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The accurate diagnosis of autism spectrum disorder (ASD) is of great practical

significance in clinical practice. The spontaneous hemodynamic fluctuations were

collected by functional near-infrared spectroscopy (fNIRS) from the bilateral

frontal and temporal cortices of typically developing (TD) children and children

with ASD. Since traditional machine learning and deep learning methods cannot

make full use of the potential spatial dependence between variable pairs,

and require a long time series to diagnose ASD. Therefore, we use adaptive

spatiotemporal graph convolution network (ASGCN) and short time series to

classify ASD and TD. To capture spatial and temporal features of fNIRSmultivariable

time series without the pre-defined graph, we combined the improved adaptive

graph convolution network (GCN) and gated recurrent units (GRU). We conducted

a series of experiments on the fNIRS dataset, and found that only using 2.1 s short

time series could achieve high precision classification, with an accuracy of 95.4%.

This suggests that our approach may have the potential to detect pathological

signals in autism patients within 2.1 s. In di�erent brain regions, the left frontal lobe

has the best classification e�ect, and the abnormalities occur more frequently in

left hemisphere and frontal lobe region. Moreover, we also found that there were

correlations between multiple channels, which had di�erent degrees of influence

on the classification of ASD. From this, we can also generalize to a wider range,

there may be potential correlations between di�erent brain regions. This may help

to better understand the cortical mechanism of ASD.

KEYWORDS

autism spectrum disorder, functional near-infrared spectroscopy, multivariable time

series, graph convolution network, adaptive spatiotemporal graph convolution network

1. Introduction

Autism spectrum disorder (ASD) is a serious brain disease with core symptoms: social
communication impairment, verbal communication impairment, and repetitive stereotyped
behaviors (Lord et al., 2000; Yang et al., 2019). Autism is more common in childhood
(Blenner et al., 2011). In this spectrum disorder, childhood autism is one of the most serious
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childhood psychiatric disorders (Simonoff et al., 2008). Therefore,
the early diagnosis and intervention treatment of ASD have great
practical significance (Magán-Maganto et al., 2017).

Functional near-infrared spectroscopy (fNIRS) is widely used
in cognitive neuroscience research (Pinti et al., 2020). Compared
with other brain imaging techniques, this technique is insensitive
to motion artifacts (Pinti et al., 2015). Therefore, fNIRS has unique
advantages in targeting some special populations who cannot
remain stationary for a long time, such as infants and ASD patients
(Ehlis et al., 2014). The spontaneous hemodynamic fluctuation
data from bilateral frontal and temporal cortices of children with
ASD and TD collected by fNIRS are multivariate time series, with
temporal and spatial correlations.

However, the current machine learning and deep learning
methods cannot make full use of the latent spatial dependencies
between pairs of variables, and require long time series to diagnose
ASD. We collected relevant studies that also used the fNIRS dataset
to diagnose ASD. For example, Xu et al. (2020a,b) adopted long
time series of 1,000 units (70 s) and machine learning methods to
classify ASD and TD. Xu et al. (2019) adopted long time series of
7 s and a deep neural network named CGRNN to diagnose ASD.
The above studies have achieved good classification effect, but they
all use single-channel fNIRS data, without the use of the spatial
correlation of data, and use a long time series. This means that we
need to collect more sample data to get more information.

Xu et al. (2021) adopted short time series of 3.5 s and a deep
neural network named “CLAENTION” to diagnose ASD. They
used multi-channel fNIRS data, but their classification accuracy
was 86.3% on 44 channels data. They did not achieve better
classification effect than the single-channel data. Because ordinary
deep learning methods cannot deeply mine the latent spatial
correlation between channels. Therefore, we consider modeling
the fNIRS multivariate time series using graph convolution
network. Graph networks have a better ability to capture
spatial correlation, which can greatly shorten the length of
time series. At the same time, the characteristics of graphs
can also be used to directly mine the correlation between
channels in the cerebral cortex. This provides new ideas for ASD
medical research.

In recent years, research on autism spectrum disorders
based on graph networks has also made some progress. For
example, Yang et al. (2021) proposed a method named PSCR to
construct a brain network graph, combined with graph attention
network (GAT) to diagnose ASD, with an accuracy of 72.4%.
Aslam et al. (2022) proposed a functional graph discriminative
network (FGDN) to diagnose ASD on the basis of pre-defined
graph. The above methods all need to diagnose ASD on the
basis of pre-defined graph, which requires each researcher to
have sufficient domain knowledge to construct graphs before
modeling. Furthermore, the pre-defined graph cannot contain
full spatial information about the data, nor are they directly
related to the prediction task (Bai et al., 2020). Therefore, the
above methods based on graph networks do not achieve good
classification effect.

