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Motor imagery-based brain-computer interfaces (MI-BCI) have important

application values in the field of neurorehabilitation and robot control. At present,

MI-BCI mostly use bilateral upper limb motor tasks, but there are relatively few

studies on single upper limb MI tasks. In this work, we conducted studies on the

recognition of motor imagery EEG signals of the right upper limb and proposed

a multi-branch fusion convolutional neural network (MF-CNN) for learning the

features of the raw EEG signals as well as the two-dimensional time-frequency

maps at the same time. The dataset used in this study contained three types

of motor imagery tasks: extending the arm, rotating the wrist, and grasping the

object, 25 subjects were included. In the binary classification experiment between

the grasping object and the arm-extending tasks, MF-CNN achieved an average

classification accuracy of 78.52% and kappa value of 0.57. When all three tasks

were used for classification, the accuracy and kappa value were 57.06% and 0.36,

respectively. The comparison results showed that the classification performance

of MF-CNN is higher than that of single CNN branch algorithms in both binary-

class and three-class classification. In conclusion, MF-CNN makes full use of the

time-domain and frequency-domain features of EEG, can improve the decoding

accuracy of single limb motor imagery tasks, and it contributes to the application

of MI-BCI in motor function rehabilitation training after stroke.

KEYWORDS

single upper limb motor imagery, deep learning, brain-computer interface (BCI),
convolutional neural network (CNN), feature fusion

1. Introduction

The brain-computer interface (BCI) establishes a channel for information exchange
between the human brain and the outside world. It decodes the user’s intent through reading
and analyzing brain signals (Wolpaw et al., 2002), and has been linked to a wide range of
devices, including the use of spellers, wheelchairs, robotic arms and robotic exoskeletons
(Kaufmann and Kubler, 2014; Kwak et al., 2015; He et al., 2018; Kim et al., 2018; Penaloza
and Nishio, 2018; Yu et al., 2018; Jeong et al., 2019; Yao et al., 2022). Among the various
types of BCI paradigms, MI-BCI is one of the most important one because it has potential
clinical application value. MI is a mental process that mimics motor intention without
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actually eliciting motor behavior. It is an actively evoked EEG signal
that has high application values in the field of neurorehabilitation
because it can independently elicit potential activity in motor-
related brain regions without external stimulation (Pfurtscheller
and Neuper, 2001). The MI-BCI detects the user’s motor intentions
by capturing the potential changes, and the output command
could be used to control functional electrical stimulation (FES),
exoskeletons, or other rehabilitation assistive equipment (Biasiucci
et al., 2018; Zhao et al., 2022). Thus MI-BCI is valuable in the
medical rehabilitation pathway for patients with motor dysfunction
through the provision of active rehabilitation training (Jeong et al.,
2019; Romero-Laiseca et al., 2020). A large number of studies have
shown that the addition of MI-BCI helps to promote the recovery of
motor function and improve the quality of life of patients (Cervera
et al., 2018; Yuan et al., 2021).

The majority of current researches on motor imagery EEG
signal recognition focuses on movements of different body parts,
such as the tongue, hands, and feet. These studies have produced
excellent results, but it is uncommon to find studies on motor
imagery EEG signal recognition of tasks that involve the same
side of the limb. It is well known that limb motor dysfunction
caused by stroke is often unilateral. In BCI-based rehabilitation
training, motor imagery tasks using unilateral limbs are more
natural and intuitive than motor imagery tasks between different
body parts (Tavakolan et al., 2017; Ubeda et al., 2017). However,
the classification of single limb motor imagery is more difficult and
complex than that of different parts of the body, because similar
brain regions are activated when performing different motor tasks
for unilateral limbs (Bigdely-Shamlo et al., 2015; Jas et al., 2016;
Taulu and Larson, 2021). Considering the low spatial resolution of
EEG, it is not feasible to use the algorithms for multi-limb motor
imagery EEG recognition to identify unilateral limb motor imagery
EEG.

