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Targeted muscle reinnervation (TMR) surgery involves the coaptation of 
amputated nerves to nearby motor nerve branches with the purpose of reclosing 
the neuromuscular loop in order to reduce phantom limb pain. The purpose of 
this case study was to create a phantom limb therapy protocol for an amputee 
after undergoing TMR surgery, where the four main nerves of his right arm were 
reinnervated into the chest muscles. The goal of this phantom limb therapy was 
to further strengthen these newly formed neuromuscular closed loops. The case 
participant (male, 21- years of age, height = 5′8″ and weight = 134 lbs) presented 
1- year after a trans-humeral amputation of the right arm along with TMR surgery 
and participated in phantom limb therapy for 3 months. Data collections for the 
subject occurred every 2 weeks for 3 months. During the data collections, the 
subject performed various movements of the phantom and intact limb specific 
to each reinnervated nerve and a gross manual dexterity task (Box and Block 
Test) while measuring brain activity and recording qualitative feedback from 
the subject. The results demonstrated that phantom limb therapy produced 
significant changes of cortical activity, reduced fatigue, fluctuation in phantom 
pain, improved limb synchronization, increased sensory sensation, and decreased 
correlation strength between intra-hemispheric and inter-hemispheric channels. 
These results suggest an overall improved cortical efficiency of the sensorimotor 
network. These results add to the growing knowledge of cortical reorganization 
after TMR surgery, which is becoming more common to aid in the recovery after 
amputation. More importantly, the results of this study suggest that the phantom 
limb therapy may have accelerated the decoupling process, which provides 
direct clinical benefits to the patient such as reduced fatigue and improved limb 
synchronization.
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1. Introduction

The loss of a limb leads to plasticity in the sensorimotor cortex that 
is frequently accompanied by the vivid experience that the missing limb 
is still present and can be moved at will (i.e., phantom limb movement) 
as well as experience phantom sensations (i.e., pain, touch, etc.) (Flor 
et al., 1995; Kooijman et al., 2000). This is an indication that the central 
pathways associated with the amputated peripheral nerves retain at least 
some sensory and motor function and that the neural networks 
associated with the missing limb still exist. It has been shown that chronic 
amputees can still retain significant residual connectivity and function 
for many years after limb amputation (Dhillon et al., 2004). Numerous 
reports of cortical reorganization after amputations in humans have 
shown that neighboring cortical areas of intact body parts expand into 
cortical areas previously devoted to an injured or missing limb (Elbert 
et al., 1994; Weiss et al., 2000; Karl et al., 2001). However, much of this 
work has been conducted in amputees whose nerves remain severed and 
left in the stump of the arm after amputation (i.e., indicating an open 
loop system).

Recently, new surgical strategies have been conducted to preserve 
the severed peripheral nerves by reinnervating them into a nearby 
muscle (i.e., creating a new closed loop system) with the goal of reducing 
phantom pain, which might be directly related to the plasticity occurring 
within the de-afferented area of the cortex. This new type of reinnervation 
surgery, targeted muscle reinnervation (TMR), involves the coaptation 
of amputated nerves to nearby redundant motor nerve branches (Mioton 
and Dumanian, 2018). A successful TMR surgery allows voluntary 
motor control signals that use to activate muscles in the amputated limb 
to activate these newly reinnervated muscles thus creating a new closed 
loop system. The long-term surgical goal of TMR is to create new and 
reliable electromyography (EMG) signals in amputees to provide greater 
control over myoelectric prostheses. Residual upper limb nerves in the 
stump are paired with muscles that retain contractility but no longer have 
a biomechanical function. Following successful neurotization, these 
muscles biologically amplify nerves signals and serve as a conduit to the 
skin surface, thus providing new, discrete EMG signals that can 
be utilized for prosthetic control. The goal is to harness the original 
function of the severed nerve to control a specific movement of the 
prosthetic limb.

