
fnins-17-1130609 February 2, 2023 Time: 14:56 # 1

TYPE Original Research
PUBLISHED 07 February 2023
DOI 10.3389/fnins.2023.1130609

OPEN ACCESS

EDITED BY

Xin Huang,
Renmin Hospital of Wuhan University, China

REVIEWED BY

Yu Lin Zhong,
Jiangxi Provincial People’s Hospital, China
Yanggang Feng,
Beihang University, China
Dongsheng Wang,
Jiangsu University of Science and Technology,
China

*CORRESPONDENCE

Renping Zhu
xgczrp@ncu.edu.cn

Zhijiang Wan
wandndn@gmail.com

†These authors have contributed equally to this
work and share first authorship

SPECIALTY SECTION

This article was submitted to
Visual Neuroscience,
a section of the journal
Frontiers in Neuroscience

RECEIVED 23 December 2022
ACCEPTED 23 January 2023
PUBLISHED 07 February 2023

CITATION

Li M, Liu S, Wang Z, Li X, Yan Z, Zhu R and
Wan Z (2023) MyopiaDETR: End-to-end
pathological myopia detection based on
transformer using 2D fundus images.
Front. Neurosci. 17:1130609.
doi: 10.3389/fnins.2023.1130609

COPYRIGHT

© 2023 Li, Liu, Wang, Li, Yan, Zhu and Wan. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

MyopiaDETR: End-to-end
pathological myopia detection
based on transformer using 2D
fundus images
Manyu Li1†, Shichang Liu2†, Zihan Wang1, Xin Li2, Zezhong Yan1,
Renping Zhu1,3,4* and Zhijiang Wan1,3*
1School of Information Engineering, Nanchang University, Jiangxi, China, 2School of Computer Science,
Shaanxi Normal University, Xi’an, China, 3Industrial Institute of Artificial Intelligence, Nanchang University,
Jiangxi, China, 4School of Information Management, Wuhan University, Hubei, China

Background: Automated diagnosis of various retinal diseases based on fundus

images can serve as an important clinical decision aid for curing vision loss.

However, developing such an automated diagnostic solution is challenged by the

characteristics of lesion area in 2D fundus images, such as morphology irregularity,

imaging angle, and insufficient data.

Methods: To overcome those challenges, we propose a novel deep learning

model named MyopiaDETR to detect the lesion area of normal myopia (NM),

high myopia (HM) and pathological myopia (PM) using 2D fundus images provided

by the iChallenge-PM dataset. To solve the challenge of morphology irregularity,

we present a novel attentional FPN architecture and generate multi-scale feature

maps to a traditional Detection Transformer (DETR) for detecting irregular lesion

more accurate. Then, we choose the DETR structure to view the lesion from the

perspective of set prediction and capture better global information. Several data

augmentation methods are used on the iChallenge-PM dataset to solve the challenge

of insufficient data.

Results: The experimental results demonstrate that our model achieves excellent

localization and classification performance on the iChallenge-PM dataset, reaching

AP50 of 86.32%.

Conclusion: Our model is effective to detect lesion areas in 2D fundus images. The

model not only achieves a significant improvement in capturing small objects, but

also a significant improvement in convergence speed during training.

KEYWORDS

myopia detection, fundus images, attentional FPN, detection transformer (DETR),
dichotomous graph matching

Introduction

Retinal diseases are one of the main causes of vision loss, and severe retinal diseases can
also cause irreversible damage to vision. Medical research has found that the deformation of
the front of the eyeball varies with the degree of myopia (Wong et al., 2014), these changes
may be related to the complications of ocular diseases, the complications of pathological
myopia (PM) are considered to be the main cause of visual impairment and blindness. Due to
changes in the environment and lifestyle, the incidence of high myopia-related diseases has been
increasing year by year (Hsu et al., 2004; Iwase et al., 2006; Yamada et al., 2010; You et al., 2011;
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Furtado et al., 2012). As a common eye disease, it affects 20 to 40% of
adults (Iwase et al., 2006) and has become a global burden of public
health, 35% of myopic patients are high myopia (HM) (Yamada
et al., 2010), which will develop into pathological myopia. The PM
is characterized by excessive and progressive elongation of the globe,
which is now considered to be the most visually impaired and blind
cause. Therefore, timely diagnosis and regular review for PM are very
important.

Nowadays, people pay more attention to their health, and the
demand for medical services is also increasing. Although the number
of ophthalmologists in the developed countries is growing (Hsu et al.,
2004; You et al., 2011; Furtado et al., 2012; Sakaguchi et al., 2019),
there is still a big gap in the demand for ophthalmologists. Due to
the long training time for cultivating doctors, the underdeveloped
regions will still face the problem of shortage of medical resources in
the next few decades. With the development of imaging technology,
myopia-related complications have been identified (Lu et al., 2018;
Peng et al., 2019; Nazir et al., 2020; Cui et al., 2021; Zhang et al.,
2021; Muthukannan and Glaret Subin, 2022). At present, fundus
imaging is an important basis for the diagnosis of various ophthalmic
diseases. Most retinal diseases can be avoided with early and timely
treatment. Therefore, early detection and early treatment are of
great significance for the cure of retinal diseases. However, analysing
medical images relies on the extensive medical experience of doctors,
which is laborious and time-consuming. Thus, designing a reliable
and accurate automatic detection method for fundus images is crucial
to the prevention and treatment of diseases.