The issue of unilateral limb movement task recognition has
begun to be focused on by some researchers in recent years.
Edelman et al. (2016) reported that source space analysis can
improve the classification accuracy of wrist movements, four
different movements of the right hand (i.e., flexion and extension
of the arm; left and right rotation of the wrist) were recognized
with a classification accuracy of 81.4%. Ofner et al. (2017) encoded
motor imagery tasks for the right hand into the time domain of
low-frequency EEG signals to classify six different movements,
including elbow flexion/extension, forearm left/right rotation, and
hand opening/closing, and achieved an accuracy of 27%. A novel
classification strategy using the combination of EMG and EEG
signals was proposed by Li et al. (2017). They recognized a variety
of upper limb movements such as hand open/close and wrist
pronation/supination, and results showed that the classification
performance achieved by the fusion features of EMG and EEG
signals is significantly higher than that obtained by a single signal
source of either EMG or EEG across all subjects. Loopez-Larraz
et al. (2018) further used EMG activity as a complementary
information to EEG to detect the motor intention, and also found
that the fusion features achieved higher classification accuracy than
EEG or EMG-based methods.

The end-to-end deep learning techniques provide a new
development path for the recognition of motor imagery EEG.
Inspired by the filter bank common spatial pattern (FBCSP),
Schirrmeister et al. (2017) proposed three types of CNN-based

models for motor imagery classification based on the number
of layers. Jeong et al. (2020b) proposed a hierarchical flow
convolutional neural network model consisting of a two-stage
CNN for extracting relevant features for multi-class tasks and
decoding arm rotation tasks. Zhang X. et al. (2019) proposed a
network model CNN-LSTM, the motor imagery EEG data were
spatially filtered by the FBCSP algorithm to extract the spatial
domain feature information from the original data at first, then the
extracted feature were fed into the CNN, and the final classification
was performed by the LSTM. Cho et al. (2021) proposed a two-
stage network structure called NeuroGrasp, which used six different
CNN-BLSTM networks to implicitly map EEG signals to six muscle
synergy features based on EMG and generated kinematic images
corresponding to the EMG signals based on the extracted features.
In the second stage, the generated images and real EMG features
are used together as SiamNet network input to train the model, so
as to realize the classification of single upper limb motor imagery
tasks.

Most of the motor imagery EEG decoding methods based on
deep learning used a single type of feature, including raw EEG
signals, time-frequency maps, and power spectral density features.
However, a single feature input often cannot fully and effectively
mine the information related to motor imagery in EEG. Inspired
by multimodal classification models, we proposed a multi-branch
fusion convolutional network model (MF-CNN) for solving the
classification problem of a single upper limb movement imagery
task, which takes the EEG signals and the corresponding time-
frequency maps as inputs simultaneously to make full use of
the time-domain, frequency-domain and time-frequency-domain
features of the EEG signal. The original EEG signal has high-
resolution temporal information, and the discriminative features
can be extracted by spatio-temporal convolution, while the two-
dimensional time-frequency map contains rich time-frequency
domain and spatial information. In this work, we first extracted
the features of the above two inputs independently using two
CNNs and then performed fusion classification, and the test results
on the single upper limb motor imagery dataset showed that
the proposed model achieved higher classification accuracy than
single-input CNN.

