., and Li, Y. (2020). Multi-class arrhythmia
detection from 12-lead varied-length ECG using attention-based time-incremental
convolutional neural network. Inf. Fusion 53, 174–182. doi: 10.1016/j.inffus.2019.0
6.024

Yasin, S., Hussain, S. A., Aslan, S., Raza, I., Muzammel, M., and Othmani, A. (2021).
EEG based major depressive disorder and Bipolar disorder detection using neural

networks: A review. Comput. Methods Programs Biomed. 202:106007. doi: 10.1016/j.
cmpb.2021.106007

Ye, Q., Yan, D., Yao, M., Lou, W., and Peng, W. (2019). Hyperexcitability of cortical
oscillations in patients with somatoform pain disorder: A resting-state EEG study.
Neural Plasticity 2019, 1–10. doi: 10.1155/2019/2687150

Zhou, S., Després, O., Pebayle, T., and Dufour, A. (2015a). Age-related decline
in cognitive pain modulation induced by distraction: Evidence from event-related
potentials. J. Pain 16, 862–872. doi: 10.1016/j.jpain.2015.05.012

Zhou, S., Kemp, J., Després, O., Pebayle, T., and Dufour, A. (2015b). The association
between inhibition and pain tolerance in the elderly: Evidence from event-related
potentials: Inhibition and pain in aging. Eur. J. Pain 19, 669–676. doi: 10.1002/ejp.588

Zhou, S., Lithfous, S., Després, O., Pebayle, T., Bi, X., and Dufour, A. (2020).
Involvement of frontal functions in pain tolerance in aging: Evidence from
neuropsychological assessments and gamma-band oscillations. Front. Aging Neurosci.
12:131. doi: 10.3389/fnagi.2020.00131

Frontiers in Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1133834
https://doi.org/10.1038/s41587-019-0397-3
https://doi.org/10.1097/ACO.0000000000000116
https://doi.org/10.1097/ACO.0000000000000116
https://doi.org/10.1016/j.inffus.2019.06.024
https://doi.org/10.1016/j.inffus.2019.06.024
https://doi.org/10.1016/j.cmpb.2021.106007
https://doi.org/10.1016/j.cmpb.2021.106007
https://doi.org/10.1155/2019/2687150
https://doi.org/10.1016/j.jpain.2015.05.012
https://doi.org/10.1002/ejp.588
https://doi.org/10.3389/fnagi.2020.00131
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	EEG assessment of brain dysfunction for patients with chronic primary pain and depression under auditory oddball task
	1. Introduction
	2. Materials and methods
	2.1. Procedure
	2.2. Participates
	2.3. Experimental paradigm
	2.4. Data acquisition and preprocessing
	2.5. Brain network construction and coupling
	2.6. Graph theory analysis of complex brain network
	2.6.1. Node degree centrality (DC)
	2.6.2. Node betweenness centrality (BC)
	2.6.3. Clustering coefficient (CC)
	2.6.4. Local efficiency (Eloc)
	2.6.5. Global efficiency (Eglob)

	2.7. Deep learning algorithm for classification
	2.8. Model training
	2.9. Technology validation
	2.10. Statistical analysis

	3. Results
	3.1. Functional connectivity
	3.2. Complex brain network
	3.3. Classification accuracy of different frequency bands

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


