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The Olig genes encode members of the basic helix–loop–helix (bHLH) family of 
transcription factors. Olig1, Olig2, and Olig3 are expressed in both the developing 
and mature central nervous system (CNS) and regulate cellular specification and 
differentiation. Over the past decade extensive studies have established functional 
roles of Olig1 and Olig2 in development as well as in cancer. Olig2 overexpression 
drives glioma proliferation and resistance to radiation and chemotherapy. In this 
review, we summarize the biological functions of the Olig family in brain cancer 
and how targeting Olig family genes may have therapeutic benefit.
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Introduction

The Olig family

The oligodendrocyte lineage transcription factor (Olig) family of proteins, comprised of 
Olig1, Olig2, and Olig3, are basic helix–loop–helix (bHLH) transcription factors that are 
essential regulators of neural cell fate and specification (reviewed in detail in Szu et al., 2021). 
The Olig genes and the proteins they encode are responsible for the development of 
oligodendrocytes and neural cells. Initial studies revealed that the Olig genes, primarily Olig1 
and Olig2, are expressed by oligodendrocyte precursor cells (OPCs) where Olig1 regulates 
oligodendrocyte formation and maturation in the brain and Olig2 modulates oligodendrogenesis 
in the spinal cord (Lu et al., 2002; Ross et al., 2003; Meijer et al., 2012). It was later discovered 
that the Olig proteins are also involved in neurogenesis. Specifically, Olig2 is distinctly expressed 
in the progenitors of motor neurons (pMN) domain of the developing spinal cord where motor 
neurons are generated (Takebayashi et al., 2000; Novitch et al., 2001). Furthermore, Olig1/2 were 
also found to generate inhibitory interneurons in the brain (Miyoshi et al., 2007; Silbereis et al., 
2014). Recently, GABAergic neurons were shown to be derived in Olig3 lineage cells (Lowenstein 
et al., 2021). The role of the Olig family in astrocyte specification is not well established. It was 
shown that Olig1/2 may promote astrocyte differentiation where astrocytes are sequentially 
transformed after generation of interneurons (Zhou and Anderson, 2002). However, other 
studies determined that Olig-expressing precursors to be  negative regulators of astrocytes 
confirming the cellular fate to be neurons and oligodendrocytes (Lu et al., 2002). The Olig genes 
are also expressed in cancer and are detailed below.
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Gliomas

Gliomas are primary brain tumors derived from neuroglial stem cells 
or progenitor cells as well as lineage restricted precursors (Weller et al., 
2015). Roughly 30% of all primary brain tumors are gliomas and 80% are 
considered malignant (Schwartzbaum et al., 2006; Weller et al., 2015). 
Traditionally, gliomas are classified based on their histopathological and 
clinical features established by the World Health Organization (WHO; 
Louis et al., 2021). Over the years, technological advancement has vastly 
improved classification of gliomas centered on molecular and genomic 
changes (Reifenberger and Collins, 2004). Currently, gliomas are divided 
into six families: (1) adult-type diffuse gliomas; (2) pediatric-type diffuse 
low-grade gliomas; (3) pediatric-type high-grade gliomas; (4) 
circumscribed astrocytic gliomas; (5) glioneuronal and neuronal tumors; 
and (6) ependymomas (Louis et al., 2021). Adult-type diffuse gliomas are 
further separated into three different groups: (1) isocitrate dehydrogenase 
(IDH) mutant with 1p/19q co-deletion with primarily oligodendroglial 
morphology; (2) IDH mutant with 1p/19q non-codeletion with mainly 
astrocytic histology; and (3) IDH wildtype (Louis et al., 2021). Gliomas 
are also further categorized based on WHO grades I–IV. Grade I gliomas 
consists of pilocytic astrocytic astrocytomas and are primarily observed 
in the cerebellum or brain stem of children. Grade II gliomas are 
comprised of adult low-grade gliomas and are generally astrocytomas, 
oligodendrogliomas, mixed oligoastrocytomas, and diffuse astrocytomas. 
Grade III gliomas are malignant gliomas composed of anaplastic cells. 
Grade IV gliomas are glioblastoma (GBM) which consists of primary and 
secondary GBM (Louis et al., 2021).