After the regular physical therapy after amputation, however, it is 
uncertain if the de-afferented sensorimotor cortex remains preserved 
due to this new closed-loop feedback approach. A hand transplantation 
study has shown a complete reversal of this cortical reorganization 
where the transplanted hands expand back into the deprived cortical 
area (Giraux et  al., 2001). Additionally, it is uncertain if the 
reinnervated muscle produce a stable electromyographic (EMG) 
signal or if they need additional training. Thus, a unique phantom 
limb therapy was created for the subject with the goal of improving, 
preserving, and/or creating new, functional neural networks. This 
method was chosen over other methods, such as virtual reality, as this 
subject did not have access to additional means of physical therapy 
and rehabilitation past the normal rehabilitation amputees receive 
after losing a limb. The overall goals for this project were to aid this 
subject and test a unique phantom limb paradigm that could 
be performed at home and with no additional cost to the subject. The 
results shown could potentially help in future rehabilitation paradigms 
for TMR patients as well as in the design and control of an electrically-
drive prosthesis for TMR patients.

2. Case description

2.1. Case participant

The case participant was a 21-year-old male manual-laborer who 
sustained a traumatic amputation to his dominant right arm which 
resulted in a high transhumeral amputation above the level of the 
deltoid and pectoralis insertion. Upon initial presentation, the subject 
had a traumatic amputation with rapid bleeding from the brachial 
artery. This was suture ligated along with the brachial plexus in the 
acute trauma resuscitation. This functionally left the subject with a 
shoulder disarticulation. The subject underwent a TMR procedure 
after the damage control procedure through a distinct surgical site 
proximal to the traumatic amputation where the four main nerves of 
the brachial plexus after the divergence of the axillary nerve were 
transferred to various nerves of chest wall muscles (Figure 1A).

The subject performed the phantom limb therapy every day at 
home for a total of 3  months and returned to the lab for data 
collections every 2 weeks (Figure 1C). The subject signed a medical 
record information release (HIPAA) form to give researchers access 
to his medical information. Written and informed consent was 
provided by the subject to participation in this study and for the 
publication of this case report (including all data/images), which was 
approved by the University of Nebraska at Omaha Review Board.

2.2. Three month phantom limb therapy

The subject began phantom limb therapy 1-year post-amputation 
and TMR surgery. The movements chosen for the phantom limb 
therapy were derived from the original function of the rerouted nerves 
and the typical movements needed for a potential prosthetic arm in the 
future: (1) opening the hand, (2) closing the hand, (3) wrist flexion, (4) 
wrist extension, (5) elbow flexion, and elbow extension. There were 
three phases to the phantom limb therapy: (1) Perform movements with 
the intact limb only, (2) Perform the movements with the phantom and 
intact limbs together, and (3) Perform the movements with the phantom 
limb only. The subject was instructed to perform each movement 20 
times during all phases for a total of 360 movements performed each 
day. The number of movements performed were chosen from previous 
use-dependent (Nudo et  al., 1996) and prolonged motor imagery 
(Rozand et al., 2016) studies. After Week 10, the subject was instructed 
to include two additional movements: (1) Wrist Pronation and (2) Wrist 
Supination, as it was discovered that these movements could activate the 
musculocutaneous nerve, which had previously shown minimal to no 
activity. With the addition of these two wrist movements, the subject 
performed a total of 480 movements each day, during the final 2 weeks 
of phantom limb therapy.

2.3. Data collection sessions

2.3.1. Sensory mapping
Sensory mapping data were collected by palpating in a grid 

orientation (Figure 1B) over the pectoralis major and serratus anterior 
muscles to increase reproducibility between sessions. The subject 
would then point to the drawing of the hand (Figure 1D) or on the 
researcher’s hand or arm where he felt the sensation.
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2.3.2. Maximum voluntary contractions
Since the subject had no limb to press against a dynamometer, 

the subject was instructed to produce maximum voluntary 
contractions (MVCs) to the best of his ability by flexing or 
squeezing as hard as possible. Each MVC was performed for 10 s 
followed by 30 s of rest for a total of 3 trials. The following MVCs 
were performed: biceps flexion, thumb flexion, finger adduction, 
triceps flexion, and power grip (i.e., squeezing the hand into 
a fist).

2.3.3. Gross manual dexterity task
The Box and Block (B&B) Test has been suggested as a measure 

of unilateral gross manual dexterity (Mathiowetz et al., 1985, 1986). 
The B&B Test followed the procedures outlined in previous 
experiments (Zuniga et al., 2019; Borrell et al., 2021). When using the 
phantom limb, the subject was instructed to imaging each step of 
picking up the block which included the feeling of picking up a block 
as well as transferring the block across the divider and releasing the 
block into the adjacent box.