Many studies utilize deep learning techniques to diagnose eye
diseases. For instance, Nazir et al. (2020) proposed a FRCNN
algorithm with fuzzy k-means for automatic detecting three types of
retinal diseases at early stage. Vyas et al. used common convolutional
neural network for dry eye disease (DED) detection based on
Tear Film Breakup Time (TBUT) videos, the approach shows
high performance in classifying TBUT frames and detecting DED.
Muthukannan and Glaret Subin (2022) designed a CNN that
optimized by flower pollination for feature extraction, increased the
speed and the accuracy of the network for detecting four types of
eye diseases. However, most efforts in the existed deep learning
focused on applying existing techniques to the myopia detection task
rather than proposing new ones specifically suited to the domain.
The standard well-known network architectures were designed for
the data collected in natural scenes (e.g., natural images) and do
not take the peculiarities of the myopia images’ characteristics into
account. Therefore, research is necessary to understand how these
architectures can be optimized for myopia data.

Detection Transformer (DETR) is a new paradigm for end-to-
end object detection. DETR always failed in detecting small object
and it has a slow convergence speed. Since DETR only utilizes the
feature maps (32 × down sampling) from the last layer of backbone,
which leads to a large semantic loss of small objects, thus DETR
performs poorly on small object detection. Additionally, in the
decoder structure of DETR, self-attention is computed for all input
pixels, so the model is presented with computational complexity
in square level, which further results in slow convergence speed.
To solve the problems of the two aspects, Deformable DETR (Zhu
et al., 2020) improves the performance of small object detection and
accelerates the convergence speed by limiting the range of computed
attention using multi-scale feature maps. Conditional DETR (Meng
et al., 2021) uses the conditional spatial query explicitly to find the
extremity region of the object to reduce the searching range of object
and accelerate the convergence.

Figure 1 shows some examples selected from the iChallenge-
PM dataset. The figure shows the typical image characteristics of
the fundus images, the green background indicates normal myopia
(NM), the purple background represents high myopia (HM), and the
yellow background delegates pathological myopia (PM). The black
mask on the right side of myopia image is atrophy area, which
various a lot in shape or to some extend very similar. The white oval
area in yellow background is eye’s optical disk region and the lesion
area appears randomly. These characteristics challenge the model
performance of the deep learning methods. The specific challenges
are illustrated as follows:

(1) Morphology Irregularity: As for the NM and HM shown
in Figure 1, the lesion area which in green and purple background
is irregular and similar, its area only occupies a small part of the
location, which makes the model troubling to learn its morphological
features and the most of the rest area is background.

(2) Imaging Angle: From all images in Figure 1, it is obvious
that the optical disk region hava a tendency to the left of the image,
this man-made imaging method may mislead our model, so the
differences brought by the imaging angle require the learning ability
of the model for location correlation demanding.

(3) Insufficient Data: The iChallenge-PM dataset only contains
1,200 images, around 600 images for PM and 600 images for Non-
PM (NM+HM). Fewer images and the strong fitting ability of neural
network make it easy to overfit, which will reduce the generalization
ability of the model.

In this paper, a novel deep learning model named MyopiaDETR
is proposed for detecting the lesion of NM, HM, and PM using 2D
fundus images. Our base model adopts scalable Swin Transformer as
backbone, which is flexible in depth. When it comes to morphology
irregularity, it is worth noting that the lesion tissue is not only
in irregular shape, but also distributed in a small area of the
whole fundus image, most of the pixels are redundant, and an
impure background will adversely affect the prediction results. To
address those problems, we propose a novel Attentional feature
pyramid networks (FPN) architecture that can purify the feature
representation during the aggregation of feature maps, specifically,
object queries are added to FPN (Lin et al., 2017) levels with positional
encoding to execute multi-head self-attention, which are used to
give more activation weight to the object regions, produce a larger
gap between object and background. Our attentional FPN solves
the problem that traditional DETR cannot utilize multi-scale feature
maps, resulting in poor performance in detecting small objects in
the fundus image. Since most of the regions in the fundus image
are background or useless regions, we want our model to focus
on the ophthalmic disease regions of interest so as to reduce the
computational complexity.

As for the imaging angle, unlike the traditional object detection
method, which first generates many candidate boxes on the image,
and then adjusts the offset of the boxes according to the calculated
loss between the predicted results and the real labels. This method
has strong traces of artificial design, which is different from the
way humans observe objects, and must require post-processing
methods like Non-maximum suppression (NMS) (Neubeck and Van
Gool, 2006), whose drawbacks are inevitable in the face of large
overlapping areas between real labels. The DETR (Carion et al.,
2020) structure, on the other hand, views the object detection from
the perspective of set prediction, calculates the loss through the
dichotomous graph matching method, and the Transformer structure
has global information, which is more in line with the way humans
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FIGURE 1

Fundus images selected from iChallenge-PM dataset. The dataset contains three types of 2D fundus images (NM, HM, PM).

observe objects. Therefore, we choose the DETR structure for further
optimization in the face of sensitive location information.