2. Materials and methods

2.1. Datasets

The EEG data used in this work is the “Multimodal signal
dataset for 11 intuitive movement tasks from single upper extremity
during multiple recording sessions” from the Giga DB dataset
completed by Jeong et al. (2020a). The dataset included intuitive
upper limb movement data from 25 subjects, who were required
to perform three types of motor tasks in a total of 11 categories,
including 6 directions of arm extension movement (up, down,
left, right, front, back), 3 kinds of object grasping action (cup,
card, ball) and 2 kinds of wrist-twisting action (left rotation,
right rotation), each type of movement was randomly executed 50
times, corresponding to 11 movements designed to be associated
with each segmental movement of the arm, hand, and wrist,
rather than continuous limb movements. The dataset included
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not only EEG data but also magnetoencephalography (EMG) and
electrooculogram (EOG) data, which are collected simultaneously
in the same experimental setting while ensuring no interference
between them. The data were acquired using a 60-channel EEG,
7-channel EMG, and 4-channel EOG. In the current work, only
motor imagery EEG data were used, the EEG sensors were placed
according to the international 10–20 system, and the sampling rate
was set as 2,500 Hz. Our goal is to classify the motor imagery EEG
of the three types of actions, so we selected forward extension of the
arm, grasping the cup, and rotation of the wrist to the left from the
three types of actions for the following study.

2.2. Algorithm framework

The workflow of the algorithm was shown in Figure 1. The
time-frequency maps were firstly obtained by continuous wavelet
transform (CWT) method, then both the EEG signals and the
corresponding time-frequency maps were sent to the MF-CNN
model, which consisted of two CNN network branches. After the
process of convolution and pooling, the output features from the
two branches were fused and combined into a one-dimensional
vector. Finally, the one-dimensional feature vector was sent into a
classifier to obtain the prediction results.

2.3. EEG signal pre-processing

When subjects were preparing or performing motor tasks,
event-related desynchronization (ERD) and event-related
synchronization (ERS) can be observed in the sensorimotor
cortex of the brain (Pfurtscheller and da Silva, 1999; McFarland
et al., 2000). Therefore, we selected 20 EEG channels on the
sensorimotor cortex region to analyze (including FC1-6, C1-6,
CP1-6, CZ, and CPZ). The selected EEG data were band-pass
filtered within 8–30 Hz (Sreeja et al., 2017) and downsampled to
250 Hz. All the 4 s of EEG data during the motor task of a single
trial were intercepted for subsequent processing, thus the EEG
segment of each trial could be defined as a 20 × 1,000 matrix,
where 20 was the number of channels and 1,000 was the length of

the data. The preprocessed EEG signals were used as input for the
EEG-CNN branch and the time-frequency map conversion.

In terms of time-frequency map transformation, Tabar and
Halici (2017) proposed a method based on the short-time
Fourier transform (STFT) to extract time-frequency features
and constructed a three-channel stacked time-frequency map
for subsequent classification. However, the time window of the
STFT algorithm is fixed, so the time-frequency resolution is
also fixed, which causes the problem of incompatibility between
the time resolution and the spectral resolution. To solve this
problem, wavelet transform based time-frequency analysis methods
have been widely introduced to EEG signal feature extraction
(Zhang et al., 2021). The wavelet transform replaced the infinite-
length triangular function with a finite-length wavelet basis with
attenuation, which made the window width inconsistent and thus
enabled better local feature extraction. We chose Morlet wavelet
as the basis function for the wavelet transform. As a single-
frequency complex sinusoidal function under Gaussian envelope
Morlet wavelet is the most commonly used complex-valued
wavelet. Because it has a better local resolution in the time and
frequency domain, it is often used in the decomposition of complex
signals and time-frequency analysis (Lee and Choi, 2019). The
features extracted from EEG signals through CWT include time
and frequency information and are finally converted into two-
dimensional time-frequency maps. Figure 2 showed the example
time-frequency maps of the three channels C3, C4, and CZ.