FIGURE 1

Schematic of TMR procedures and sensory testing. (A) Schematic of the case participant presenting with a short trans-humeral amputation after a 
targeted muscle reinnervation surgery. The radial nerve was transferred to the nerve branch of the clavicular head of the pectoralis major. The 
musculocutaneous nerve was transferred to the nerve branch that innervated the superior half of the sternal head of the pectoralis major. The median 
nerve was transferred to the nerve branch that innervated the inferior half of the sternal head of the pectoralis major. Lastly, the ulnar nerve was 
transferred to the lateral thoracic nerve which innervated the serratus anterior. Subcutaneous fat was not removed secondary to the patient’s low body 
fat content. (B) The grid used to palpate the reinnervation sites. This grid along with anatomical landmarks clavical, sternum, axilla, and mamilla were 
used to reduce variability and increase consistency of palpation sites between data collection days. (C) Phantom limb therapy occurred every day for 
3-months. Data collection sessions were conducted every 2-weeks over the 3-month period. (D) Palmar and dorsal side of the hand. The subject 
pointed to the area of the hand or arm where he felt the sensory sensation when a stimulus was produced by palpating the reinnervation sites. 
(E) Sensitivity profile of the probe over the sensorimotor cortex used in this study. Log sensitivity index values closer to zero (red) reflect greater 
sensitivity for acquiring signals in that region (Aasted et al., 2015). Image created using AtlasViewer (v2.12.4). The location of the detectors (blue), the 
sources (red), and the channels (yellow lines) are shown for the subject.
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2.4. Functional near-infrared spectroscopy

Functional near-infrared spectroscopy (fNIRS) task data were 
collected and analyzed using similar techniques from a previous case 
study (Borrell et al., 2021). The main difference in this study is the 
inclusion of short separation detectors (~8 mm distance), which were 
used to filter out physiological noise from the scalp (Zhang et al., 
2021). The cap was positioned to cover the sensorimotor area 
(Figure  1E). Task data were analyzed using the Homer3 (v1.26) 
Toolbox (Huppert et al., 2009; Bunpc Homer3, n.d.). Hemodynamic 
data were reconstructed on atlas anatomy utilizing the AtlasViewer 
(v2.12.4) Toolbox (Aasted et al., 2015). HbR data were not analyzed 
or displayed for this study.

Three minutes of pre-task data were collected for resting state 
functional connectivity (RSFC) analysis. The raw data was then 
processed and analyzed using the NIRS Brain AnalyzIR toolboxes 
(Santosa et al., 2018). Data were down sampled to 4 Hz, optical density 
was estimated, and the Beer–Lambert Law was used to obtain HbO 
data. Pearson correlation coefficients (r) were calculated using the 
NIRS Toolbox’s built-in ‘connectivity’ module. This connectivity 
function employs an autoregressive robust correlation function to help 
reduce the confounding effects of physiological phenomena that can 
lead to false positive results (Huppert, 2016; Santosa et al., 2017). Each 
r-value quantifies the correlation between the hemodynamic data of 
two channels, which serves as a surrogate measure for RSFC. After 
calculating all connectivity values, they were converted to Z values 
using Fisher’s transformation (Fisher, 1915) which normalizes the 
variance of Pearson correlation coefficients (r). A two-tailed Student’s 
t-test was then applied to obtain the p-values.

3. Results

3.1. Qualitative feedback from the TMR 
subject

3.1.1. Phantom pain
Before therapy, the subject experienced minimal to nonexistent 

phantom pain (1 on a 10 point scale with 1 = no pain and 10 = very 
painful) and only occasionally experienced phantom limb sensations, 
which were not bothersome. At Month 1, phantom pain was reported 
after performing the phantom movements during therapy (2 on a 10 
point scale). This dull pain went away at Month 2 (1 on a 10 point 
scale) and did not return.

3.1.2. Fatigue
During baseline recordings, the subject became very fatigued (6–7 

on a scale of 10 with 1 = no fatigue and 10 = very fatigued), so it was 
decided by the researchers to end the data collection early. At Week 2, 
the subject’s fatigue drastically improved to a 2–3 on a 10 point scale. 
At Month 3, the subject reported that he felt “perfectly fine” with no 
fatigue at all (1 on a 10 point scale).

