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Tactile sensing is essential for a variety of daily tasks. Inspired by the event-

driven nature and sparse spiking communication of the biological systems,

recent advances in event-driven tactile sensors and Spiking Neural Networks

(SNNs) spur the research in related fields. However, SNN-enabled event-driven

tactile learning is still in its infancy due to the limited representation abilities of

existing spiking neurons and high spatio-temporal complexity in the event-driven

tactile data. In this paper, to improve the representation capability of existing

spiking neurons, we propose a novel neuron model called “location spiking

neuron,” which enables us to extract features of event-based data in a novel

way. Specifically, based on the classical Time Spike Response Model (TSRM), we

develop the Location Spike Response Model (LSRM). In addition, based on the

most commonly-used Time Leaky Integrate-and-Fire (TLIF) model, we develop

the Location Leaky Integrate-and-Fire (LLIF) model. Moreover, to demonstrate the

representation e�ectiveness of our proposed neurons and capture the complex

spatio-temporal dependencies in the event-driven tactile data, we exploit the

location spiking neurons to propose two hybrid models for event-driven tactile

learning. Specifically, the first hybrid model combines a fully-connected SNN with

TSRM neurons and a fully-connected SNN with LSRM neurons. And the second

hybrid model fuses the spatial spiking graph neural network with TLIF neurons

and the temporal spiking graph neural network with LLIF neurons. Extensive

experiments demonstrate the significant improvements of our models over the

state-of-the-art methods on event-driven tactile learning, including event-driven

tactile object recognition and event-driven slip detection. Moreover, compared

to the counterpart artificial neural networks (ANNs), our SNN models are 10× to

100× energy-e�cient, which shows the superior energy e�ciency of our models

and may bring new opportunities to the spike-based learning community and

neuromorphic engineering. Finally, we thoroughly examine the advantages and

limitations of various spiking neurons and discuss the broad applicability and

potential impact of this work on other spike-based learning applications.
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1. Introduction

With the prevalence of artificial intelligence, computers today

have demonstrated extraordinary abilities in visual and auditory

perceptions. Although these perceptions are essential sensory

modalities, they may fail to complete tasks in certain situations

where tactile perception can help. For example, the visual sensory

modality can fail to distinguish objects with similar visual

features in less-favorable environments, such as dim-lit or in

the presence of occlusions. In such cases, tactile sensing can

provide meaningful information like texture, pressure, roughness,

or friction and maintain performance. Overall, tactile perception

is a vital sensing modality that enables humans to gain perceptual

judgment on the surrounding environment and conduct stable

movements (Taunyazov et al., 2020).

With the recent advances in material science and Artificial

Neural Networks (ANNs), research on tactile perception has

begun to soar, including tactile object recognition (Soh and

Demiris, 2014; Kappassov et al., 2015; Sanchez et al., 2018), slip

detection (Calandra et al., 2018), and texture recognition (Baishya

and Bäuml, 2016; Taunyazov et al., 2019). Unfortunately, although

ANNs demonstrate promising performance on the tactile learning

tasks, they are usually power-hungry compared to human brains

that require far less energy to perform the tactile perception

robustly (Li et al., 2016; Strubell et al., 2019).

Inspired by biological systems, research on event-driven

perception has started to gain momentum, and several

asynchronous event-based sensors have been proposed,

including event cameras (Gallego et al., 2020) and event-based

tactile sensors (Taunyazoz et al., 2020). In contrast to standard

synchronous sensors, such event-based sensors can achieve higher

energy efficiency, better scalability, and lower latency. However,

due to the high sparsity and complexity of event-driven data,

learning with these sensors is still in its infancy (Pfeiffer and Pfeil,

2018). Recently, several works (Gu et al., 2020; Taunyazov et al.,

2020; Taunyazoz et al., 2020) utilized Spiking Neural Networks

[SNNs; Pfeiffer and Pfeil (2018); Shrestha and Orchard (2018); Xu

et al. (2021)] to tackle event-driven tactile learning. Unlike ANNs,

which require expensive transformations from asynchronous

discrete events to synchronous real-valued frames, SNNs can

process event-based sensor data directly. Moreover, unlike ANNs

that employ artificial neurons (Maas et al., 2013; Clevert et al.,

2015; Xu et al., 2015) and conduct real-valued computations,

SNNs adopt spiking neurons (Gerstner, 1995; Abbott, 1999;