Olig expression in gliomas

Success in prognosis and therapeutics of gliomas is dependent on 
accurate diagnosis. While there exist a multitude of histological markers 
to differentiate between the types of gliomas, challenges remain due to 
gliomas displaying similar morphological characteristics (Collins, 2013). 
Specifically, reliable markers to accurately distinguish between glioma 
types are lacking due to ambiguous histological features. Differentiating 
gliomas based on their cellular morphology can also be confusing and 
biased, resulting in classifications such as oligoastrocytoma or mixed 
glioma (Brennan, 2011). Observer variability can also lead to 
misdiagnosis or underdiagnosis of the correct disease (Marie et al., 2001).

CNS tumors are heterogenous and their grading based on 
histological features is notoriously subjective (Theeler et al., 2012; 
Komori, 2021). With advances in diagnostic technologies, the most 
recent WHO 2021 classification of tumors of the CNS have adopted 
key molecular markers and revised grading of astrocytic tumors, 
oligodendroglial tumors, oligoastrocytomas, glioneuronal tumors, and 
neuronal tumors (Louis et al., 2021). The summary of Olig expression 
in gliomas presented in this review is based on WHO CNS tumor 
classification at the time the studies were conducted. However, 
we have organized the gliomas, to the best of our ability, centered on 
the most current 2021 WHO CNS tumor classification. Large datasets 
have confirmed the expression of Olig2 across all gliomas such as 
TCGA and others (Singh et al., 2004; Suva et al., 2014).

Olig expression in adult-type diffuse gliomas
Adult-type diffuse gliomas are composed of IDH-mutant and 

1p/19q-codeleted oligodendrogliomas, IDH-mutant astrocytomas, 

and IDH-wildtype GBMs, based on histological characteristics and 
explicit molecular markers. In adults, oligodendrogliomas with IDH 
mutation and 1p/19q-codeletion also present with mutations in the 
TERT promoter gene (Lee et al., 2018). Oligodendroglial tumors have 
generated great interest over the past decade due to its favorable 
response to chemotherapy (Engelhard et al., 2003; Reifenberger and 
Louis, 2003; Van den Bent et al., 2008) which may be attributed to the 
concurrent loss of chromosome arms 1p and 19q (Cairncross et al., 
1998; Smith et al., 2000; Sasaki et al., 2002). IDH-mutant astrocytomas 
are now graded as WHO grade II, III, or IV (Louis et al., 2021) and 
also harbor ATRX and TP53 mutations (Marker et al., 2021). GBM is 
the most common and deadliest primary brain tumor. IDH-wildtype 
GBM demonstrates alterations in epidermal growth factor receptor 
(EGFR), and similar to oligodendrogliomas, exhibit TERT promoter 
mutations (Galbraith et al., 2020).