Finally for the insufficient data mentioned above, Ghiasi et al.
(2021) used data augmentation to address the insufficiency of
the training data for classifying PM. Almahairi et al. (2018) used
CycleGAN with cycle consistency to generate more realistic and
reliable images for training, a res-guided U-Net is constructed for
segmentation, they achieved superior result on PM detection. We
adopt variety of strong data augmentation to enrich iChallenge-PM
dataset while training our model. Unlike the common two-branch
head design, inspired by DETR, we use a feed forward network that
takes the output from Transformer decoder, which will produce the
box coordinates and a matrix for classification if the query has an
object, no post-processing is needed.

The main contributions of this paper are summarized as follows:
(1) Inspired by DETR, we present a novel post-processing free

object detector that uses fundus image data for pathological myopia
diagnosis. For specific, we design an attentional FPN that uses
object queries on feature maps of each level of FPN, the self-
attention mechanism increases the feature intensity gap between
foreground and background. Due to the architecture of DETR, it
can well solve the challenge of morphology irregularity. To the best
of our knowledge, this is the first work using object detection for
pathological myopia diagnosis based on iChallenge-PM dataset.

(2) Several data augmentation methods are used on the
iChallenge-PM dataset to accelerate model convergence and enhance
model robustness.

(3) Extensive experiments are conducted on iChallenge-
PM dataset for discriminating NM, HM, and PM. The results
demonstrate the superiority of our method than other state-of-the-art
(SOTA) object detectors.

The rest of this paper is organized as follows. Section “Related
works” introduces related works of the deep learning based retinal
disease analysis methods. Section “Materials and methods” illustrates
the details of our proposed MyopiaDETR model, which comprizes
of Swin Transformer (Liu et al., 2021) backbone, attentional FPN,
Transformer encoder, and decoder, shared feed forward network for
specific retinal disease analysis tasks. Section “Experimental results”
describes the experimental results of ablation studies and comparison
studies. Finally, section “Discussion” has a discussion about our

method and section “Conclusion” presents the conclusions of this
paper and expounds ideas of future work.

Related works

Deep learning based object detection

Object detection is a popular task in computer vision and is
widely applied in many real-world scenes such as autonomous
driving, video surveillance, remote sensing, and medical diagnosis.
The main task of object detection is to locate and classify the
target of interest from an image. In the context of the rapid
development of computing power, deep learning has been researched
and applied as never before. In the trajectory of vision model,
AlexNet (Krizhevsky et al., 2017) opened a new era of computer
vision by using convolutional neural network years ago, making
CNN architecture the mainstream approach of deep learning for
many years. Object detectors can be divided into anchor-based
and anchor-free model based on whether or not anchor is used
during the detection pipeline. The anchor based models can be
further divided into two-stage and one-stage detector. One-stage
model predicts bounding boxes on grid while two-stage model uses
a proposal network to generate candidate boxes, and then uses a
second network to refine the result. The advantage of one-stage
detectors is that it can complete localization and classification by
going through the network once, hence the one-stage detectors can
offer significant advantages in terms of speed, such as SSD (Liu
et al., 2016) and YOLO (Redmon et al., 2016; Redmon and Farhadi,
2017, 2018; Bochkovskiy et al., 2020) series. Two-stage models
sacrifice speed for obtaining high accuracy, most of the mainstream
detectors with high performance adopt two-stage methods, such as
Faster R-CNN (Ren et al., 2015) and Cascade R-CNN (Cai and
Vasconcelos, 2018). With the trend of Transformer architecture
gradually unifying natural language processing (NLP) and computer
vision (CV), Vision Transformer (Dosovitskiy et al., 2020) (ViT) are
gradually dominating visual tasks. The excellent relational modeling
capability of self-attention mechanism is bringing feature extraction
to a new era. Pyramid Vision Transformer brought pyramid structure
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FIGURE 2

Overall architecture of our MyopiaDETR.

FIGURE 3

The architecture of transformer encoder and decoder.

in to Transformer, making it seamlessly accessible to a variety of
downstream tasks (e.g., object detection, semantic segmentation).
Swin Transformer (Swin-T) proposed a vision transformer with
sliding window operation and hierarchical design, achieved state-of-
the-art in many tasks. The hierarchical design makes feature fusion
easier. Swin Transformer is an improved version based on ViT, which

has a similar structure of CNN. The hierarchical structure of Swin
Transformer is more suitable to be applied to many downstream
tasks. While ViT is a straight structure, it does not change the
dimension of input feature map. In addition, the resolution of fundus
image is generally large, and many rich semantic features will be lost
if the image shape is resized to a range that is acceptable to ViT.
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FIGURE 4

The visualized results after data augmentations. Subplot (A) is the sample of fundus images in iChallenge-PM dataset, the white grid line added to the
original graph is to better show the effect of different augmentation. Subplot (B–E) represents elastic transform, grid distortion, random rotate, and grid
mask, respectively.

TABLE 1 The effects of attentional FPN.