In summary, in this paper, we use an adaptive spatiotemporal
graph convolution network (ASGCN) to classify ASD and TD
without a pre-defined graph.We conduct a series of experiments on

the fNIRS multivariate time series dataset. The main contributions
of this paper can be summarized as follows:

(1) Only using 2.1 s short time series to achieve high precision
classification of ASD and TD, since ASGCN model has strong
ability to capture spatial features. This not only improves the
efficiency of the data, but also suggests that our approach
may have the potential to detect pathological signals in autism
patients within 2.1 s.

(2) Through exploring the ability of different brain regions to
identify ASD and TD, it is found that the left frontal lobe region
performs the best classification, and the abnormalities occur
more frequently in left hemisphere and frontal lobe region.

(3) By using the characteristics of graph, it is found that there are
correlations between multiple channels, and it has different
degrees of influence on the classification of ASD. And from
this, we can generalize to a wider range, there may be potential
correlations between different brain regions. This provides new
perspective for ASD medical research.

2. Materials and methods

2.1. fNIRS data collection

In this study, the spontaneous hemodynamic fluctuations of
each subject were recorded using a commercial continuous-wave
fNIRS system (FOIRE-3000, Shimadzu Corporation, Kyoto, Japan).
The subjects consisted of 25 ASD children (age 9.3 ± 1.4 years)
and 22 TD children (age 9.5 ± 1.6 years). All ASD children
were diagnosed by experienced clinicians in hospitals according to
DSMIV-TR (American Psychiatric Association, 2013). In addition,
it must be stated that before collecting fNIRS data, written consent
was obtained from each subject and their parents, and the study
protocol was approved by the Ethics Review Committee of South
China Normal University (Zhu et al., 2014). It meets the Helsinki
Declaration. During data collection, the subject’s environmentmust
be kept quiet and dim. Subjects closed their eyes and remained as
still as possible.

The location of fNIRS measurement channels is showed in the
front row of Figure 1. The squares represent the light sources and
the circles represent the light source detectors. The lines between
the squares and the circles represent the 44 channels of the brain,
marked by 1-44. The location of each channel on the cerebral
cortex (refer to the international 10-10EEG system to locate) is
showed in the bottom of Figure 1. The left side is the location of
the left hemisphere channel, and the right side is the location of the
right hemisphere channel. The fNIRS detection areas include the
left frontal lobe (channels 1–10), the left temporal lobe (channels
11–22), the right frontal lobe (channels 23–32), and the right
temporal lobe (channels 33–44). The fNIRS uses the good scattering
properties of the main components of blood to 600–900 nm near-
infrared light to obtain the concentration changes of oxygenated
hemoglobin (HbO2), deoxygenated hemoglobin (Hb) and total
hemoglobin (HbT) during brain activity. The fNIRS light detector
records the data of 44 channels of the cerebral cortex every 0.07
s. Each channel record contains 3 attributes (HbO2, Hb, and HbT
concentration), and the total recording time is about 8 min.
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2.2. Extraction and reconstruction of fNIRS
short time series

Since we only have sample data of 47 subjects, if each subject
is regarded as a sample, the amount of sample will be small, and
it is very easy to overfit in the model training. Therefore, we use
the method of sliding window (Feng and Jianhua, 2009) to traverse
47 sample data, and convert each sample data into a series of
continuous and partially overlapping short time series. So as to
increase the number of samples and realize the expansion of small
sample data sets. Define the original fNIRS data as D, and each
subject sample asDi(i ∈ [1, 47]) can be regarded as anm×nmatrix,
where m is the data length of the sample (the length of the sample
data with a recording time of 8min is about 6857), and n is 132
(multiply the 44 channels and the 3 attributes of each channel).

Suppose w represents the sliding window, s represents the time
step (s < w), c represents the number of channels. Use sliding
window to traverse each channel of each sample data Di and select
an attribute for each channel. One sample can get Ni = (m − w)/s
subsequences, Ni is taken as an integer. Finally, 47 subject samples
can get N = 47 × Ni subsequences. The specific process of fNIRS
dataset extraction and reconstruction is shown in Figure 2. Finally,
the format of original fNIRS data becomes four-dimensional tensor
(samples, windows, channels, 1), i.e., (N,w, c, 1). In addition, add
the corresponding label for each subsequence, 1 represents ASD
children and 0 represents TD children. In this way, the format of
the label becomes (N, 0 or 1).