Gerstner and Kistler, 2002) and utilize binary 0–1 spikes to

process information. This difference reduces the mathematical

dot-product operations in ANNs to less computationally expensive

summation operations in SNNs (Roy et al., 2019). Due to the

advantages of SNNs, these works are always energy-efficient

and suitable for power-constrained devices. However, due to

the limited representative abilities of existing spiking neuron

models and high spatio-temporal complexity in the event-based

tactile data (Taunyazoz et al., 2020), these works still cannot

sufficiently capture spatio-temporal dependencies and thus hinder

the performance of event-driven tactile learning.

In this paper, to address the problems mentioned above,

we make several contributions that boost event-driven tactile

learning, including event-driven tactile object recognition

and event-driven slip detection. We summarize a list of

acronyms and notations in Table 1. Please refer to it during

the reading.

First, to enable richer representative abilities of existing spiking

neurons, we propose a novel neuron model called “location

spiking neuron.” Unlike existing spiking neuron models that

update their membrane potentials based on time steps (Roy

et al., 2019), location spiking neurons update their membrane

potentials based on locations. Specifically, based on the Time

Spike Response Model [TSRM; Gerstner (1995)], we develop the

“Location Spike Response Model (LSRM).” Moreover, to make

the location spiking neurons more applicable to a wide range of

applications, we develop the “Location Leaky Integrate-and-Fire

(LLIF)” model based on the most commonly-used Time Leaky

Integrate-and-Fire (TLIF) model (Abbott, 1999). Please note that

TSRM and TLIF are the classical Spike Response Model (SRM)

and Leaky Integrate-and-Fire (LIF) in the literature. We add the

character “T (Time)” to highlight their differences from LSRM

and LLIF. These location spiking neurons enable the extraction

of feature representations of event-based data in a novel way.

Previously, SNNs adopted temporal recurrent neuronal dynamics

to extract features from the event-based data. With location

spiking neurons, we can build SNNs that employ spatial recurrent

neuronal dynamics to extract features from the event-based data.

We believe location spiking neuronmodels can have a broad impact

on the SNN community and spur the research on spike-based

learning from event sensors like NeuTouch (Taunyazoz et al., 2020),

Dynamic Audio Sensors (Anumula et al., 2018), or Dynamic Vision

Sensors (Gallego et al., 2020).

Next, we investigate the representation effectiveness of location

spiking neurons and propose two models for event-driven

tactile learning. Specifically, to capture the complex spatio-

temporal dependencies in the event-driven tactile data, the

first model combines a fully-connected (FC) SNN with TSRM

neurons and a fully-connected (FC) SNN with LSRM neurons,

henceforth referred to as the Hybrid_SRM_FC. To capture

more spatio-temporal topology knowledge in the event-driven

tactile data, the second model fuses the spatial spiking graph

neural network (GNN) with TLIF neurons and temporal spiking

graph neural network (GNN) with LLIF neurons, henceforth

referred to as the Hybrid_LIF_GNN. To be more specific,

the Hybrid_LIF_GNN first constructs tactile spatial graphs and

tactile temporal graphs based on taxel locations and event

time sequences, respectively. Then, it utilizes the spatial spiking

graph neural network with TLIF neurons and the temporal

spiking graph neural network with LLIF neurons to extract

features of these graphs. Finally, it fuses the spiking tactile

features from the two networks and provides the final tactile

learning prediction. Besides the novel model construction, we

also specify the location orders to enable the spatial recurrent

neuronal dynamics of location spiking neurons in event-driven

tactile learning. In addition, we explore the robustness of

location orders on event-driven tactile learning. Moreover, we

design new loss functions involved with locations and utilize

the backpropagation methods to optimize the proposed models.