Since the conversion of the time-frequency map is generated for
each channel individually, the 20 EEG channels we used could not
all be combined into one image. And if only a few channels were
selected, a lot of helpful information would be lost. To effectively
utilize the information of each channel, we preprocessed the data
to extract features and used CSP to filter the 20 channels of EEG
signals in the spatial domain to obtain “virtual channels,” and
then generated the time-frequency maps. The basic principle of
CSP is to find a set of optimal spatial filters for projection by
diagonalizing matrices so that the difference in variance values
between the two types of signals is maximized (Ramoser et al.,
2000). For the three classification tasks we used the “One vs. Rest”
strategy to extend the CSP to achieve multi-class CSP feature
extraction (Dornhege et al., 2004). The spatially filtered EEG can be

FIGURE 1

Workflow of the proposed algorithm.
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FIGURE 2

Time-frequency maps of the three kinds of tasks. (A) Left wrist rotation; (B) cup grasping; (C) forward arm extension. The abscissa denotes time
points, and the ordinate denotes frequency bands.

calculated as:
ZM × N = WM × MEM × N (1)

where W is the projection matrix of CSP, M is the number of
EEG data channels; N is the data length; E is the EEG data matrix;
Z is the obtained EEG on “virtual channels.”

The information of the feature matrix generated by the CSP
algorithm is not equivalent, and the feature information is mainly
concentrated in the head and tail of the feature matrix, while the
middle feature information is not obvious and can be ignored.
Therefore, the first m rows and the last m rows (2 m < M) of
ZM × N were usually selected. In this work, we chose m = 1, that
is, the first and the last row of ZM × N were selected to calculate the
time-frequency map. The CWT was applied to the spatially filtered
EEG data during the 4 s motor imagery to obtain time-frequency
maps, and the maps were then saved as images with a resolution
of 64 × 64. Such procedures were applied to all trials, and finally
the motor imagery time-frequency map dataset was obtained. An
example was shown in Figure 3.

2.4. Structure of MF-CNN

The classification of motor imagery EEG signals using deep
learning networks based on CNN has proven successful and has
good feature extraction capabilities (Lee and Kwon, 2016; Zhang
P. et al., 2019). The common CNN models include convolutional
layer, pooling layer, activation function, and fully connected layer.
The convolution in the network is a local operation that can extract
the deep features of the input signal through the kernel function,
then the feature information can be obtained by the operation
of each layer of the CNN model. In the convolution phase, the
network input is convolved with the convolution kernel, and then
the activation function f(a) is used to output the feature maps,
which can be expressed for each convolution layer as:

hk
ij = f (a) = f ((Wk

∗ x)ij + bk) (2)

where x represents the input data, Wkis the weight matrix of
the kth convolution kernel, bk corresponding to the deviation of
the convolution kernel k, i and j denote the number of adjacent
convolutional layers.

In the current work, the ReLU function was chosen as the
activation function (Clevert et al., 2015), and it was defined as
follows:

f (a) = ReLU(a) = ln(1+ ea) (3)

The main purpose of the fully connected layer in a CNN is
classification. To merge the features acquired from the previous
side, each node in the fully connected layer is connected to full
nodes in the preceding layer. After a number of prior convolutions,
it can combine the local information with category differentiation,
and the output of the final fully-connected layer is then sent to the
classifier to output the prediction result.

Figure 4 showed the network structures of MF-CNN proposed
in this study, it extracted the features of the raw EEG data and the
time-frequency map simultaneously by using two CNN branches,
and could obtain more comprehensive information hidden in the
motor imagery EEG.

The EEG-CNN branch extracted spatial and temporal features
from the raw EEG data, the dimensionality of the input EEG signal
was 20× 1,000 (channels× points). The input was successively fed
through a feature extraction module made up of two convolutional
layers and a maximum pooling layer in this branch. A one-
dimensional convolutional kernel along the horizontal axis was
used to extract the features of each channel to obtain the feature
map as the output of this layer. The size of the convolution kernel
was set to 3 × 1, and the step size was 1. After convolution, a
feature map of the form Nw × Nf could be obtained, where Nw
is the vector and Nf is the number of convolution kernels. Then,
the data from the convolutional layer was downsampled using the
pooling layer, which set a kernel size of 2 × 1 and a step size
of 2. Subsequently, the fully connected layer flattens the features
extracted through the convolutional layer.