Because oligodendrogliomas arise from oligodendrocytes, it is not 
surprising that attempts to diagnose oligodendrogliomas have utilized 
oligodendrocyte markers. Mature oligodendrocyte markers, such as 
myelin basic protein (MBP) and proteolipid protein (PLP), however, 
are not expressed at detectable levels in oligodendrogliomas (Sung 
et  al., 1996; Popko et  al., 2002). Furthermore, immature 
oligodendrocyte markers, such as the chondroitin sulphate 
proteoglycan NG2 and platelet-derived growth factor receptor alpha 
(PDGFR-α), lack specificity (Popko et  al., 2002) and have been 
unsuccessful in discerning between glioma types (Shoshan et al., 1999; 
Marie et al., 2001). Several earlier studies have observed marked Olig2 
expression in oligodendrogliomas (Lu et al., 2001; Marie et al., 2001; 
Yokoo et  al., 2004). Specifically, anaplastic oligodendrogliomas 
displayed intense nuclear Olig2 expression (Ohnishi et  al., 2003). 
Morphologically, Olig positive cells were moderately to densely 
packed, and displayed round and homogeneous nuclei with 
perinuclear halos (Lu et  al., 2001), characteristics consistent with 
oligodendroglial tumors (Kim et al., 2005). Others have also observed 
an upregulation of both Olig1 and Olig2 in these tumors (Ohnishi 
et al., 2003; Aguirre-Cruz et al., 2004; Riemenschneider et al., 2004). 
For example, one study found an astounding 87% (26/30) and 93% 
(28/30) of oligodendroglial samples were positive for Olig1 and Olig2, 
respectively (Aguirre-Cruz et  al., 2004). Furthermore, the strong 
expression of Olig1 and Olig2 was shown to be correlated to WHO 
classification with their expression increasing incrementally from 
grades I to III (Ohnishi et al., 2003). However, one report did note 
varied expression of Olig1 and Olig2. Here, the authors found 3 grade 
III oligodendrogliomas did not express either Olig1 or Olig2 while 
another 3 grade III oligodendrogliomas expressed Olig1 only (Bouvier 
et al., 2003).

Compared to oligodendrogliomas, Olig expression in 
astrocytomas and GBMs has been inconsistent and varied. Generally, 
low levels of Olig1 and Olig2 have been observed (Ohnishi et al., 2003; 
Riemenschneider et al., 2004; Tanaka et al., 2008) with weak Olig2 
intensity in the nuclei (Ohnishi et al., 2003). In one report, low Olig1 
expression was detected along with a marked upregulation of Olig2 
(Riemenschneider et  al., 2004), while another study found an 
upregulation of both Olig1 and Olig2, although the sample size was 
small (4 cases of diffuse astrocytomas; Aguirre-Cruz et al., 2004). In 
another study astrocytomas were found to exhibit only weak or 
moderate Olig expression (Lu et al., 2001). Olig expression was not 
detected in a case of grade III astrocytoma (Bouvier et al., 2003). 
GBMs also displayed varying Olig2 expression. While one study rarely 
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observed Olig2 in GBM (Ohnishi et  al., 2003), another study 
demonstrated lower mean transcript levels of Olig1 and Olig2 
(Riemenschneider et al., 2004). In one rare case of GBM, upregulation 
of both Olig1 and Olig2 were observed (Aguirre-Cruz et al., 2004). 
Interestingly, in a separate study, Olig2 protein levels were upregulated 
in all cases of GBM and appeared nuclear (Ligon et al., 2004).

Olig in pediatric-type diffuse high-grade gliomas
While diffuse high-grade gliomas (HGGs) are more common in 

adults, pediatric HGGs present with similar histopathological features 
and devastating prognosis (Jones and Baker, 2014; Wu et al., 2014). 
Pediatric diffuse HGGs can arise from various regions in the brain but 
most develop as diffuse intrinsic pontine glioma (DIPG) which occurs 
in the brainstem (Jones and Baker, 2014) during a restricted window 
of childhood (median age ~ 7 years; Hennika and Becher, 2016). 
DIPGs are the most common brainstem tumors in children with a 
median of survival of less than 1 year from diagnosis (Warren, 2012). 
Histopathologically, DIPG hosts a spectrum of features that is 
consistent with diffuse and anaplastic astrocytomas and GBMs 
(Buczkowicz et al., 2014). Because DIPG appears during development, 
neural stem cells (NSCs) and neural progenitor cells (NPCs), which 
are actively proliferating and differentiating, are highly impacted 
during disease progression (Anderson et al., 2017). Olig proteins are 
critical players in cellular specification and differentiation during 
development (Szu et al., 2021). Their expression in DIPGs have been 
investigated. Not surprising, a large number of cells in the pons were 
found to be  positive for Olig2 with a subset of these cells also 
co-expressing Sox2 and Nestin (Monje et al., 2011; Ballester et al., 
2013), markers of not only CNS embryogenesis (Vinci et al., 2016), 
but also tumorigenesis (Boumahdi et  al., 2014; Neradil and 
Veselska, 2015).