2.3. ASGCN model

In this section, we use the adaptive spatiotemporal graph
convolution network (ASGCN) model to extract the features of
the fNIRS data for classification. In order to use the characteristics
of graphs to accurately capture the spatial correlation between
channels in the cerebral cortex, the multi-channel fNIRS data in
Section 2.2 is further formulated on the graph G = (V ,E,A), where
V represents the nodes of the graph, E represents the edges of the
graph, and A represents the adjacency matrix of the graph and A ∈

RN×N . We regard each fNIRS channel as the node V and V = N,
where N is both the number of nodes and the number of fNIRS
channels. And we regard the correlation between fNIRS channels
as the edge E. And A represents the graph adjacency matrix of the
similarity between fNIRS channels. Therefore, the format of fNIRS
data can also be defined as four-dimensional tensor (samples, time,
nodes, feature), where time represents the size of sliding window,
nodes represent the number of channels, feature represents the
number of attributes and have a value of 1. This will also directly
serve as input to the ASGCN model. The specific structure of the
model is shown in Figure 3.

Our model stacks multi-layer ASGCN modules as an encoder.
Each module consists of a combination of an improved graph
convolution network (GCN) module and a gated recurrent unit
(GRU) module. More specifically, there are two improvements in
improved GCN module to better capture the spatial features of
fNIRS data (e.g., the correlation between fNIRS multi-channel).
The first is the adaptive graph learning (AGL) module. With AGL

module, there is no need to predefine the graph structure. Instead,
it automatically learns the graph adjacency matrix according to
input data. Then the graph adjacency matrix is used as the input
of each improved GCN module. The second improvement is the
node weight adaptive learning (NWAL) module. In this module,
the weights of the nodes can be adaptively learned to better capture
spatial dependencies between nodes. Finally, it is combined with
the GRU module to capture the temporal features of fNIRS data.
The decoder part consists of a 1x1 convolutional module and a fully
connected layer. It can transform our input channel dimension into
the desired output (binary classification) dimension. Finally, output
the result of classification, 1 (ASD) or 0 (TD).

2.3.1. Extraction of spatial features of fNIRS
multivariate time series
2.3.1.1. Node weight adaptive learning module

GCN can learn the characteristics of nodes in the network
and the information of network structure. In multivariate time
series classification tasks, GCN can be used to capture the spatial
correlation between variables (Wang et al., 2020; Wu et al., 2020).
According to the calculation method proposed in the spectral
domain (Defferrard et al., 2016; Kipf and Welling, 2016), GCN
is calculated by using a good approximation of the first-order
Chebyshev polynomial expansion as follows:

Z =
(
IN + D−1/2AD−1/2)XW + b (1)

WhereA ∈ RN×N is the graph adjacencymatrix,D is the degree
matrix, X ∈ RN×C and Z ∈ RN×F are input and output of the
GCN, W ∈ RC×F and b ∈ RF represent the learnable weights and
bias. Furthermore, the computation can also be extended to higher
dimensional GCN. This formula also expresses the main idea of
GCN, which performs a weighted average of the neighbors of each
node Xi ∈ R1×C and its own information, so as to obtain a result
vector Zi ∈ R1×F that can be transmitted to the network, and all
nodes shareW and b. But if weight parameters are assigned to each
node,W ∈ RN×C×F will become too large and cannot be optimized.
In addition, it will bring serious overfitting problem. Therefore, we
consider improving the traditional GCN model by a node weight
adaptive learning (NWAL) module to solve this problem.

The weight parameter W ∈ RN×C×F is not directly learned
as the traditional GCN. In contrast, using the idea of matrix
decomposition, it is generated by the shared weight pool Wm ∈

Rd×C×F and the initialized node embedding matrix Em ∈ RN×d,
where d represents the embedding dimension of Em, d≪N. In other
words, W is obtained by multiplying these two smaller parameter
matrices, i.e., W = Wm · Em. Similarly, the bias parameter b can
also be generated by the same way. In this way, the GCN improved
by NWPL module does not need to assign weight parameters to
each node, but can learn the node weight parameters adaptively. In
summary, the calculation of GCN can be redefined as:

Z =
(
IN + D−1/2AD−1/2)XEmWm + Embm (2)

2.3.1.2. Adaptive graph learning module

Existing GCN prediction models usually require a pre-defined
graph for modeling. Pre-defined graphs are computed by distance
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FIGURE 1

The upper picture shows the location of fNIRS measurement channels. The lower picture shows the location of each channel on the cerebral cortex.