The TF-CNN branch performed feature extraction on the input
time-frequency map, and the size of the time-frequency map was
64 × 64 × 3, which represented an RGB image of size 64 × 64.
VGG16 was used as the basic network framework in this branch
(Zhao-Hong et al., 2019), the main feature of which was the
inclusion of convolutional kernel computation and feedforward
structure. It contained 16 hidden layers (13 convolutional layers
and 3 fully connected layers), the convolutional part used a
convolutional kernel of size 3 × 3 with a step size of 1, and a max
pooling layer of size 2× 2 with a step size of 2.
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FIGURE 3

Time-frequency maps of the EEG on “virtual channel”. (A) Left wrist rotation; (B) cup grasping; (C) forward arm extension. The abscissa denotes time
points, and the ordinate denotes frequency bands.

FIGURE 4

Structure of multi-branch fusion convolutional neural network (MF-CNN) model.
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In the model training phase of the above two branches,
the parameters of each network layer were updated using the
Adam optimizer with β1 0.9 and β2 0.999, with an initial
learning rate of 0.01.

2.5. Feature fusion method

Generally, fusion methods can be applied in two different
ways: decision-level fusion and feature-level fusion. Decision-
level fusion first trains different modalities with different models
and then fuses the results of multiple model outputs. Feature-
level fusion combines two or more feature vectors to construct a
single feature vector to include more information (Zhang P. et al.,
2019; Hatipoglu Yilmaz and Kose, 2021). In this study, feature-
level fusion was selected. Before the feature fusion, the individual
feature vector must have sufficient relevant features in order to
provide a good classification model and achieve high classification
performance. In CNN, the fully connected layer can integrate local
information into global features for classification, which contains
enough information. In addition, the output dimension of the
last fully connected layer is consistent with the category of the
sample, and the obtained information has been compressed, so it
is not appropriate to serve as the final feature vector. Therefore,
we chose to use the penultimate fully connected layer of these two
branch networks as the fusion layer, and fused their outputs as
the extracted features. Suppose the output feature vector of the
EEG-CNN branch was A = {a1, · · · , am}, where m is the length
of A, the feature vector output from the TF-CNN branch was
B =

{
b1, · · · ,bn

}
, where n is the length of B. Then the fusion

feature vector could be defined as C =
{

a1, · · · ,am, b1, · · · ,bn
}

,
and it is fed into the support vector machine (SVM) to complete
the classification finally.

2.6. Performance evaluations

The classification accuracy was used as an evaluation criterion
to compare the model’s performance, which was calculated as

follows.
Accuracy =

TP + TN

TP + TN + FP + FN
(4)

where TP was the true-positives field in the confusion matrix,
TN was the true-negatives field, FP was the false-positives field in the
confusion matrix, FN was the false-negatives field. It indicates the
probability of correct prediction in all samples. In this paper, we
compared the accuracy of six algorithms, including our proposed
MF-CNN, the two single-branch CNNs (EEG-CNN and TF-CNN),
EEGNET (Lawhern et al., 2018), ALEXNET (Iandola et al., 2016),
and the classical CSP. EEG-CNN, EEGNET, and CSP used EEG
signals as inputs, which are pre-processed in the same procedures
as described in (section “2.3. EEG Signal pre-processing”). TF-
CNN and ALEXNET used time-frequency maps as input for image
classification.

In addition, we calculated kappa values (Tabar and Halici,
2017).

kappa =
P0 − Pe

1− Pe
(5)

where p0 represents the average classification accuracy and
perepresents the random classification accuracy for the n-class
classification task.

3. Results

In this work, three-class and binary-class classification (grasp
object vs. extend arm) test tasks were carried out separately to verify
the performance of the proposed algorithm. The classification
accuracies were calculated by using the five-fold cross-validation
strategy, each subject’s EEG data was divided into five equal subsets,
one of which was randomly chosen as the testing dataset and the
other subsets served as the training dataset. Such procedures were
repeated five times, and the average accuracy was determined as
the final classification accuracy. The three sessions for each subject
were tested separately.