3.1.3. Limb synchronization
During baseline, the subject first noted that the phantom 

movements “matched pretty well” (9 on a 10 point scale with 1 = limbs 
not synchronized at all and 10 = limbs synchronized very well). 
However, at Week 2, the phantom hand was slower during hand 

opening only (7.5 on a 10 point scale) and that the other movements 
still “matched pretty well” (9 on a 10 point scale). At Month 3, the 
subject reported an “almost perfect match” between all phantom and 
intact movements (9–10 on a 10 point scale).

3.2. Qualitative sensory reponses

During baseline, 13 of the 25 sensory sites produced no reponses 
during phantom limb movements. The sensory sites that did produce 
a response were qualitatively determined as minimal and vastly 
overlapping (Figure 2). At Month 3, the sensory sites produced large 
areas of sensory reponses, and the number of no response sensory 
responses decreased to eight sites. Active sensory sites started to 
qualitatively expand and separate (Figure 2).

3.3. Cortical responses during movement 
tasks

During baseline, changes in HbO were drastically different from 
the expected response model (measured around zero and represented 
in green) during both intact and phantom limb movements. During 
these movements, signficant decreases in HbO, represented as deep 
blue in Figure  3, appeared to dominate over the smaller areas of 
signficantly increased HbO levels, represented as deep red, that 
occurred more in the premotor and primary motor areas. Increases 
and decreases in HbO were present in both hemispheres indicating a 
bilateral response during phantom and intact movements.

At Month 3 (Figure 3), changes in HbO became more balanced 
especially in the right, afferented hemisphere during both intact and 
phantom movements. The drastic decreases in HbO appeared to 
diminish and the drastic increases in HbO occurred more in the 
primary motor area of the left, deafferented hemisphere during both 
intact and phantom movements.

3.4. Resting state functional connectivity

The Fisher transformed matricies are shown in Figure 4. During 
baseline, the primary motor (M1), premotor (PMC), and sensory (S1) 
corticies within both the left hemisphere (left M1 sum of 
Z-scores = 9.50; left PMC sum of Z-scores = 6.45; left S1 sum of 
Z-scores = 2.42) and right hemisphere (right M1 sum of 
Z-scores = 6.54; right PMC sum of Z-scores = 1.79; right S1 sum of 
Z-scores = 6.78) are shown to have a strong correlation within the 
respective hemispheres (left hemisphere sum of Z-scores = 28.08; right 
hemisphere sum of Z-scores = 16.67), indicating strong intra-
hemispheric connections. Additionally, these same sensorimotor 
regions are shown to have a strong correlation between hemispheres, 
indicating strong inter-hemispheric connections (M1 sum of 
Z-scores = 15.50; PMC sum of Z-scores = 7.87; S1 sum of 
Z-scores = 4.28; All Channels sum of Z-scores = 39.05). By Month 3, 
correlation strength was drastically decreased as compared to Baseline 
in both inter-hemispheric (M1 sum of Z-scores = 3.21; PMC sum of 
Z-scores = 1.49; S1 sum of Z-scores = 0.92; All Channels sum of 
Z-scores = 6.58) and intra-hemispheric (left M1 sum of Z-scores = 4.55; 
left PMC sum of Z-scores = 1.43; left S1 sum of Z-scores = 0.38; right 
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M1 sum of Z-scores = 1.34; right PMC sum of Z-scores = 0.63; right S1 
sum of Z-scores = 2.01) channels. Interestingly, channels 09 and 10 
within the left, deafferented M1 did not change and continued to show 
a strong correlation.

4. Discussion

After 3-months of phantom limb therapy that was derived 
specifically for this case subject, the results displayed signficant 

FIGURE 2

Sensory mapping of the TMR subject. Sensory mapping was conducted in a grid fashion by tapping sites 1—25 over the right major pectoralis and 
serratus anterior. The numbers correspond to the grid in Figure 1B. The TMR subject indicated the area of the right hand in which he felt the tapping by 
either pointing at the hand diagram, pointing at the researcher’s hand, or describing the sensation. The color-coding is only meant to differentiate the 
site numbers in the event they overlap and only corresponds to the adjacent number with the same color. Color-coding is not consistent between 
weeks of therapy nor between hands in the same week of therapy.