Olig in circumscribed astrocytic gliomas
Circumscribed astrocytic gliomas are astrocytic neoplasms with 

circumscribed growth (Riemenschneider et  al., 2004). Pilocytic 
astrocytoma (PA) is a type of circumscribed astrocytic glioma and is 
considered a low-grade glioma (LGG). PAs occur mostly in children 
and young adolescent but can be observed in older patients as well. 
This brain tumor is commonly observed in the cerebellum, spinal 
cord, and optic pathways, but can occur anywhere in the brain 
(Riemenschneider et al., 2004; Ferris et al., 2017). Histologically, PAs 
display the classical biphasic pattern which is composed of compact 
areas containing Rosenthal fibers and loose microcystic areas (Ceppa 
et al., 2007).

Olig expression in PAs have been conflicting. Some studies have 
found low to moderate expression of Olig1 and Olig2 (Lu et al., 2001; 
Ohnishi et al., 2003) while others have reported high expression of 
these genes (Bouvier et al., 2003; Tanaka et al., 2008; Otero et al., 
2011). One study observed greater immunoreactivity of Olig1 (97%; 
62/64) compared to Olig2 (75%; 48/64; Takei et al., 2008). Diffuse 
staining patterns of Olig2 were observed (Otero et  al., 2011) and 
similar to oligodendrogliomas, Olig immunoreactivity was found 
localized to the nuclei (Takei et  al., 2008; Tanaka et  al., 2008). 
Interestingly, double immunolabeling of Ki67 and Olig2 showed that 
most proliferating cells were also positive for Olig2, however, Ki67+ 
cells embodied a small portion of Olig2 expressing cells as PAs are 
LGGs and have a low rate of proliferation (Tanaka et al., 2008; Otero 
et al., 2011).

Olig in glioneuronal and neuronal tumors
Glioneuronal tumors (GNTs) are exceptionally rare neoplasms 

composed of both mixed neuronal and glial cells. The majority of 
GNTs are classified as grade I and are associated with seizures (Gatto 
et al., 2020; Krauze, 2021). The pathological aspects of GNTs remain 
unclear however, case reports have found Olig2 commonly expressed 
in these tumors and thus lean more toward oligodendrogliomas. Three 
subtypes of GNTs that demonstrate Olig2 upregulation are 
dysembryoplastic neuroepithelial tumors (DNTs; Komori and Arai, 
2013; Matsumura et al., 2013), papillary glioneuronal tumors (PGNTs; 
Tanaka et  al., 2005; Chen et  al., 2006; Gelpi et  al., 2007; Iżycka-
Świeszewska et al., 2008; Matsumura et al., 2013), and rosette-forming 
glioneuronal tumors (Wang et al., 2009; Luan et al., 2010; Xiong et al., 
2012; Matsumura et al., 2014).

DNTs are highly heterogenous with varying morphological 
features. Histologically, these tumors display nuclear atypia, mitosis, 
endothelial proliferation, or increased cell density, however, these 
appearances provide no prognostic value (Daumas-Duport et  al., 
1999). DNTs are also subtyped as simple or complex which displays 
oligodendroglia-like cells (OLCs) and floating neurons (Suh, 2015). 
With these hallmarks, the definition of DNTs remain controversial. 
DNTs were found to be more similar to oligodendrogliomas rather 
than a glioneuronal tumor. In this same study 88% of OLCs were 
diffusely Olig2+ and 10% of these cells also colocalized with galectin3 in 
the nuclei of OLCs. Few OLCs were positive for PDGFRα and did not 
exhibit 1p/19q codeletion. Additionally, NeuN+ and Olig2+ cells were 
mutually exclusive, further suggesting that DNTs are clear glial tumors 
rather than glioneuronal tumors (Komori and Arai, 2013).