Model AP50 APS APM APL Epochs FPS MS/SS

DETR 120e 62.53 29.52 65.93 96.18 120 19.31 SS

DETR 200e 71.21 39.12 74.89 97.62 200 19.31 SS

DETR 300e 71.87 39.69 75.47 97.81 300 19.31 SS

DETR + FPN OOM – – – – – SS

UP-DETR 76.08 44.13 81.77 98.03 300 16.21 SS

Deformable DETR 80.53 58.92 82.55 98.76 120 17.86 MS

Conditional DETR 84.29 65.35 83.73 99.10 120 16.60 MS

Ours 85.18 68.71 83.66 99.34 120 8.73 MS

Bold values represent the best metric values achieved by our method and other comparison methods.

Swin Transformer can receive larger image resolution, which means
the Swin Transformer can do better in processing images with large
resolution than ViT model. Thus, we choose Swin Transformer as our
feature extraction backbone network.

Deep learning based eye diseases
detection

The object in medical images usually have small sizes and
certain morphological features. Many studies utilize deep learning
techniques to diagnose eye diseases. Early work such as (Liu et al.,
2010) developed a system called PAMELA (Pathological Myopia
Detection by Peripapillary Atrophy) that automatically identifies
pathological myopia in retinal fundus images. (Wen et al., 2020)
placed the key research on the distinction between pathological
myopia and high myopia, a two-branch network is proposed, where
the first branch distinguishes between normal and abnormal, while
the other branch classifies pathological myopia and high myopia.
Specifically, the previous studies on iChallenge-PM dataset have been
related to image classification and instance segmentation. Cui et al.
(2021) used data augmentation to address the insufficiency of the
training data for classifying PM. Zhang et al. (2021) used CycleGAN
with cycle consistency to generate more realistic and reliable images
for training. A res-guided U-Net is also constructed for segmentation,
they achieved superior result on PM detection. Our work first use
an object detection method for classifying and locating the atrophy
based on retinal fundus images. From the previous studies, we can
know that the majority of automatic diagnose method uses CNN

architecture for feature extraction, and to the best of our knowledge,
our work is the first that uses Transformer architecture as backbone
and also the first post-processing-free end-to-end detector in myopia
diagnosis.

Attention mechanism

With the trend of Transformer architecture gradually unifying
NLP and CV (Gumbs et al., 2021), Vision Transformer is gradually
dominating the visual tasks. In the evolution of vision attention
mechanism, common method can be embedded into CNN for
building more relevant feature, such as soft-attention. Soft-attention
is a continuous distribution problem, focusing more on spatial or
channel, it can be divided into spatial attention and channel attention.
Non-local first utilized the idea of Transformer in computer vision
model, it takes the approach of doing attention on the feature maps
of the intermediate layers, which greatly avoids the computational
cost. Self-attention based model, such as ViT and Swin Transformer,
has excellent capabilities in extracting relationships between image
patches, building the connections of those that are mostly relevant
to each other. The pioneer work DETR is worth noting, it applies
Transformer architecture as an end-to-end object detector, the
post-processing-free design is more compatible with human visual
patterns and also avoid the unstable performance of NMS. In the
retinal fundus image scenario, the cluttered tissue makes it more
difficult to extract the feature of atrophy, so we believe that the
self-attention mechanism can help the model to better capture the
difference between foreground and background.
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TABLE 2 Performance improvement on various augmentations.

Original
image

Elastic
transform

Grid
distortion

Random
rotate

Grid
mask

AP50

√
80.45

√ √
81.81

√ √ √
82.33

√ √ √ √
85.11

√ √ √ √ √
85.18

Bold values represent the best metric values achieved by our method and other comparison
methods.

Materials and methods

Diagnosing myopia by detecting lesions based on fundus images
requires sufficient data for the deep learning model to have a steady
performance (Peng et al., 2019; Virmani et al., 2019). The iChallenge-
PM dataset released by Baidu encourage the data-driven methods to
automatically detect fundus lesion, it contains three types of fundus
diseases images and lesion masks, as illustrate in Figure 1, previous
studies try to design general deep learning based methods to address
the fundus disease identification and localization problems, which
contain image classification and segmentation that are insufficient
and slow, respectively. In order to implement object detection on
this dataset, we transform the mask of lesions into bounding box by
obtaining the length and width of the mask. It can be clearly found
from the sample images that the region occupied by the disease lesion
is only a small part of the fundus image, and the rest of the tissue
without lesions can be considered as redundant information, which
will be detrimental to the feature extraction and representation of
the model. That’s why we choose DETR as our baseline model, detail
improvements are as follows.

Overall architecture

Inspired by DETR, the overall architecture is illustrated as
Figure 2, the main components are: backbone network, attentional
FPN, Transformer Encoder-Decoder, and a detection head, in which
the backbone is responsible for feature extraction, the feature maps of
three stages with different resolutions are fed into attentional FPN for
feature aggregation. The outputs of attentional FPN are further sent
to the encoder-decoder architecture, which consists of multi-head
self-attention mechanism, layer normalization and a feed forward
neural network, the details are similar to the DETR. Positional
encoding is also adopted for retaining positional information of the
feature blocks, while the object queries are used for information
aggregation, give more attention to the positions where objects are
likely to appear. The detection head is in charge of classifying the
output of the decoder and finally getting the detection result. In
particular, the yellow circles in the Figure 2 represent self-attention
module, which calculates the similarity while fusing feature maps.
The red circles represent multiple layers of features for fusion. Small
squares of different colors in object queries represent different query
objects. As the feature map flows from encoder to decoder, the feature
representation becomes clearer and the purple squares become
darker. The final feed forward network (FFN) is shared to calculate
the object box position and category attributes of the object query.