FIGURE 3

Functional near-infrared spectroscopy (FNIRS) spatial activty maps during phantom and intact limb movements. Change in HbO, as compared to the 
expected modeled response, is shown for each channel (yellow lines). An increased HbO response from the expected response is highlighted in red 
while a decreased HbO reponse is highlighted in blue. The change in HbO is centered on zero where zero is the expected modeled response. Only 
changes in HbO greater than a threshold of p < 0.01 were plotted. The color bar indicates the scale of the concentration change on the logarithmic 
scale. Red dots are source optodes, and blue dots are detector optodes. Figures were created using AtlasViewer.
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changes of cortial activity measured as changes in HbO levels during 
various tasks and decreased correlation strength between inter- and 
intra-hemisphereic connections during rest. In addition, the subject 
experienced reduced fatigue, a fluctuation in phantom pain, improved 
limb syncronization, and increased sensory sensation.

To our knowledge, this is the first study to describe the sensory 
outcomes in this format and after TMR surgery. The main limitation 
of this case study is that data was collected in only one subject without 
comparisons to a non-amputee, control subject nor to a 
non-TMR amputee.

Currently, it is recommended that therapy begin immediately after 
amputation and TMR surgery or right after the tissue has had time to 
adequately heal after surgery, depending on the condition of the 
patient. This timeframe did not occur in this case study due to socio-
economical barriers that hindered the subject. The authors highly 
recommend that building relationships between clinicians and 
researchers become the priority in order to (1) reduce the time 
between surgery and the onset of therapy and (2) to break down any 
barriers of access that may hinder a patient. Nonetheless, the results 
of this study may suggest that a later onset of therapy may still provide 
benefits to TMR amputees well after their initial amputation and 
TMR surgery.

It has been shown that the later stage of learning is slow and may 
take several sessions (or weeks) of practice (Nudo et al., 1996; Karni 
et al., 1998). As training progresses, Nudo et al. (1996) and Karni et al. 

(1998) have shown that motor performance becomes fluent and less 
attention is required to perform the movement, reflecting implicit 
learning. Our results agree with this notion as shown by more 
balanced levels of HbO, decreased inter- and intra-hemispheric 
correlation strength shown during rest, and a qualitative description 
from the subject that the phantom movements became easier to 
perform and more fluid which was supported by reduced fatigue as 
time progressed. Interestingly, the subject reported at the beginning 
of therapy that the phantom limb felt abstract, mixed-up, and 
disorganized. At the end of therapy, the subject reported a connected, 
pieced together phantom limb which he could easily and smoothly 
move in space. The subject also reported that “my phantom limb feels 
part of me once again.” This discription and the overall results suggest 
an improved cortical efficiency of the sensorimotor network observed 
during phantom and intact limb movements.

4.1. Consistency found after amputation

It has been shown that hand movement representations survive in 
the deafferented cortex of ampuees (Reilly et al., 2006) even when a 
phantom limb sensation cannot be produced (Mercier et al., 2006). 
Similarly, it has been reported that motor and sensory representations 
shifted to their estimated originical locations following TMR surgery 
(Giraux et  al., 2001; Chen et  al., 2013; Yao et  al., 2015). During 

FIGURE 4

Resting state functional connectivity throughout 3-months of phantom limb therapy. The Z-score of the correlation matrix for HbO activation from all 
the channels recorded during a 3-min resting period. Channels 1–10 represent the left, deafferented hemisphere in the upper left quadrant, channels 
11–18 represent the right hemisphere in the lower right quadrant, and the channels from both hemispheres in the lower left quadrant represent the 
interhemispheric connectivity.
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baseline, the subject produced signficant changes in HbO based on the 
expected response while using both limbs, which were similarly 
reported by Kew et al. (1994). However, they only reported signficant 
increases of blood flow in the deafferented cortex and not in the 
afferented cortex (Kew et al., 1994). These results may suggest drastic 
inhibition in areas of signficant decreases in HbO and increased 
excitability in areas of significant increases of HbO (Cai et al., 2022). 
It is uncertain if the recorded HbO levels occurred in the original 
cortical representations; however, this activitiy did occur in both 
sensorimotor cortices which suggests that the original cortical 
representations are being utilized during both phantom and intact 
limb movements. Furthermore, the subject reported minimal 
phantom limb pain before beginning the phantom limb therapy. 
Phantom limb pain has been associated with abnormal increases and 
decreases in cortical plasticity after amputation (Li et al., 2021), which 
were present during baseline recordings. However, it appeared that the 
TMR surgery proved successful in reducing phantom limb pain 
despite these drastic changes in HbO.