FIGURE 2

The specific process of fNIRS dataset extraction and reconstruction. This process sets the sliding window to traverse 47 sample data, and finally the

format of original fNIRS data becomes four-dimensional tensor (samples, windows, channels, 1).

functions or similarity measures (Geng et al., 2019). Therefore,
the pre-defined graph cannot contain all the spatial information
of nodes, and is not directly related to the classification task.

Furthermore, predefining graphs is not an easy task without
sufficient domain knowledge. And models based on GCNs on
pre-defined graphs cannot be applied to other tasks.
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FIGURE 3

The specific structure of the ASGCN model. ASGCN model consists of an encoder and a decoder. The encoder part stacks multi-layer ASGCN

modules, and each ASGCN module combines an improved GCN module (including adaptive graph learning (AGL) module and node weight adaptive

learning (NWAL) module) and a GRU module. The decoder part consists of a 1 × 1 convolutional module and a fully connected layer.

Therefore, we make another improvement on the traditional
GCN model. An adaptive graph learning (AGL) module is added
to automatically learn the hidden spatial correlations between
nodes from the data. First of all, the AGL module is randomly
initialized to generate a learnable node embedding matrix EA ∈

RN×dA for all nodes (ETA represents its transpose matrix), where dA
represents the embedding dimension of nodes. Then multiplying
EA and ETA, passing through an activation function ReLU, and finally
normalizing the adaptive graph adjacency matrix by the softmax
function. This process can also be written as follows:

D−1/2AD−1/2 = softmax
(
ReLU

(
EA · ETA

))
(3)

These two matrices can be continually learned and updated
during training, so as to learn the hidden spatial correlation
between nodes (channels). It is worth noting that our final adaptive
graph adjacency matrix is symmetric, because the graph adjacency
matrix is obtained by multiplying EA and ETA. Compared with the
method of generating adaptive graph adjacency matrix in Wu et al.
(2019), our method has better readability and interpretation. In
summary, the calculation of GCN can be redefined as:

Z =

(
IN + softmax

(
ReLU

(
EA · ETA

)))
XW + b (4)

2.3.2. Extraction of temporal features of fNIRS
multivariate time series

In addition to spatial correlation, multivariate time series also
have temporal correlation. We adopt gated recurrent unit (GRU) to
capture the temporal dependencies of nodes (Fu et al., 2016). We
use the improved GCNmodule (NWALmodule and AGLmodule)
to replace the MLP layer in GRU. The specific replacement process

is as follows:

Ã = softmax
(
ReLU

(
E · ET

))
(5)

zt = σ
(
Wz · Ã

[
ht−1,Xt

]
E+ Ebz

)
(6)

rt = σ
(
Wr · Ã

[
ht−1,Xt

]
E+ Ebr

)
(7)

ĥt = tanh
(
W

ĥ
· Ã

[
r ⊙ ht−1, Xt

]
E+ Eb

ĥ

)
(8)

ht = (1− z) ⊙ ht−1 + z ⊙ ĥt (9)

Where W and b represent the weight vector and the offset
vector, Xt represents the value of input at time t, ht , and ht−1

represent the value of output at time t and t − 1, zt , and rt
represent the reset gate and the update gate, [ ] represents the
concatenate operation of vectors. In addition, all node embedding
matrices (Em and EA) are all denoted by E and they are all learnable
parameters. This will make sure that ASGCN model use a unified
node embedding matrix, which can better explain our model.

3. Results

3.1. Experiments settings

In order to ensure the balance of positive and negative samples
in the training set, validation set and test set, as well as the
randomness of the samples, we first randomly shuffled 25 ASD
children and 22 TD children respectively. Then we divide the two
groups of children according to the ratio of 6:2:2, and then combine
them. Ultimately, the training set contained 28 children (15 ASD
and 13 TD), the validation set contained 10 children (5 ASD and 5
TD), and the test set contained 9 children (5 ASD and 4 TD). Then,
we used sliding window of 30 units and time step of 10 units to
segment, extract and reconstruct the data. Since the data is recorded
once every 0.07s for a total of 8 min, the length of each short-time
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TABLE 1 Comparison of experimental results for di�erent sliding window lengths.