Furthermore, we develop the timestep-wise inference algorithms
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TABLE 1 List of acronyms and notations in the paper.

TSRM Time Spike Response Model

LSRM Location Spike Response Model

TLIF Time Leaky Integrate-and-Fire

LLIF Location Leaky Integrate-and-Fire

Hybrid_SRM_FC The hybrid model that combines a fully-connected SNN with TSRM neurons and

a fully-connected SNN with LSRM neurons

Hybrid_LIF_GNN The hybrid model that fuses the spatial spiking graph neural network with TLIF

neurons and temporal spiking graph neural network with LLIF neurons

ν ν = t for existing spiking neurons and ν = l for location spiking neurons

ui(ν) The membrane potential of neuron i at ν

ηi(·) The refractory kernel of neuron i

ǫij(·) The incoming spike response kernel between neurons i and j

Ŵi The set of presynaptic neurons of neuron i

wij The connection strength between neurons i and j

xj(ν) The presynaptic input from pre-neuron j at ν

I(ν) The weighted summation of the presynaptic inputs at ν

τ The time constant of TLIF neurons

α The decay factor of TLIF neurons

τ ′ The location constant of LLIF neurons

β The location decay factor of LLIF neurons

uth The firing thresholds of neurons

N The number of taxels of NeuTouch

T The number of total time length of event sequences

K The number of classes for the tasks

Xin The event-based tactile input

X′in The transposed event-based tactile input

O1 Output spikes from the SNN with existing spiking neurons

oi(t) The output spiking state of existing spiking neuron i at time t

O2 Output spikes from the SNN with location spiking neurons

oi(l) The output spiking state of location spiking neuron i at location l

O Output spikes from the Hybrid_SRM_FC

Gs(t) The tactile spatial graph at time t

Gt(n) The tactile temporal graph of taxel n

O′1 The predicted label vector of the spatial spiking graph neural network

O′2 The predicted label vector of the temporal spiking graph neural network

O′ The predicted label vector of the Hybrid_LIF_GNN

for the two models to show their applicability to the spike-based

temporal data.

Lastly, we conduct experiments on three challenging event-

driven tactile learning tasks. Specifically, the first task requires

models to determine the type of objects being handled. The

second task requires models to determine the type of containers

being handled and the amount of liquid held within, which

is more challenging than the first task. And the third task

asks models to accurately detect the rotational slip (“stable” or

“rotate”) within 0.15 s. Extensive experimental results demonstrate

the significant improvements of our models over the state-of-

the-art methods on event-driven tactile learning. Moreover, the
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experiments show that existing spiking neurons are better at

capturing spatial dependencies, while location spiking neurons

are better at modeling mid-and-long temporal dependencies.

Furthermore, compared to the counterpart ANNs, our models are

10× to 100× energy-efficient, which shows the superior energy

efficiency of our models and may bring new opportunities to

neuromorphic engineering.

Portions of this work “Event-Driven Tactile Learning with

Location Spiking Neurons (Kang et al., 2022)” were accepted by

IJCNN 2022 and an oral presentation was given at the IEEE

WCCI 2022. In the conference paper, we proposed location

spiking neurons and demonstrated the dynamics of LSRM

neurons. By exploiting the LSRM neurons, we developed the

model Hybrid_SRM_FC for event-driven tactile learning and

experimental results on benchmark datasets demonstrated the

extraordinary performance and high energy efficiency of the

Hybrid_SRM_FC and LSRM neurons. We highlight the additional

contributions in this paper below.

• To make the location spiking neurons user-friendly in various

spike-based learning frameworks, we expand the idea of

location spiking neurons to the most commonly-used TLIF

neurons and propose the LLIF neurons. Specifically, the

LLIF neurons update their membrane potentials based on

locations and enable the models to extract features with spatial

recurrent neuronal dynamics. We can incorporate the LLIF

neurons into popular spike-based learning frameworks like

STBP (Wu et al., 2018) and tap their feature representation

potential. We believe such neuron models can have a broad

impact on the SNN community and spur the research on

spike-based learning.