In order to verify the advantages brought by the dual-branch
CNN, we compared the classification performance of MF-CNN

FIGURE 5

Comparison of the average classification results on the three sessions. (A) Binary-class classification experiment, (B) three-class classification
experiments. ∗Denotes p < 0.01 and ∗∗denotes p < 0.001 (paired t-test).
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model and single-branch CNN model. The single-branch CNN
model was set up as an EEG-CNN branch for processing raw EEG
signals and a TF-CNN branch for processing the time-frequency
maps. The network architectures of these two single-branch CNN
models were same as the EEG-CNN and TF-CNN branches in MF-
CNN.

Figure 5 showed the classification results of the 25 subjects,
the average classification accuracies of the single EEG-CNN
branch were 70.8 and 51.08% separately for the binary-class and
three-class classification experiments, while the single TF-CNN
branch achieved 68.4 and 50.24%, respectively. It indicated that
discriminative feature information can be extracted by the two
kinds of single CNN branches. The accuracy obtained was higher
than EEGNET and ALEXNET, but lower than CSP. After merging
the features obtained from the two branches, MF-CNN achieved
average accuracies of 78.52 and 57.06% for the two classification
experiments, both of which were higher than that of the single
CNN branch model, and also higher than CSP, EEGNET and
ALEXNET.

The statistical analysis was further performed between the four
algorithms using paired t-test. The results demonstrated that the
accuracies achieved by MF-CNN were significantly higher than that
of EEG-CNN and TF-CNN in all sessions. In addition, the accuracy
of MF-CNN is higher than that of the deep learning algorithms
EEGNET and ALEXNET used as comparisons.

The confusion matrix of the three deep learning network
models were obtained. As shown in Figures 6, 7, the
column represented the true label, and the row represented
the predicted label. It can be seen that the probability of

correct recognition of each motor imagery task by MF-
CNN is higher than that of EEG-CNN and TF-CNN,
and all the true positive values are greater than the true
negative and false negative values for the three deep learning
network models.

Finally, we calculated the kappa coefficient for each subject,
and the mean results were shown in Table 1. The binary-class
classification experiments obtained higher kappa values than the
three-class classification experiment for all three deep learning
models, and MF-CNN outperformed EEG-CNN and TF-CNN in
the two experiments.

4. Discussion

In this study, we performed feature fusion at the feature
level to recognize the single upper limb motor imagery tasks
by using deep learning approach. The dataset we used include
three different types of movements, including forward extension
of the arm, grasping the cup, and rotation of the wrist to
the left. These are complex movements of the upper limb
of the body and are commonly used in daily life. The
accurate classification on the motor imagery of these three
movements is of great significance in the application of BCI-
based upper limb motor rehabilitation training. In this paper,
the MF-CNN model was proposed to extract fusion features
from the original EEG signal and corresponding time-frequency
map. In the comparative experiment conducted on the single
upper limb motor imagery dataset, MF-CNN model achieved

FIGURE 6

Confusion matrix of the three-class classification experiment. (A) EEG-CNN, (B) TF-CNN, (C) MF-CNN.

FIGURE 7

Confusion matrix of the binary-class classification experiment. (A) EEG-CNN, (B) TF-CNN, (C) MF-CNN.
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TABLE 1 Kappa values of the three deep learning models.

EEG-CNN TF-CNN MF-CNN

Three-class
classification

0.2662± 0.01 0.2536± 0.03 0.3559± 0.04

Binary-class
classification

0.415± 0.04 0.3696± 0.02 0.5704± 0.02

better classification performance than two single CNN branches,
EEGNET, ALEXNET, and CSP.