Sliding
window

Accuracy Precision Sensitivity Specificity AUC Training
time

(min/epoch)

1.4 s 0.859 0.894 0.846 0.839 0.861 1.584

2.1 s 0.954 0.974 0.937 0.972 0.955 2.640

3.5 s 0.926 0.929 0.896 0.947 0.905 4.568

TABLE 2 Comparison of experimental results for di�erent attributes.

Attribute Accuracy Precision Sensitivity Specificity AUC

HbO2 0.954 0.974 0.937 0.972 0.955

Hb 0.897 0.902 0.902 0.892 0.897

subsequence is 2.1 s, and the number of samples in the training set
is expanded to about 19124. Finally, we convert the reconstructed
data into a four-dimensional tensor (19124, 30, 44, 1) as the input of
the ASGCNmodel, where 44 is the number of channels (or nodes),
and 1 is the number of attributes (arbitrarily select one of HbO2,
Hb, and HbT).

We set up to stack two layers of ASGCN modules. For the
hyperparameters, the hidden units and the batch size are all set to 64
for all module units. For other parameters, we use the grid search
method to select parameters with better experimental results, and
finally set the learning rate to 0.001 and the node embedding
dimension to 7. Besides, we choose binary cross-entropy loss as
the loss function. During training, we did not use operations such
as learning rate and weight decay. We use the Adam optimizer to
iteratively train and optimize the model. The number of epochs
is set to a maximum of 100. We also set an early stop strategy
to prevent overfitting, i.e., the training stops when the value of
patience on the validation set loss reaches 15. Our ASGCN model,
and all other baseline comparison models, are implemented in
Python using Pytorch 1.1.0, and executed on a computer with an
Intel i5-10400F CPU and an Nvidia Geforce GTX 1660 Super GPU
graphics card.

We use accuracy (Aghajani et al., 2017), sensitivity (Peng
et al., 2016), specificity (Gateau et al., 2015), precision, and AUC
(area under the curve) as performance evaluation metrics for
classification models, which are commonly used in the medical
field. Accuracy is the percentage of all children diagnosed correctly.
Sensitivity refers to the probability that an actual ASD patient
will be correctly judged as positive (true positive). Specificity
refers to the probability that an actual TD child will be correctly
judged negative (true negative). Precision refers to the proportion
of correct ASD predictions to total ASD predictions. AUC (area
under the curve) is a criterion for judging the performance of a
classifier. Let TP denote the number of actual ASD and predicted
ASD. TN represents the number of actual TD and predicted TD.
FN represents the number of actual ASD but predicted TD. FP
represents the number of actual TD but predicted ASD. Thus,
These formulas for these evaluation metrics can be expressed as
follows:

Accuracy = TP + FN/(TP + FP + FN + TN) (10)

Sensitivity = TP/(TP + FN) (11)

Specificity = TN/(TN + FP) (12)

Precision = TP/(TP + FP) (13)

3.2. Setting of short time series

In order to achieve high precision classification and shorten
the required time series length and training time as much as
possible, we set three groups of experiments with sliding window
length of 20, 30, and 50, and time step is set to 10. Since the
experimental data is recorded every 0.07 s, different sliding window
length can be defined as short time series of 1.4, 2.1, and 3.5 s
respectively. Besides, other parameters are set the same, select 44
channels as the number of nodes (that is, use the data of the entire
brain region), and select HbO2 as the attribute. In this section,
we add training time as an evaluation metric. Due to the early
stop strategy, the number of training times for each experiment is
not fixed. So the average training time of a single epoch is used
as the evaluation metric. The experimental results are shown in
Table 1.

It can be seen from Table 1 that the classification accuracy
of the three groups of sliding window are all above 85%, which
shows that our model has certain classification ability for ASD
and TD. Although the training time of 1.4 s is the shortest, the
classification effect is not the best. This shows that the short time
series of 1.4 s does not contain enough feature information for
classification. The classification effect of 3.5 s is better than that
of 1.4 s, but the training time is the longest. The classification
effect of 2.1 s is the best (the highest accuracy, 95.4%), and
the training time is not long. This shows that the short time
series of 2.1 s can contain enough feature information for
classification. In summary, we believe that the ASGCN model
can extract the enough spatial feature information of fNIRS
multivariate time series, thereby shortening the required time
series length. This also provides the basis for our subsequent
experiments.

3.3. Selection of fNIRS attributes

Since the HbT (HbT=HbO2+Hb) in the fNIRS data is not an
independent attribute, this experiment only uses two attributes of
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TABLE 3 Comparison of classification e�ect in di�erent brain regions.