• To demonstrate the advantage of LLIF neurons and further

boost the event-based tactile learning performance, we

build the Hybrid_LIF_GNN, which fuses the spatial spiking

graph neural network with TLIF neurons and the temporal

spiking graph neural network with LLIF neurons. The

model extracts features from tactile spatial graphs and

tactile temporal graphs concurrently. To the best of our

knowledge, this is the first work to construct tactile

temporal graphs based on event sequences and build a

temporal spiking graph neural network for event-driven

tactile learning.

• We further include more data, experiments, and

interpretation to demonstrate the effectiveness and

energy efficiency of the proposed neurons and models.

Extensive experiments on real-world datasets show that the

Hybrid_LIF_GNN significantly outperforms the state-of-

the-art methods for event-driven tactile learning, including

the Hybrid_SRM_FC (Kang et al., 2022). Moreover, the

computational cost evaluation demonstrates the high-

efficiency benefits of the Hybrid_LIF_GNN and LLIF

neurons, which may unlock their potential on neuromorphic

hardware. The source code is available at: https://github.com/

pkang2017/TactileLSN.

• We thoroughly discuss the advantages and limitations of

existing spiking neurons and location spiking neurons.

Moreover, we provide preliminary results on event-

driven audio learning and discuss the broad applicability

and potential impact of this work on other spike-based

learning applications.

The rest of the paper is organized as follows. In Section 2, we

provide an overview of related work on SNNs and event-driven

tactile sensing and learning. In Section 3, we start by introducing

notations for existing spiking neurons and extend them to the

specific location spiking neurons. We then propose various models

with location spiking neurons for event-driven tactile learning.

Last, we provide implementation details and algorithms related to

the proposedmodels. In Section 4, we demonstrate the effectiveness

and energy efficiency of ourmodels on benchmark datasets. Finally,

we discuss and conclude in Section 5.

2. Related work

In the following, we provide a brief overview of related work on

SNNs and event-driven tactile sensing and learning.

2.1. Spiking Neural Networks (SNNs)

With the prevalence of Artificial Neural Networks (ANNs),

computers today have demonstrated extraordinary abilities in

many cognition tasks. However, ANNs only imitate brain structures

in several ways, including vast connectivity and structural and

functional organizational hierarchy (Roy et al., 2019). The brain has

more information processing mechanisms like the neuronal and

synaptic functionality (Felleman and Van Essen, 1991; Bullmore

and Sporns, 2012). Moreover, ANNs are much more energy-

consuming than human brains. To integrate more brain-like

characteristics andmake artificial intelligence models more energy-

efficient, researchers propose Spiking Neural Networks (SNNs),

which can be executed on power-efficient neuromorphic processors

like TrueNorth (Merolla et al., 2014) and Loihi (Davies et al., 2021).

Similar to ANNs, SNNs can adopt general network topologies like

convolutional layers and fully-connected layers, but use different

neuron models (Gerstner and Kistler, 2002), such as the Time

Leaky Integrate-and-Fire (TLIF) model (Abbott, 1999) and the

Time Spike Response Model [TSRM; Gerstner (1995)]. Due to

the non-differentiability of these spiking neuron models, it still

remains challenging to train SNNs. Nevertheless, several solutions

have been proposed, such as converting the trained ANNs to

SNNs (Cao et al., 2015; Sengupta et al., 2019) and approximating

the derivative of the spike function (Wu et al., 2018; Cheng

et al., 2020). In this work, we propose location spiking neurons

to enhance the representative abilities of existing spiking neurons.