During the training phase, the image batch is fed into the backbone
to obtain feature maps of four stages and reduce the computational
overhead, three relatively small feature maps are selected and fed into
the detection neck for integration. In the upsampling process of the
neck network, self-attention operation is added to obtain features
with better feature representation ability. Then the aggregation of the
neck feature is sent to the following encoder part. In the detection
head, FFN takes the output of decoder as input and utilizes bipartite
matching loss (i.e., Hungarian Maximum Matching algorithms) to
calculate the corresponding loss values. During inference phase, the
learned object query generates box candidates through Transformer
decoder to select boxes with larger confidence as the final prediction
result.

Model backbone

In the overall model architecture, the backbone is in charge
of feature extraction of the image. The mainstream architecture
of backbone are mainly divided into CNN [AlexNet, ResNet (He
et al., 2016), Res2Net (Gao et al., 2019), ResNeXt (Xie et al.,
2017), ConvNeXt (Liu et al., 2022)] and Transformer (e.g., ViT,
Swin Transformer). The translational invariance and localization of
CNNs provide inductive bias, makes CNN models converge faster,
however, the fixed receptive field limits the global view of convolution
operation. The positional encoding enables Transformer based
network to obtain better capabilities in learning global dependencies.
Swin Transformer first splits the image into small patches and then
feed each patch as a token into Transformer encoder, the core idea is
to calculate the similarity between patches for training an attention-
intensive network without convolution operations. Compare with
the Swin Transformer, the CNNs possess inductive bias, and their
convergence speed is relatively fast. The advantages of inductive
bias are reflected at two aspects: (1) the convolutional kernel size
is generally fixed which result in high local correlation existed in
feature maps; (2) the feature maps generated by the CNNs have
characteristics of translational invariance, which indicates the output
of the convolutional layer does not change no matter where the object
appears in the image.

Since our neck network also uses the architecture of the self-
attention mechanism, Swin Transformer is selected as our backbone
so as to keep the consistency of the features representation. Moreover,
the Transformer architecture has good parallel computing capability
and global view characteristics. When we input a fundus image with
the shape of H ×W × C, it will first pass through a patch partition
module with the purpose of descending and chunking the image.
The output gets a sequence of N × (P2 × C) spreading 2D image
blocks, where N is the number of image blocks, P2 is the area of each
patch, H and W are the height and width of the image, respectively,
and C is the number of image channels. Here we set P to 4, and
N is computed by H/4 × W/4. In summary, an input image with
the shape H × W × C passes through the patch partition module
and outputs a tensor of H/4 ×W/4 × 48, which can be understood
as a total of H/4∗W/4 image patches, each of which is composed
of a 48-dimensional token. The W-MSA and SW-MSA modules
help the Swin Transformer to improve its ability of extracting the
global features in the fundus image. The W-MSA module restricts
the receptive field of the model by only applying the self-attentive
mechanism within each patch. The SW-MSA model adds a cyclic shift
operation to the W-MSA for extracting the features between patches.
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FIGURE 5

The comparison between traditional object detection algorithm Faster R-CNN and MyopiaDETR. Subplot (A) shows the test image, subplot (B) shows the
PM location labels, subplot (C) shows the output of the Faster R-CNN algorithm, and subplot (D) shows the output of our MyopiaDETR.

As illustrated by Figure 2. The Swin Transformer backbone network
has four stages corresponding to four feature maps of different sizes.
The feature map sizes are H/4 × W/4 × C, H/8 × W/8 × 2C,
H/16 × W/16 × 4C, H/32 × W/32 × 8C. The feature map of each
layer will be fed to the subsequent attentional FPN structure for
further processing.

Attentional FPN

Due to the high computational complexity of the Transformer
architecture, which is of O(n2) level, only the feature map of the
last layer (32 times down sampling) is utilized in the original DETR,
resulting in the loss of small object feature information and has the
limitation of single scale in feature representation. To address the
above issues, we added the attentional FPN architecture to utilize all
the features that output from the backbone network. The output of
the first layer of the attentional FPN, which is also the last stage output
from the backbone, is down sampled by 32 times. And then, for each
neck level, the feature size is upsampled by 2 times. As the structure
illustrated in Figure 2, the feature size of each neck level is 16 × 16,
32× 32, and 64× 64 when the input size is 512× 512. Self-attention
is aggregate to the FPN to focus on the regions of interest in each layer
of the feature map. The feature map of each layer will be sliced into
8 times × 8 times pixels blocks, and the results computed between
the blocks are used as weights for the output, the final computation
is used to activate the part of interest in the feature map. Specifically,
we add an auxiliary head after the attentional FPN to distinguish the
foreground from the background, and only the foreground region
will be input to the follow-up Transformer structure. The attentional
FPN outputs the final blocks while recording the sparse encoding
matrix of them, which is fed to the Transformer Decoder to map the
features back to the original image.