Similarly, Olig2 expressing cells were also found in PGNTs 
suggesting that these tumors may be  oligodendroglial or 
oligodendroglial-like. Histologically, PGNTs exhibit two distinct 
architectures: (1) pseudopapillary structures surrounded by (2) 
compact regions consisting of neuronal elements under different 
maturation stages (Tanaka et  al., 2005; Gelpi et  al., 2007; Iżycka-
Świeszewska et al., 2008; Marumo et al., 2013).

Origin of Olig2-positive glioma cells and 
cancer stem cells

Since the discovery of a small proportion of clonogenic 
progenitors in acute myeloid leukemia (AML; Griffin and Lowenberg, 
1986), the existence of tumor initiating cells or cancer stem cells 
(CSCs) in several types of cancers were investigated. Thus arose the 
cancer stem cell hypothesis which states that malignant tumors are 
driven and sustained by a group of cells with stem cell properties of 
unlimited capacity for self-renewal and the ability to differentiate into 
any cell type (Reya et al., 2001; Singh et al., 2004). While the cancer 
stem cell hypothesis was adopted by many, it remains highly 
controversial (Bjerkvig et al., 2005; Jordan, 2009). Even with increasing 
evidence of CSCs, possibly the most debated aspect of the hypothesis 
is the mere existence of CSCs, as they only contribute to a small 
fraction of the tumor (Jordan, 2009; Konrad et al., 2017). Therefore, it 
remains unclear from where CSCs originated and, as a result, 
identifying a cell of origin in gliomas, such as GBMs, has 
been explored.

GBMs are the most common and aggressive primary malignant 
brain tumors. They exhibit a high degree of heterogeneity resulting in 
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molecular subtypes of classical, mesenchymal, and proneural (Alifieris 
and Trafalis, 2015). Evidence of brain tumor initiating cells in vivo 
(Singh et al., 2004) have led to studies identifying glioma stem cells 
(GSCs) and better understanding of their properties. While markers 
such as CD133, CD15, L1CAM, CD49f, and SOX2 have been shown 
to be enriched in GSCs (Singh et al., 2004; Lee et al., 2006; Son et al., 
2009; Lathia et al., 2010; Trépant et al., 2015) they are not exclusive to 
GSCs. Identification of more specific markers of GSCs could increase 
detection for developing targeted therapies. In one study, comparative 
analysis demonstrated Olig2 as the most specific GBM stem cell 
marker (Trépant et al., 2015). Similar to previous findings (Ligon et al., 
2004), Olig2 immunoreactivity was observed in all cases of GBM 
(Trépant et  al., 2015) and was primarily nuclear with rare cases 
exhibiting cytoplasmic Olig2 staining. Further analysis revealed 
higher expression of Olig2 in secondary GBM compared to primary 
GBMs (Trépant et al., 2015). Secondary GBMs evolve from diffuse 
astrocytomas and have frequent TP53 and ATRX mutations (Ohgaki 
and Kleihues, 2013; Marker et al., 2021) which are also commonly 
observed in IDH-mutant astrocytomas (Mirchia and Richardson, 
2020). Because secondary GBMs were removed from the 2021 WHO 
CNS tumor classification, it is plausible that they are more closely 
related to IDH-mutant astrocytomas. Re-characterization of Olig2 in 
“secondary GBM” samples is therefore necessary for thorough 
understanding of glioma pathogenesis.