Brain region Accuracy Sensitivity Specificity

Left hemisphere 0.902 0.962 0.842

Right hemisphere 0.865 0.759 0.983

Left frontal lobe 0.959 0.953 0.966

Left temporal lobe 0.937 0.914 0.963

Right frontal lobe 0.909 0.827 0.998

Right temporal lobe 0.834 0.717 0.963

HbO2 and Hb as the experimental data for comparison. We still
set 2.1 s as sliding window and use the data of the entire brain
region (44 channels). Select an attribute with better classification
effect on ASD to provide a basis for subsequent experiments. The
experimental results are shown in Table 2.

It can be seen from Table 2 that the classification effect of the
two attributes is good (evaluation metrics are all above 89%), but
the classification effect of the HbO2 attribute is better. Therefore,
the subsequent experiments all use the HbO2 attribute as the
experimental data.

3.4. Classification e�ect of di�erent brain
regions

In Section 3.2, we use the entire brain region (44 channels)
as experimental data, and obtain a good classification effect.
In order to explore the influence of different brain regions on
the classification effect of ASD, we further divide the brain
regions into: left hemisphere (channels 1–22), right hemisphere
(channels 23–44), left frontal lobe region (channels 1–10), left
temporal lobe region (channels 11–22), right frontal lobe region
(channels 23–32), and right temporal lobe region (channels 33–
44). The six regions are taken as experimental objects to explore
the influence of different brain regions on the classification of
ASD. We still choose 2.1 s as sliding window and HbO2 as
attribute. Only accuracy, sensitivity and specificity are selected
as evaluation metrics. The experimental results are shown in
Table 3.

Accuracy represents the ability of the model to distinguish
ASD from TD, sensitivity represents the ability of the model to
diagnose ASD, and specificity represents the ability of the model
to diagnose TD. First, it is obvious that the left frontal region
lobe has the highest classification accuracy of 95.9%. This shows
that the left frontal lobe region has the best classification effect
and the strongest ability to distinguish ASD and TD. Second,
for sensitivity, left hemisphere is significantly higher than right
hemisphere, left frontal lobe and left temporal lobe regions are
also higher than right frontal lobe and right temporal lobe
regions. This shows that the left hemisphere is more capable
of diagnosing ASD and more sensitive to ASD. In contrast, for
specificity, right hemisphere is higher than left hemisphere. This
shows that the right hemisphere is more capable of diagnosing
TD and more sensitive to TD. In addition, the sensitivity of

FIGURE 4

The heat map of the graph adjacency matrix of the entire brain

region (i.e., 44 channels). The numbers 0–43 on the left and below

represent channels 1–44, and one channel corresponds to one

node of the graph. Each small square on the figure represents the

correlation (i.e., edge) between channels, and the color of the

square represents the degree of correlation between channels (i.e.,

weight on the edge). The correlation measurement standard is

shown in the color axis and number axis on the right. The brighter

the color and the larger the value, the stronger the correlation

between two channels (nodes). In addition, the main diagonal

represents the autocorrelation of these channels (nodes), and the

regional correlations on both sides of the main diagonal are

completely symmetrical. (A) The heat map of the entire brain region.

(B) The strong correlation (bright areas) regions are marked with

green squares.

the left frontal lobe was higher than the left temporal lobe,
and the sensitivity of the right frontal lobe was higher than the
right temporal lobe. This shows that the frontal lobe region is
more capable of diagnosing ASD and more sensitive to ASD. In
summary, This reflects the abnormalities occurred more frequently
in left hemisphere and frontal lobe region. And if only the
most rapid diagnosis of ASD is desired, the fNIRS signal can
be used to acquire data from the left frontal region with best
classification performance.
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FIGURE 5

The location of channels with strong correlation on the cerebral cortex. From left to right, it is shown as the left hemisphere, the right hemisphere

and the whole cerebral cortex. The blue and green dots represent channels, and the red lines represent the edges between channels.

3.5. Multi-channel correlation mining and
its influence on ASD classification

In this section, we use the graph adjacency matrix generated
by the ASGCN model to directly mine the correlation between
channels, and analyze the influence of the correlation on the ASD
classification effect. The heat map of the graph adjacency matrix
of the entire brain region (44 channels) is shown in Figure 4A. We
conduct experiments based on this figure. It is noted that the graph
adjacency matrix is symmetric (the reason is explained in Section
2.3.1.2).