These location spiking neurons maintain the spiking characteristic

but employ the spatial recurrent neuronal dynamics, which enable

us to build energy-efficient SNNs and extract features of event-

based data in a novel way. Moreover, based on the optimization

methods for SNNs with existing spiking neurons, we design new

loss functions for SNNs with location spiking neurons and utilize

the backpropagation methods with surrogate gradients to optimize

the proposed models.
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2.2. Event-driven tactile sensing and
learning

With the prevalence of material science and robotics, several

tactile sensors have been developed, including non-event-based

tactile sensors like the iCub RoboSkin (Schmitz et al., 2010) and

the SynTouch BioTac (Fishel and Loeb, 2012) and event-driven

tactile sensors like the NeuTouch (Taunyazoz et al., 2020) and

the NUSkin (Taunyazov et al., 2021). In this paper, we focus on

event-driven tactile learning with SNNs. Since the development

of event-driven tactile sensors is still in its infancy (Gu et al.,

2020), little prior work exists on learning event-based tactile

data with SNNs. The work (Taunyazov et al., 2020) employed

a neural coding scheme to convert raw tactile data from non-

event-based tactile sensors into event-based spike trains. It then

utilized an SNN to process the spike trains and classify textures.

A recent work (Taunyazoz et al., 2020) released the first publicly-

available event-driven visual-tactile dataset collected by NeuTouch

and proposed an SNN based on SLAYER (Shrestha and Orchard,

2018) to solve the event-driven tactile learning. Moreover, to

naturally capture the spatial topological relations and structural

knowledge in the event-based tactile data, a very recent work (Gu

et al., 2020) utilized the spiking graph neural network (Xu et al.,

2021) to process the event-based tactile data and conduct the

tactile object recognition. In this paper, different from previous

works building SNNs with spiking neurons that employ the

temporal recurrent neuronal dynamics, we construct SNNs with

location spiking neurons to capture the complex spatio-temporal

dependencies in the event-based tactile data and improve event-

driven tactile learning.

3. Methods

In this section, we first demonstrate the spatial recurrent

neuronal dynamics of location spiking neurons by introducing

notations for the existing spiking neurons and extending them to

the location spiking neurons. We then introduce two models with

location spiking neurons for event-driven tactile learning. Last,

we provide implementation details and algorithms related to the

proposed models.

3.1. Existing spiking neuron models vs.
location spiking neuron models

Spiking neuron models are mathematical descriptions of

specific cells in the nervous system. They are the basic building

blocks of SNNs. In this section, we first introduce the mechanisms

of existing spiking neuronmodels – the TSRM (Gerstner, 1995) and

the TLIF (Abbott, 1999). To enrich their representative abilities, we

transform them into location spiking neuron models – the LSRM

and the LLIF.

In the TSRM, the temporal recurrent neuronal dynamics of

neuron i are described by its membrane potential ui(t). When ui(t)

exceeds a predefined threshold uth at the firing time t
(f )
i , the neuron

i will generate a spike. The set of all firing times of neuron i is

denoted by

Fi = {t
(f )
i ; 1 ≤ f ≤ n} = {t|ui(t) = uth}, (1)

where t
(n)
i is the most recent spike time t

(f )
i < t. The value of ui(t)

is governed by two different spike response processes:

ui(t) =
∑

t
(f )
i ∈Fi

ηi(t − t
(f )
i )+

∑

j∈Ŵi

∑

t
(f )
j ∈Fj

wijxj(t
(f )
j )ǫij(t − t

(f )
j ), (2)

where Ŵi is the set of presynaptic neurons of neuron i and xj(t
(f )
j ) =

1 is the presynaptic spike at time t
(f )
j . ηi(t) is the refractory kernel,

which describes the response of neuron i to its own spikes at time

t. ǫij(t) is the incoming spike response kernel, which models the

neuron i’s response to the presynaptic spikes from neuron j at

time t. wij accounts for the connection strength between neuron

i and neuron j and scales the incoming spike response. Figure 1A of

ν = t visualizes the refractory dynamics of the TSRM neuron i and

Figure 1B of ν = t visualizes the incoming spike dynamics of the

TSRM neuron i.