Despite cell lineage studies, it is unclear why Olig2 is enhanced in 
oligodendrogliomas and astrocytomas (Kabel et al., 2018; Mallick, 
2021). Olig2 is critical during CNS development. It is known for its 
role in oligodendrocyte and neuron specification and maturation and 
may also fulfill a potential function in astrocyte differentiation (Szu 
et al., 2021). In the postnatal brain, Olig2 functions as a repressor of 
neuronal lineages to direct subventricular zone (SVZ) progenitor cells 
toward astrocytic and oligodendrocytic fates (Marshall et al., 2005). In 
fact, overexpression of Olig2  in the SVZ increases the number of 
highly migratory OPCs to differentiate into mature oligodendrocytes 
(Maire et al., 2010). Neural stem cells (NSCs) in the SVZ, also known 
as Type B cells, are a subpopulation of GFAP positive astrocytes that 
give rise to neurons, astrocytes, oligodendrocytes, and NG2+ OPCs 
(Doetsch et al., 1999; Menn et al., 2006; Gonzalez-Perez et al., 2009; 
Gonzalez-Perez and Alvarez-Buylla, 2011). Interestingly, these Type B 
cells, along with some Type C (transit-amplifying) cells, also express 
Olig2 (Hack et al., 2005; Menn et al., 2006), indicating possible cells 
of origin for astrocytomas and oligodendrogliomas.

Mechanisms underlying Olig2 expression in 
gliomas

Olig2 dysregulation in gliomas suggests that it is required for 
glioma growth and formation. Below we describe how Olig2 may 
be activated during cancer progression. Additionally, we explore how 
Olig2 drives gliomagenesis and whether it serves an 
oncogenic function.

Sonic hedgehog signaling activates Olig2 in 
gliomas

Throughout CNS development, NSCs and NPCs transform into 
distinct cell types in a spatiotemporal manner. A central function of 
Olig2 is to direct cell fate and specification, particularly into 

oligodendrocytes and neurons, in distinct regions of the brain and 
spinal cord during development (Szu et al., 2021). Olig2 is induced by 
Sonic hedgehog (Shh; Ortega et  al., 2013) where its pathways are 
known to regulate cellular patterning and cell fates (Dessaud et al., 
2008). The interplay between Shh and fibroblast growth factor (FGF) 
promotes Olig2 transcription (Tsigelny et al., 2016; Farreny et al., 
2018). Increasing evidence has associated Shh signaling pathway with 
CNS tumors, however its relationship with Olig2 in gliomas is only 
beginning to be elucidated.

Several lines of evidence have associated Shh signaling with 
gliomas. For example, overexpression of Shh was observed in CD133+ 
cells and accelerated tumor growth while inhibition of Shh or shRNA 
knockdown of Shh delayed tumor growth and downregulated Ptch1 
and Gli1 (Hung et al., 2020). Shh is activated via binding to the Ptch1 
receptor while Gli1 is transcriptionally induced by Shh signaling 
(Cohen et al., 2015). Aberrant activation of Gli1 (Avery et al., 2021) 
and mutations in Ptch1 (Wang et al., 2019) are correlated with various 
cancers. In another study, expression of Shh and Ptch1 levels were 
significantly higher in brainstem astrocytomas compared to 
supratentorial astrocytomas (Yu et al., 2011). Increased levels of Notch 
receptors and its ligands were observed in astrogliomas and GBMs. 
Interestingly, glioma cell lines expressing the active form of Notch1 
proliferated faster than those that did not (Zhang et  al., 2008). 
Furthermore, overexpression of Notch1 further increased formation 
of Nestin+ neurosphere colonies (Zhang et al., 2008) and its expression 
in GBM cells (Shih and Holland, 2006). Similarly, overexpression of 
Notch1, its ligands, and downstream targets (Hes1 and Hes2) have 
been detected in GBM. Notch activation has also been shown to 
contribute to Ras-mediated transformation of glial cells to glioma 
growth, proliferation, and survival (Kanamori et al., 2007).

Because Olig2 activity is regulated by Shh (Ortega et al., 2013), it 
is plausible that increased levels of Olig2 in gliomas are contributed by 
Shh deregulation. Recently, Olig2 was shown to behave as an 
oncogenic activator in Shh medulloblastoma (Shh-MB; Zhang et al., 
2019), a malignant pediatric brain tumor characterized by activation 
of Shh signaling (Skowron et  al., 2021). Olig2+ progenitors were 
identified as the rapidly dividing Type C cells at the onset of 
tumorigenesis. Surprisingly, a substantial increase in Olig2+ 
progenitors was found in recurrent Shh-MB indicating that Olig2+ 
progenitors are reactivated during recurrence or metastasis. Finally, 
enhanced Olig2+ expression was also detected in Shh-MB and was 
significantly correlated with decreased survival.