The channel pairs with strong correlation are marked in
Figure 4B, as follows: channel 3 and 5, channel 3 and 9, channel
5 and 9, channel 4 and 23, channel 17 and 26, channel 1 and 28,
channel 22 and 32, channel 10 and 34, channel 1 and 40, channel
15 and 41, and channel 3 and 44. First, we project the location of
this above channels with strong correlation on the cerebral cortex,
as shown in Figure 5. It can be seen that the channels with strong
correlation are mostly located in the left frontal lobe region or
between the left and right hemispheres. And there are no strong
correlation channels in the right hemisphere. First, this is consistent
with our experimental conclusion in Section 3.4 (the model has
best classification effect in left frontal lobe region), because more
potential correlations between channels can be mined in left
frontal lobe region. Furthermore, there are correlations in many
channels between the left and right hemispheres. This shows
that there may be potential correlation between the left and
right hemispheres.

Next, we conduct an experiment on the influence of correlation
on ASD classification. The experiment takes the classification effect
of the whole brain region (44 channels) as the baseline, still chooses
2.1 s as sliding window and HbO2 as the attribute. Accuracy,
sensitivity and specificity are selected as evaluation metrics.
Deleting the edges between above channel pairs respectively (i.e.,
the value of correlation between channel pairs is set to 0),
and then observing the changes of the ASD classification effect.
More generally speaking, the bright areas (include the areas
symmetrical to the main diagonal) marked in Figure 4B are all
set to be dark, other areas remain unchanged. At the level of the
graph neural network, that is, deleting the edges between nodes

and keeping the nodes. The experimental results are shown in
Figure 6.

For the accuracy, the relatively large decline is to delete the
edges between channel 1 and 40, channel 3 and 5, channel 3 and
9, channel 15 and 41. For the sensitivity, the relatively large decline
is to delete the edges between channel 1 and 40, channel 15 and
41. For the specificity, the relatively large decline is to delete the
edges between channel 1 and 40, channel 3 and 5, channel 3
and 9, channel 15 and channel 41. This shows that the relatively
great influences on the ASD classification effect are as follows: the
correlation between channel 1 and 40, channel 3 and 5, channel 3
and 9, channel 15 and 41.

3.6. Identification ability comparison of
di�erent classification models

The purpose of this experiment is to evaluate the performance
of the ASGCNmodel, compared with GRU (Dutta, 2019), CGCRN
(Xu et al., 2019), Graph wavenet (Wu et al., 2019) models. Each
experiment used the fNIRS data of whole brain region as the input
of model. We still set the sliding window to 2.1 s and attribute to
HbO2. ROC curve and AUC (area under the curve) are selected as
evaluation metrics. The higher the AUC value and the closer the
ROC curve is to the top left corner(0, 1), the better the classification
performance of the model. The experimental results are shown in
Figure 7.

The AUC value of our model reaches the highest 0.95, and
the ROC curve is closest to the top left corner (0, 1), so it has the
best classification effect. This shows that our model has a strong
ability to capture temporal and spatial features. The second is the
Graph Wavenet model, which is an adaptive spatiotemporal graph
network model similar to our model. This model also has a certain
ability to capture temporal and spatial features. But based on the
part of this model, the AGL module in our model has made some
improvements. Therefore, our model classification performance is
slightly better than this model. The third is the CGCRN model,
a combination of deep neural network models, which is relatively
weak in capturing spatial features. The worst is the GRU model,
which basically has no ability to capture spatial features. In all,
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FIGURE 6

The changes of the ASD classification e�ect after deleting the edges

between channel pairs. Boxplots represent the variant of

classification (A) accuracy, (B) sensitivity, and (C) specificity of test

sets in multiple epochs during training. The abscissa “All” represents

no edges are deleted. The abscissa “Delete 3–5” represents deleting

the edges between channel 3 and channel 5, and so on.

FIGURE 7

ROC curve of di�erent classification model. Each test selected three

thresholds, i.e., max value, min value, and mid-value. Each threshold

corresponded to a point (false positive rate, true positive rate). All

coordinate points were connected to draw the ROC curve. The area

represents AUC.

this demonstrates the superiority of our model in capturing the
temporal and spatial features of multivariate time series. And our
model does not need to pre-define the spatial graph structure,
which means that researchers do not need to spend a lot of time
learning enough domain knowledge in advance.