Since each feature map is partitioned into 8 times × 8 times
pixels blocks, there will be a total of 64 pixel blocks after the slice.
Let’s define the input x = (x1, x2,..., x64). The input elements will
be passed through an embedding layer W to obtain a multiset of
one-dimensional vectors, denoted as a = (a1, a2,..., a64). Meanwhile,
three learnable matrices are also set as WQ, WK , WV , represent the
query matrix, the key matrix, and the value matrix, respectively.
In particular for a single input xi, the proportion of its weights is
calculated by the following formula:

qi = WQWxi = WQai (1)

ki = WKWxi = WKai (2)

vi = WVWxi = WVai (3)

αi, 64 =
qTi ·ki√
dq, k

, α̃i, 64 = Softmax(αi, 64) (4)

bi =
64∑
i=1

α̃i, 64·vi (5)

The subscript (i, 64) of α in the above equation (4), represents that
the similarity of the i-th input patch is currently being calculated,
and there are a total of 64 patches to be calculated. The purpose of
dividing by root dq,k when calculating α is for normalization to avoid
gradient vanish and dq,k means the dimension of q and k vector. The
softmax function is to map the sum of the weight ratios to 1, which is
convenient for calculating bi.
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Transformer encoder-decoder

The structure of Transformer encoder-decoder is shown in
Figure 3, details are as follows:

Transformer encoder
The input requirement of Transformer encoder module is a

sequence, so when getting the feature map output by attentional
FPN, let the original feature map shape be C × H × W, we need
to descend the channel dimension of the feature map first, and then
flatten the H and W dimension. Finally, we get the feature map with
the shape of C × L, where L equals to H × W. Each encoder block
has a unified structure: multi-head self-attention, Add and Norm and
feed forward network. As for Add and Norm structure, Add stands
for residual connection to prevent network degradation, Norm is
the layer normalization, which normalizes the activation values of
each layer. Because of the invariance of Transformer Architecture,
we add the fixed spatial positional encoding to the attention layer to
complement the location information.

Transformer decoder
The architecture of the decoder part is the same as the traditional

Transformer, but the difference is that each decoder module of
our model decodes N inputs from encoder in parallel. Because the
decoder structure is also permutation-invariant, the N inputs should
be different so that different results can be generated. The meaning
of object queries is similar to that of anchor in traditional object
detection methods, and it is learnable. We input them to each multi-
head self-attention module, which will eventually be decoded into
object boxes location information and category information by the
FFN structure, which is described in section “Detection head”.

To sum up, the features extracted from the backbone are
passed through the multi-head self-attention module in the encoder
structure along with the spatial positional encoding. After that, the
N outputs of encoder and object queries are fed to the decoder part.
Finally, the final object boxes and category information is output by
the multiple multi-head self-attention and decoder-encoder attention
and the FNN structure.

Detection head

The role of detection head in DETR is to predicting a fixed set of
object detections for each input image, rather than using a sliding
window or anchor-based approach in traditional object detection
models. After obtaining the output of the decoder, the final result
is processed by a 3-layer perceptron and a linear projection layer,
where the perceptron is comprized of a ReLU activation function.
FNN computes the position of the box. The linear layer computes the
category to which it belongs by softmax function. Since our predicted
set is composed of N boxes, but in fact N is much larger than the
actual number of objects present in the image, we mark the object
query with no detected object as a background class. In particular,
our FFN share the same weights and are calculated equally for all
N object queries.

Loss function

The loss function calculation is performed in two steps. First,
finding the optimal pairwise loss between the ensemble prediction

TABLE 3 Comparisons between different backbones.

Backbone AP50 APS APM APL

Swin-S 85.18 68.71 83.66 99.34

Swin-B 86.23 69.76 84.65 99.35

Swin-L 85.62 69.08 83.72 99.34

ResNet-50 82.25 65.91 80.34 98.72

ResNet-101 84.67 67.21 82.76 99.12

ResNet-152 86.32 69.65 84.78 99.21

and the ground-truth label in the Hungarian algorithm alignment,
the index of the set of solutions is set to σ̂, as illustrated in formula
(6), where yiis the set of prediction, ŷiis the ground-truth, both of
them need to be stretched to a fixed length by adding None value,
where length = max(len(yi), len(ŷi)). The LMATCH is defined as the
gap between the predicted set and the ground-truth labels in the case
of the first group pairing.