The EEG signal is non-stationary and non-linear (Yang
et al., 2022). One of the most valuable methods for analyzing
EEG signals is to transform them from one-dimensional time-
domain signal to two-dimensional time-frequency map, which
can concurrently combine the frequency feature in the time-
domain and frequency-domain. The STFT and WT are the typical
approaches for time-frequency analysis (Tabar and Halici, 2017;
Yang et al., 2022). The STFT is obtained by adding a window
on the basis of the Fourier transform. It has the ability of
time-frequency analysis by using a fixed window function to
analyze the signal segment. However, there are some shortcomings
in the determination of the window function. If the window
function is too narrow, the frequency domain analysis will be
inaccurate; if it is too wide, the signal features in the time
domain will be imprecise, affecting the time resolution. The WT
is based on the Fourier transform but replacing the infinitely
long triangular function base with a finite length and decaying
wavelet base, and introduces scale and translation factors so
that the resolution of the window function can change with
the frequency characteristics. Compared with STFT, WT has
the ability to obtain the local characteristics of the signal in
both the time domain and the frequency domain (Khorrami
and Moavenian, 2010). CWT offers a greater time-frequency
resolution and can express the 3–5 s MI-EEG signal more precisely.
Therefore, the EEG signal is transformed into a two-dimensional
time-frequency map using the CWT method in the current
study.

Previous studies based on deep learning usually used multi-
channel stacked time-frequency maps as input to recognize
motor imagery EEG (Dai et al., 2019). We have also tried
this method, but could not obtain higher accuracy, only about
50% accuracy was achieved when using the time-frequency
maps of C3, CZ, and C4. The reason for this may be that
the aim of this study is to discriminative the motor imagery
EEG of unilateral upper limbs, rather than the recognition
of bilateral upper limb motor imagery in most studies. The
difference between different actions in the unilateral upper limb
motor imagery EEG is more minor (Ofner et al., 2017; Cho
et al., 2021), thus it is challenging to obtain discriminative
features with fewer channels. In order to make full use of
the hidden information in the unilateral limb motor imagery
EEG, we selected the EEG signals of 20 channels covering
the sensorimotor cortex of the brain for analysis. However,
it is not suitable to directly stack the 20-channel time-
frequency maps as the input of TF-CNN. To solve this
problem, we proposed to convert the time-frequency map
based on the virtual channel after CSP spatial filtering. CSP

could extract the spatial distribution components of each class
from the multi-channel EEG data (Ramoser et al., 2000),
and the virtual channel signal generated after spatial filtering
contained the discriminative information between classes. The
results shown in Figure 5 validated the effectiveness of this
approach.

There are many successful applications for EEG signal
classification using feature fusion methods of multi-modal signals.
For instance, the feature fusions of facial pictures or sound
signals with EEG signals have been proven to improve the
classification accuracy of emotion recognition (Wagner et al.,
2011; Xing et al., 2019). In the current study, the two-
dimensional time-frequency maps converted by raw EEG signals
were used as a supplement to the time-domain EEG signal.
Since the time-frequency maps were calculated from the original
EEG signals, this did not increase the complexity of the data
acquisition and was suitable for rehabilitation training scenarios.
In the processing of time-frequency images, TF-CNN was
carried out from the perspective of image processing, which is
quite different from the time-domain EEG signals processing
of EEG-CNN. The information extracted from the two CNN
branches were complementary, MF-CNN fused these information
to make them complement each other. The results shown in
Figure 6 validated that the classification accuracy of single upper
limb motor imagery EEG could be improved by such fusion
strategy.

5. Conclusion

In this study, we proposed a deep learning framework named
MF-CNN for classifying EEG signals associated with single upper
limb motor imagery. There are two branches in MF-CNN,
which can simultaneously extract features from the original EEG
signal and the two-dimensional time-frequency map, and fully
learn the time domain and time-frequency domain features of
the EEG signal. The binary-class and three-class classification
test results on the unilateral upper limb motor imagery dataset
demonstrated that the proposed MF-CNN can improve the
classification performance of unilateral upper limb motor imagery
EEG effectively.
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