4. Discussion

In this study, we use the method of sliding window to divide the
original fNIRS long time series (8 min) into multiple overlapping
short time series (2.1 s). First, this complete the expansion of the
original small-sample dataset. Next, since ASGCN has a strong
ability to capture spatial features, the fNIRS multi-channel data
is used to increase the spatial feature information required for
classification, thereby shortening the required time series length.
We achieve high precision classification of ASD and TD using
ASGCN model and 2.1 s short time series. Compared with the
length of the time series (3.5 s) in Xu et al. (2021), the required
length of our model is reduced by 40%. This not only improves the
efficiency of data and solve the problem of insufficient medical data,
but also suggests that our approach may have the potential to detect
pathological signals in autism patients within 2.1 s.

We further analyze the channels with greater influence on ASD
classification effect obtained in section 3.5 experiment conclusion,
including channel 1, channel 3, channel 5, channel 9, channel
15, channel 40, and channel 41. We redistrict the cerebral cortex
using the Brodmann partition system (Šimic and Hof, 2015).
Channel 1 and 3 are located in area 11 of Brodmann area, which
are located in the prefrontal lobe cortex. This area has advanced
cognitive functions and is responsible for all aspects of thinking,
judgment and perception, memory and recall of information,
problem solving, emotions, etc. Channel 5 is located in area 10
of Brodmann area, which is located in the medullary area on top
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of the inferior frontal gyrus. Brodmann areas 10 and 11 together
make up the function of the prefrontal lobe cortex. Damage
to these two areas can lead to cognitive impairment, including
social and emotional impairment (Lake et al., 2019), as well as
symptoms such as paranoid personality, narrowed interests, and
intellectual disability. These symptoms are also some of the core
symptoms of autism patient (social communication impairment
and repetitive stereotyped behaviors). Channel 9 is located in area
44 of Brodmann area, which is located in the triangular area of
the inferior frontal gyrus. This area is also called Broca’s area,
motility language area, is related to the production of language
and performs semantic tasks (Gaffrey et al., 2007). Broca’s area
damage can lead to expressive aphasia, that is only can use
simple and limited vocabulary repeatedly, but not use complex
grammar and syntax. They are able to understand language, but
they are unable to respond (Islam et al., 2022). Channels 15,
40, and 41 are located in area 22 of Brodmann area, which
are located in the superior temporal gyrus. Its anterior part
belongs to Wernicke’s area. Wernicke’s area is the auditory and
visual language center of the brain, responsible for language
comprehension. Damage to Wernicke’s area can lead to severe
sensory aphasia and loss of auditory memory (Hitoglou et al.,
2010; Zhang et al., 2022). Patients can hear voices, speak to
themselves, but cannot understand what others are saying. Severe
cases cannot even distinguish human saying from other types of
sounds. The symptoms of damage to Broca’s area and Wernicke’s
area together make up to another core symptom of autism (verbal
communication impairment).

In summary, it can be found that these channels with strong
correlation and great influence on ASD classification are located in
some areas highly related to core symptoms of autism. First, this
reflects the strong ability of our model to capture spatial features,
which can give higher weight to the edges between channels with
stronger correlation. Second, from the correlations between these
channels, we can generalize to a wider range, that is, there may be
potential correlations between different brain regions. For example,
there may be a potential correlation between Brodmann’s area 11
and area 22 or the prefrontal cortex and superior temporal gyrus.
Our future work will also focus on the above inferences, remodeling
the fNIRS data through ASGCN model, directly obtaining the
spatial connection graph structure between different brain regions,
and mining the potential correlation between different brain
regions.

5. Limitations and conclusion

First, we would like to state that this study has some limitations.
Although we extended the original small sample by setting a sliding
window, due to the small number of original samples (only 47
subjects), the extrapolation ability of the model may have certain
limitations, which may affect the generalizability of the model.
Therefore, further studies are warranted, for example, applying
ASGCNmodel to other multivariate time series classification tasks,
to verify and improve the model’s generalizability.

In this paper, we classify ASD and TD using adaptive
spatiotemporal graph convolution network model. This method
does not require a pre-defined graph, and can automatically learn

to generate graphs through data. We first expand the fNIRS
multivariate time series data using sliding window and reconstruct
it into the input format of the model. Using the powerful spatial
feature capture ability of the graph convolution network, we
can achieve good classification effect with only a short time
series of 2.1 s. Second, we conduct classification experiments in
different brain regions. The results shows that the left frontal
lobe region performs best for classification, and the abnormalities
occur more frequently in left hemisphere and frontal lobe region.
Moreover, we use the graph generated by ASGCN model to
directly mine the correlation between channels and its influence
on ASD classification, so as to explore the potential correlation
inside the cerebral cortex. This provides a new perspective for
ASD medical research. Finally, we use ROC curve to compare
our model with other models to demonstrate the superiority of
our model.
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