σ̂ = argmin
∑

LMATCH(yi, ŷi). (6)

Second, the index value σ̂ that calculated in the first steps is used to
calculate the classification loss and the predicted bounding box loss,
ci is the class label, and the Hungarian loss is calculated as:

LHungarian(y, ŷ) =
N∑
i=1

[−log p̂̂σ(i)
(ci)+ Lbox(bi, b̂̂σ(i))] (7)

where bounding box loss uses weighted IoU and L1 loss, λiou and λL1
are the weight of IoU loss and L1 loss, respectively. The box loss is
calculated as:

Lbox(bi, b̂̂σ(i)) = λiouLiou(bi, b̂̂σ(i))+ λL1||bi − b̂̂σ(i)||1 (8)

Experimental results

Dataset description

iChallenge-PM
Myopia has become a global public health burden. As the

refractive error of myopia increases, high myopia will progress
to pathological myopia, causing irreversible visual damage to the
patient. Therefore, early diagnosis and regular follow-up are very
important. With this challenge, the iChallenge competition jointly
organized by Baidu Brain and Zhongshan Eye Center of Sun Yat-
sen University provides iChallenge-PM, a dataset on pathological
myopia, which includes 1,200 annotated retinal fundus images from
non-pathological myopic subjects and pathological myopic patients
(about 50%). There are 400 training data, validation data, and
test data sets each.

Data augmentation
We adopt several data augmentation methods to address the

challenges of imaging angle and insufficient data. Subplot (b) in
Figure 4 shows the elastic transform, which was proposed by Simard
et al. (2003) and made great progress on the MNIST handwritten
dataset, and the method is gradually applied to medical image
processing and has been widely used [e.g., Mottl et al. (2002), Gulshad
et al. (2021)], for the parameter settings we set the alpha to 50 and the
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FIGURE 6

Retinal fundus image and the corresponding feature heatmap generated by different backbones, the heatmap of the feature learned by ResNet50,
ResNet101, and Swin-S from left to right.

sigma to 5. Subplot (c) is grid distortion, its effect is similar to that
of the elastic transform, which is a non-rigid body transformation.
Submap (d) is random rotation data augmentation, which aims to
increase the diversity of imaging angles to solve the challenge of
imaging angle, and the rotation angle is set from−180 to 180 degrees.
Subplot (e) is the grid mask data augmentation proposed by Chen
et al. (2020), which randomly masks a number of block locations on
the image and fills them with 0 pixel values, this data augmentation
can mask part of the positive samples with certain probability, thus
preventing the model from overfitting to simple local features, for
the parameter settings we set the ratio to 0.3 and the x_holes and
y_holes to be set randomly between 5 and 7. The gains from each
enhancement will be presented in the ablation study part.

Evaluation metrics

For evaluating the performance of our detection method on
iChallenge-PM dataset, we use mAP as the evaluation metrics, which
is the mean average precision of all categories. AP θ is calculated
as the area enclosed by the Precision (P) and Recall (R) and the
coordinate axis at an IoU (Intersection over Union of predicted box
and ground-truth) threshold of θ , as illustrated below:

IoU(A, B) =
A

⋂
B

A
⋃

B
(9)

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

where TP (True Positive) is the number of IoU between the predicted
box and the ground-truth label that is greater than or equal to
the threshold θ , while FP (False Positive) means the number of
IoU between the predicted box and the ground-truth label that is
less than the threshold θ . FN (False Negative) means no positive

object is detected. Finally, we can get mAP by averaging AP θ at
different thresholds.

Implementation details

Our model is implemented using MMDetection object detection
algorithm library based on Pytorch1.8 deep learning framework using
four NVIDIA RTX 3090 GPUs. We pre-trained our model on COCO
dataset for 36 epochs and fine-tuned on iChallenge-PM for 100
epochs with a mini-batch size of 16 due to the limited data amount.
The learning rate is initiated to 0.001, and we use CosineAnnealingLR
to decay the learning rate with 5 epochs warm-up. The AdamW
optimizer is used to optimize the hyper-parameters. For evaluating
model performance, the IoU threshold and confidence threshold are
set to 0.5 and 0.01, respectively. NMS is adopted as post-process
method. As for the data augmentation implementation approach, we
adopt the image processing algorithms based on opencv-python and
Albumentations library (Buslaev et al., 2020).

Ablation study

To verify the effectiveness of our attentional FPN, we set up a
set of ablation experiments. The backbone network used as the base
model was Swin-Small, DETR and its variants are selected to test the
gains we obtained by adding attentional FPN. In object detection,
taking COCO object definition as an example (Kisantal et al., 2019),
we define a small object as an object which pixel number is less
than 32 × 32, a medium object is an object which pixel number is
between 32∗32 and 96∗96, and a large object is an object which pixel
number is larger than 96∗96. APS means object area smaller than
32 × 32 pixel points, APM means object area between 32 × 32 and
96 × 96 pixel points, APL means object area bigger than 96 × 96
pixel points. As can be seen from Table 1, the DETR works well for
large target detection, but suffers from a major shortcoming in small
object detection. If the FPN is added directly to the DETR structure,
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since the Tranformer has an O(n2) computational complexity and
limited computational resources, this method will result in an out
of memory (OOM) error. In contrast, by adding a self-attention
mechanism to the FPN, only a small number of features need to
be fed into the Transformer structure, and our model achieves
29.02% improvement in detecting small objects, and obtains 8.19
and 1.53% improvement in detecting medium and large object,
respectively. It is worth noting that Deformable DETR, Conditional
DETR and our method achieve more significant improvement with
multi-scale (MS) than the other models with single-scale (SS) design.
The result indicates that multi-scale learning allows greater variety
of features. With Attentional FPN, our model not only achieves
a significant improvement in capturing small objects, but also a
significant improvement in convergence speed during training. In
a nutshell, our model not only achieves a significant improvement
in capturing small objects, but also a significant improvement in
convergence speed during training. Note that all experiments adopt
the same data augmentation methods.