EGFR signaling activates Olig2
Studies have also illustrated Olig2 participation in positive 

feedback loops with the EGFR receptor tyrosine kinase (RTK; Kupp 
et al., 2016; Tsigelny et al., 2016). EGFR signaling is known to activate 
the oncogenic PI3K-AKT–mTOR and RAS–RAF–MEK–ERK 
pathways (Asati et al., 2016). Exposure to EGF leads to proliferation 
of Olig2+ type C cells (Hack et al., 2005; Menn et al., 2006; Ligon et al., 
2007) and inhibition of EGFR signaling results in Olig2 depletion 
indicating that EGFR signaling is responsible for sustaining Olig2 
expression in progenitor cells (Kupp et al., 2016). Furthermore, Olig2 
directly targets EGFR (Meijer et al., 2014; Mateo et al., 2015) and 
overexpression of Olig2 leads to significant upregulation of EGFR and 
transcripts (Kupp et al., 2016). Additionally, phosphorylated Olig2 
leads to differentially regulated genes associated with RTKs (Meijer 
et al., 2014; Kupp et al., 2016).
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Downstream signaling effects of Olig2
Gene network analysis has identified potential roles of Olig2 

involvement in gliomas (Figures 1, 2). One such network entails 
cell cycle regulation (Tsigelny et  al., 2016). p53 is a tumor 
suppressor gene that functions in growth arrest and apoptosis in 
response to cellular stress. An effector of p53 and cell cycle inhibitor 
is p21 (Haupt et al., 1997). Chromatin immunoprecipitation (ChIP) 
analysis demonstrated that p21 is a direct target of Olig2 
repression in NPCs and gliomas (Ligon et al., 2007). Malignant 
gliomas that are resistant to radiation and genotoxic drugs are 
associated with reduced p53 functions as a result of Olig2 
expression. However, in the absence of Olig2, even attenuated p53 
functions were shown to be sufficient to activate radiation-induced 
apoptosis and growth arrest. Olig2 opposes p53 functions by 
suppressing acetylation of p53. Therefore, Olig2 acts as post-
translational modifier of p53 to repress its downstream biological 
activities (Mehta et al., 2011).

Olig2 directed treatment for gliomas

It appears that Olig2 may be an actionable drug target as multiple 
gliomas express high levels of Olig2. Additionally, several studies 
utilizing transgenic mouse models showed that ablation of Olig2 
delayed tumor growth and improved survival (Ligon et  al., 2007; 
Mehta et  al., 2011; Lu et  al., 2016). Therefore, pharmacological 
inhibition of Olig2 may be  therapeutically beneficial in 
treating gliomas.

In collaboration with Curtana Pharmaceuticals (San Diego, 
CA), we generated an orally bioavailable small molecule (397 kD) 
Olig2 inhibitor, CT-179, the first drug targeting bHLH 
transcription factors for cancer treatment. Our preliminary 
findings suggest that CT-179 prevents Olig2 homodimerization 
and strongly inhibited cellular growth and induced apoptosis of 
Olig2+ cells (Tsigelny et al., 2017). Moreover, CT-179 disrupts the 
cell cycle, ultimately resulting in mitotic catastrophe at the 
prometaphase. Treatment with CT-179  in tumor-bearing mice 
resulted in a reduction of Olig2+ cells and markedly improved 
survival outcome (Chen et al., 2017; Johns et al., 2018). Recent 
preliminary findings indicated that CT-179 also decreased Shh 
signaling and prolonged event-free survival in a mouse model of 
medulloblastoma (Dismuke et al., 2021).