4.2. Resting state connectivity suggests 
decoupling

Arm amputation results in immediate deprivation of major 
inputs and outputs to the sensorimotor network. This eventually 
leads to unmasking of silenced inputs (Barnes and Finnerty, 
2010), which may be  the case for the greater inter-and intra-
hemispheric connectivity during baseline recordings. This 
unmasking could be  associated with decreases in the 
neurotransmitter gamma-Aminobutyric acid (GABA) neurons, 
which has been shown to decrease in adult monkeys after visual 
deafferentation (Hendry and Jones, 1986) and has been assumed 
to also occur in humans after amputation (Kew et al., 1994). With 
greater connectivity, it could easily be assumed that this would 
result in greater efficiency; however, this may not be  the case. 
Along with greater connectivity during baseline, the subject 
reported greater fatigue, which is an indication of higher 
metabolic cost (Bassett et  al., 2009). Bassett et  al. previously 
showed in amputees that the missing hand cortex becomes 
decoupled (i.e., lower levels of functional coupling) from the 
sensorimotor network and coupled with the default mode network 
over time. However, it has been shown that amputees without 
TMR surgery still have strong representations in the sensorimotor 
network (Ding et al., 2020). Thus, our baseline resting state fNIRS 
data may suggest that the missing hand cortex may still be coupled 
to the sensorimotor network.

The decreased correlation values over time suggest that the 
phantom limb therapy may have decoupled the missing limb from the 
sensorimotor network, which was suggested to happen over time in 
non-TMR amputees (Makin et al., 2015). However, it is uncertain if 
the missing limb became coupled with other areas of the brain. For 
example, the missing limb may have coupled with the default mode 
network (Bolwerk et al., 2013) or to sub-cortical networks which are 
not feasible with this fNIRS set-up. However, due to the TMR surgery 
which created new closed loops to the chest muscles, it is more likely 
that the phantom limb representation may have coupled with the 
trunk representation of the brain. Further evidence is needed to 
support this claim.

4.3. Future considerations of phantom limb 
therapy

The overall results suggest that all the benefits reported stem from 
the cortical changes seen in the fNIRS data, which we term as cortical 
efficiency. These results suggest that the current protocol of phantom 
limb therapy provided a benefit to the patient. It is difficult to pinpoint 
which part of the protocol produced the greatest benefit; however, 
we  recommend that various phantom limb movements should 
be performed based on the level of amputation. This recommendation 
follows the mechanisms underlying use-dependent plasticity (Nudo 
et  al., 1996; Makin et  al., 2013; Raffin and Siebner, 2019). Future 
implementations of this protocol may consider including additional 
phantom limb movements or more complex movements as therapy 
progresses. The goal of modifying the protocol over time would be to 
train the phantom limb further to perform complex movements in an 
efficient and fluid fashion.

5. Conclusion

The present case study demonstrated that phantom limb therapy 
performed daily over a 3-month period produced signficant changes of 
cortial activity, decreased correlation strength between intra- and inter-
hemispheric channels, and signficant sensory expansion in a TMR 
amputee. These cortical improvements directly benefited the TMR 
amputee by drastically reducing fatigue, improving limb synchronization, 
and causing a fluctuation in pain that returned to a non-existent state. 
These combined results suggest an improved cortical efficiency of the 
sensorimotor network. Furthermore, the strategies behind this phantom 
limb therapy can be translated to different types of amputations and 
different reinnervated nerves. As we strive for a humanlike prosthetic 
limb that restores effortless functionally, we  have demonstrated the 
positive effects of a phantom limb therapy paradigm that could help 
amputees reduce the training time needed to use a myoelectric device, 
which will potentially improve strategies used in daily life.
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