Without loss of generality, such temporal recurrent neuronal

dynamics also apply to other spiking neuron models, such as the

TLIF, which is a special case of the TSRM (Maass and Bishop,

2001). Since the TLIF model is computationally tractable and

maintains biological fidelity to a certain degree, it becomes themost

commonly-used spiking neuronmodel and there are many popular

SNN frameworks powered with it (Wu et al., 2018). The dynamics

of the TLIF neuron i are governed by

τ
dui(t)

dt
= −ui(t)+ I(t), (3)

where ui(t) represents the internal membrane potential of the

neuron i at time t, τ is a time constant, and I(t) signifies the

presynaptic input obtained by the combined action of synaptic

weights and pre-neuronal activities. To better understand the

membrane potential update of TLIF neurons, the Euler method is

used to transform the first-order differential equation of Equation 3

into a recursive expression:

ui(t) = (1−
dt

τ
)ui(t − 1)+

dt

τ

∑

j

wijxj(t), (4)

where
∑

j wijxj(t) is the weighted summation of the inputs from

pre-neurons at the current time step. Equation 4 can be further

simplified as:

ui(t) = αui(t − 1)+
∑

j

w′ijxj(t), (5)

where α = 1 − dt
τ
can be considered a decay factor, and w′ij is the

weight incorporating the scaling effect of dt
τ
. When ui(t) exceeds a

certain threshold uth, the neuron emits a spike, resets its membrane

potential to ureset , and then accumulates ui(t) again in subsequent

time steps. Figure 1C of ν = t visualizes the temporal dynamics of

a TLIF neuron i.

From the above descriptions, we find that existing spiking

neuron models have explicit temporal recurrence but do not
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FIGURE 1

Recurrent neuronal dynamic mechanisms for the existing spiking neurons of ν = t and location spiking neurons of ν = l. Unlike existing spiking

neuron models that update their membrane potentials based on time steps ν = t, location spiking neurons update their membrane potentials based

on locations ν = l. (A) The refractory dynamics of a TSRM neuron i or an LSRM neuron i. Immediately after firing an output spike at ν(f)i , the value of

ui(ν) is lowered or reset by adding a negative contribution ηi(·). The kernel ηi(·) vanishes for ν < ν(f)i and decays to zero for ν →∞. (B) The incoming

spike dynamics of a TSRM neuron i or an LSRM neuron i. A presynaptic spike at ν(f)
j

increases the value of ui(ν) for ν ≥ ν
(f)
j

by an amount of

wijxj(ν
(f)
j )ǫij(ν − ν

(f)
j ). The kernel ǫij(·) vanishes for ν < ν(f)j . “<” and “≥” indicate the location order when ν = l. (C) The recurrent neuronal dynamics of a

TLIF neuron i or an LLIF neuron i. The neuron i takes as input binary spikes and outputs binary spikes. xj represents the input signal to the neuron i from

neuron j, ui is the neuron’s membrane potential, and oi is the neuron’s output. An output spike will be emitted from the neuron when its membrane

potential surpasses the firing threshold uth, after which the membrane potential will be reset to ureset. This figure is adapted from Kang et al. (2022).

possess explicit spatial recurrence, which, to some extent, limits

their representative abilities.

To enrich the representative abilities of existing spiking neuron

models, we propose location spiking neurons, which adopt the

spatial recurrent neuronal dynamics and update their membrane

potentials based on locations.1 These neurons exploit explicit

spatial recurrence. Specifically, the spatial recurrent neuronal

dynamics of the LSRM neuron i are described by its location

membrane potential ui(l). When ui(l) exceeds a predefined

threshold uth at the firing location l
(f )
i , the neuron i will generate

a spike. The set of all firing locations of neuron i is denoted by

Gi = {l
(f )
i ; 1 ≤ f ≤ n} = {l|ui(l) = uth}, (6)

where l
(n)
i is the nearest firing location l

(f )
i < l. “<” indicates

the location order, which is manually set and will be discussed in

Section 3.3. The value of ui(l) is governed by two different spike

response processes:

ui(l) =
∑

l
(f )
i ∈Gi

ηi(l− l
(f )
i )+

∑

j∈Ŵi

∑

l
(f )
j ∈Gj

wijxj(l
(f )
j )ǫij(l− l

(f )
j ), (7)