Furthermore, it is important to carefully evaluate the impact
of data augmentation on model performance, which can provide
insights into the factors that contribute to model performance.
In Table 2, we focus on the AP boost from the augmentation
method, presenting in a cumulative manner. As can be seen evidently,
Random Rotate brings the most significant performance gains
because it simulates a situation that is similar to the characteristics
of the original data (i.e., the lesion sites tend to appear in different
directions), this greatly expands the training sample. The other
augmentation methods also achieved considerable improvements,
proving that the increment of data volume by the data augmentation
methods is effective to improving model performance.

Comparison study

Subplot (a) in Figure 5 shows the test image, subplot (b)
shows the PM location labels, subplot (c) shows the output of the
Faster R-CNN algorithm, and subplot (d) shows the output of our
MyopiaDETR. The detection result in the first row of subplot (c)
fails to detect the small object compared to the ground truth, and
the traditional object detection algorithm has limited learning of
complex morphological features. The yellow box in the second row
of subplot (c) is the model’s false detection, and if the threshold of
post-processing of NMS is adjusted down, it will lead to the purple
or green box being removed by the post-processing algorithm, and
the detection ability is still very poor for irregular PM regions. Our
MyopiaDETR does not have these problems, and not only can handle
the detection of irregular PM, but also do not have to worry about the
false removal of detection boxes caused by post-processing.

In addition, we compare the effect of different backbone networks
on the performance of our model. As shown in Table 3, in the
small to medium sized network architecture with a similar number of
parameters, Swin Transformer shows better performance, we believe
this is because the feature extracted by Swin Transformer is consistent
with the operations in attentional FPN. Due to the morphology
irregularity, we need a feature extraction network with strong
capability to capturing global context feature. Swin Transformer has
better feature extraction capability than ResNet because of its global
field of view. Thus, the Swin Transformer avoids the problem of
morphology irregularity and shows a better detection performance
than the ResNet. However, because the Transformer architecture

lacks inductive bias, as Swin Transformer becomes deeper, it requires
a lot more data and the model performance is somewhat weakened.
Compared to the CNN structure, the global feature representation
capability of Transformer is more prominent, and Swin Transformer
performance has a significant advantage over the CNN structure in
the case of small model structures.

Figure 6 shows the 8 × down sampled feature maps of ResNet-
50, ResNet-101, and Swin-S. As the CNN is more localized, it will
to some extent activate non-focal regions, such as the cross-focused
symbols in the figure. The Swin Transformer structure, on the other
hand, has a global field of view and can focus on more important
information (e.g., lesion borders as well as slice edge contours). As
shown in Figure 6, Swin Transformer has a better understanding
of the global information and can pay more attention to the global
contour information. ResNet, on the other hand, has a strong
feature extraction capability, but it only pays attention to the local
contour information and has more activation within the local contour
information. In contrast, we do not need to pay attention to all the
information within the local contour information when dealing with
the ophthalmic disease region, thus highlighting the superiority of
Swin Transformer in feature extraction.

Discussion

The sources of novelty in our work are: (1) Ordinary deep
learning-based object detection methods utilize many modules with
obvious traces of artificial design, that is, a paradigm that does not
match the way human vision finds objects. (2) DETR proposes a
new object detection paradigm based on ensemble prediction, which
directly predicts all objects in an image without post-processing,
which is more in line with human visual habits. (3) Due to the high
computational complexity of Transformer and the fact that DETR
only uses the output features of the last layer of the model, which
contains rich semantic information but is weak in the representation
of local information, the performance in small object detection is
poor, so we propose attentional FPN for feature aggregation, which
uses all the output features of the backbone network, significantly
improve the performance in small object detection.

However, although our proposed new method solves the problem
of small object detection as well as purifying the background features,
there are still some drawbacks. The use of Swin Transformer as
backbone makes the training time much longer than traditional
DETR model. Specifically, in DETR, each query is responsible for a
part of the location and size of the object in an image, which requires
all objects in all images in the training set to be well apportioned to
different queries, so more epochs are needed. The data amount is
very important for deep Transformer architecture model. Our follow-
up research is considering to replace the backbone network with an
optimized architecture to adapt to scenarios with small data volumes.

Conclusion

In this paper, we propose attentional FPN and use a new
paradigm for object detection to solve the eye disease detection
challenges based on 2D fundus images. The experimental results
show that our attentional FPN can be adapted to other deep learning
architectures with only a small increment in computational cost to
achieve a significant accuracy improvement. Several augmentation
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methods are utilized to improve the data volume and make our model
achieve considerable performance improvements, proving that the
increment of data volume by the data augmentation methods is
effective to detecting lesion area in 2D fundus images. Our model
not only achieves a significant improvement in capturing small
objects, but also a significant improvement in convergence speed
during training.
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