Olig2 exhibits a dichotomous function. It displays a pro-neural 
function by promoting motor neuron differentiation as well as an anti-
neural role by participating in generation of oligodendrocytes (Szu 
et al., 2021). Phosphorylation of Olig2 has been shown to regulate 
neuronal-glial cellular fate switch. Specifically, Olig2 was shown to 
be  phosphorylated at serine 147 (S147) during motor neuron 
production (Li et  al., 2011). Additionally, triple serine motif 
phosphorylation sites (S10, S13, S14) were shown to control 
proliferative functions of Olig2 (Sun et  al., 2011). In fact, 
phosphorylated Olig2 exhibits pro-mitotic and anti-p53 functions 
(Mehta et al., 2011). Thus, targeting Olig2 or protein kinase inhibitors 
(PKIs) may have therapeutic effects against gliomas. Certainly, 
we  observed that treatment with CT-179 decreased Olig2 
phosphorylation in a mouse model of medulloblastoma (Dismuke 

FIGURE 1

Gene targets of Olig2. Highlighted yellow are genes that can 
be bound by olig2 in the promoter-TSS region, light brown 
highlighted genes can be bound in more distant area before gene 
sequence.

FIGURE 2

Signaling effects of Olig2. Highlighted yellow are genes that can be bound by olig2 in the promoter-TSS region, light brown highlighted genes can 
be bound in more distant area before gene sequence.
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et al., 2021) which may enable p53-mediated apoptosis (Mehta et al., 
2011; Sun et al., 2011) and improve outcomes.

Conclusion

The Olig proteins are members of bHLH transcription factors that 
modulate cellular fate. Specifically, Olig1 and Olig2 regulate neuron 
and oligodendrocyte development during brain and spinal cord 
development. Due to their specific roles in cellular specification, their 
expression has been examined in CNS tumors. Here, we explored the 
various types of gliomas that display marked upregulation of Olig 
mRNA or protein.

While observations of Olig2 expression have been conflicting in 
different types of gliomas, its upregulation was clearly indicated in 
oligodendrogliomas. This is not surprising as oligodendrogliomas 
arise from oligodendrocytes. Moreover, it seems gliomas that result 
from aberrations in OPCs or from regions of highly proliferative cells 
also tend to show an increase in Olig2 expression. DNTs and DIPGs 
are examples of such gliomas with marked Olig2 expression. Other 
gliomas, such as astrocytomas and GBMs, have varying Olig2 
expression. Therefore, Olig2 may not be a specific marker for a distinct 
type of glioma.

Olig2 expression in other types of cancer is also plausible. For 
example, a recent study discovered upregulation of Olig2  in 
melanoma. Despite its hallmark nuclear staining observed in gliomas, 
Olig2 immunoreactivity in melanoma was predominantly cytoplasmic 
(Lee et  al., 2021). It remains unclear what role Olig2 plays in 
melanoma. Olig2 overexpression has also been observed in leukemia. 
Interestingly, upregulation of Olig2 alone is weakly oncogenic in 
leukemia, however, together with LMO1 and Notch1, overexpression 
results in cell proliferation (Lin et al., 2005). Because Olig2 levels were 
detected outside the CNS, its expression in other types of cancers 
warrants further investigation.

It appears that Olig2 may be a therapeutic target in gliomas. Small 
molecule inhibitors, such as CT-179, present as a promising strategy 
in targeting transcription factors for improving outcomes in brain 
cancer. Additionally, tyrosine kinase inhibitors may also present a 
beneficial therapeutic option as phosphorylated Olig2 seems to 
promote gliomagenesis. However, because Olig2 levels vary between 
different types of gliomas, thorough characterization of genetic targets 
of distinct glioma types are necessary for the identification of 
biomarkers and drug development. It is also concerning that Olig2, a 
CNS-restricted transcription factor, emerges in other cancer types 
outside the CNS. Therefore, investigation into Olig genes and proteins 

is urgently needed in all cancer types to determine how their activity 
influences disease outcome.
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