where Ŵi is the set of presynaptic neurons of neuron i and xj(l
(f )
j ) =

1 is the presynaptic spike at location l
(f )
j . ηi(l) is the refractory

kernel, which describes the response of neuron i to its own spikes

at location l. ǫij(l) is the incoming spike response kernel, which

models the neuron i’s response to the presynaptic spikes from

neuron j at location l. Figure 1A of ν = l visualizes the refractory

dynamics of the LSRM neuron i and Figure 1B of ν = l visualizes

the incoming spike dynamics of the LSRM neuron i. The threshold

uth of LSRM neurons can be different from that of TSRM neurons,

while we set the same for simplicity. In Section 3.2.1, we will apply

1 Locations could refer to pixel or patch locations for images or taxel

locations for tactile sensors.

the LSRM neurons to event-driven tactile learning and show how

the proposed neurons enable feature extraction in a novel way.

To make the location spiking neurons user-friendly and

compatible with various spike-based learning frameworks, we

expand the idea of location spiking neurons to themost commonly-

used TLIF neurons and propose the LLIF neurons. Different from

the temporal dynamics shown in Equation 3, the LLIF neuron i

employs the spatial dynamics:

τ ′
dui(l)

dl
= −ui(l)+ I(l), (8)

where ui(l) represents the internal membrane potential of an LLIF

neuron i at location l, τ ′ is a location constant, and I(l) represents

the presynaptic input. We use the Euler method again to transform

the first-order differential equation of Equation 8 into a recursive

expression:

ui(l) = (1−
dl

τ ′
)ui(lprev)+

dl

τ ′

∑

j

wijxj(l), (9)

where
∑

j wijxj(l) is the weighted summation of the inputs from

pre-neurons at the current location. Equation 9 can be further

simplified as:

ui(l) = βui(lprev)+
∑

j

w′ijxj(l), (10)

where β = 1 − dl
τ ′

can be considered a location decay factor,

and w′ij is the weight incorporating the scaling effect of dl
τ ′
. When

ui(l) exceeds a certain threshold uth, the neuron emits a spike,

resets its membrane potential to ureset , and then accumulates ui(l)

again at subsequent locations. uth and ureset of LLIF neurons can

be different from those of TLIF neurons, while we set the same

for simplicity. Figure 1C of ν = l visualizes the spatial recurrent

neuronal dynamics of an LLIF neuron i. To enable the dynamics

of LLIF neurons, we still need to specify the location order like the
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LSRM neurons. In Section 3.2.2, we will demonstrate how the LLIF

neurons can be incorporated into the popular spike-based learning

framework and further boost the performance of event-driven

tactile learning.

3.2. Event-driven tactile learning with
location spiking neurons

To investigate the representation effectiveness of location

spiking neurons and boost the event-driven tactile learning

performance, we propose two models with location spiking

neurons, which capture complex spatio-temporal dependencies in

the event-based tactile data. In this paper, we focus on processing

the data collected by NeuTouch (Taunyazoz et al., 2020), a

biologically-inspired event-driven fingertip tactile sensor with 39

taxels arranged spatially in a radial fashion (see Figure 2).

3.2.1. Event-driven tactile learning with the LSRM
neurons

In this section, we introduce event-driven tactile learning with

the LSRM neurons. Specifically, we propose the Hybrid_SRM_FC

to capture the complex spatio-temporal dependencies in the event-

driven tactile data.

Figure 2 presents the network structure of the

Hybrid_SRM_FC. From the figure, we can see that the model

has two components, including the fully-connected SNN with

TSRM neurons and the fully-connected SNN with LSRM neurons.

Specifically, the fully-connected SNN with TSRM neurons

employs the temporal recurrent neuronal dynamics to extract

spiking feature representations from the event-based tactile data

Xin ∈ R
N×T , where N is the total number of taxels and T is the

total time length of event sequences. The fully-connected SNNwith

LSRM neurons utilizes the spatial recurrent neuronal dynamics to

extract spiking feature representations from the event-based tactile

data X′in ∈ R
T×N , where X′in is transposed from Xin. The spiking

representations from two networks are then concatenated to yield

the final task-specific output.

To be more specific, the top part of Figure 2 shows the network

structure of fully-connected SNN with TSRM neurons. It employs

two spiking fully-connected layers with TSRM neurons to process

Xin and generate the spiking representations O1 ∈ R
K×T , where

K is the output dimension determined by the task. The membrane

potential ui(t), the output spiking state oi(t), and the set of all firing

times Fi of TSRM neuron i in these layers are decided by:

ui(t) =
∑

t
(f )
i ∈Fi

η(t − t
(f )
i )+

∑

j∈Ŵi

∑

t
(f )
j ∈Fj

wijoj(t
(f )
j )ǫ(t − t

(f )
j )

︸ ︷︷ ︸

capture spatial dependencies

,

oi(t) =

{

1 if ui(t) ≥ uth;

0 otherwise,

Fi =

{

Fi ∪ t if oi(t) = 1;

Fi otherwise,

(11)

where wij are the trainable parameters, η(t) and ǫ(t) model the

temporal recurrent neuronal dynamics of TSRM neurons, Ŵi is

the set of presynaptic TSRM neurons spanning over the spatial

domain, which is utilized to capture the spatial dependencies in the

event-based tactile data.

Moreover, the bottom part of Figure 2 shows the network

structure of fully-connected SNN with LSRM neurons. It employs

two spiking fully-connected layers with LSRM neurons to process

X′in and generate the spiking representations O2 ∈ R
K×N , where

K is the output dimension decided by the task. The membrane

FIGURE 2

The network structure of the Hybrid_SRM_FC. (The Upper Panel) The SNN with TSRM neurons processes the input spikes Xin and adopts the

temporal recurrent neuronal dynamics (shown with red dashed arrows) of TSRM neurons to extract features from the data, where SFc is the spiking

fully-connected layer with TSRM neurons. (The Lower Panel) The SNN with LSRM neurons processes the transposed input spikes X′in and employs

the spatial recurrent neuronal dynamics (shown with purple dashed arrows) of LSRM neurons to extract features from the data, where SFc-location is

the spiking fully-connected layer with LSRM neurons. Finally, the spiking representations from two networks are concatenated to yield the final

predicted label. (32) and (20) represent the sizes of fully-connected layers, where we assume the number of classes (K) is 20. This figure is adapted

from Kang et al. (2022).
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potential ui(l), the output spiking state oi(l), and the set of all firing

locations Gi of LSRM neuron i in these layers are decided by:

ui(l) =
∑

l
(f )
i ∈Gi

η(l− l
(f )
i )+

∑

j∈Ŵ′i

∑

l
(f )
j ∈Gj

wijoj(l
(f )
j )ǫ(l− l

(f )
j )

︸ ︷︷ ︸

model temporal dependencies

,

oi(l) =

{

1 if ui(l) ≥ uth;

0 otherwise,

Gi =

{

Gi ∪ l if oi(l) = 1;

Gi otherwise,

(12)

where wij are the trainable connection weights, η(l) and ǫ(l)

determine the spatial recurrent neuronal dynamics of LSRM

neurons, Ŵ′i is the set of presynaptic LSRM neurons spanning over

the temporal domain, which is utilized to model the temporal

dependencies in the event-based tactile data. Such location spiking

neurons tap the representative potential and enable us to capture

features in this novel way.

Lastly, we concatenate the spiking representations of O1 and

O2 along the last dimension and obtain the final output spike train

O ∈ R
K×(T+N). The predicted label is associated with the neuron

k ∈ K with the largest number of spikes in the domain of T + N.

3.2.2. Event-driven tactile learning with the LLIF
Neurons

In this section, to demonstrate the usability of location

spiking neurons and further boost the event-driven tactile

learning performance, we utilize the LLIF neurons to propose

the Hybrid_LIF_GNN, which fuses spatial and temporal spiking

graph neural networks and captures complex spatio-temporal

dependencies in the event-based tactile data.

3.2.2.1. Tactile graph construction

Given event-based tactile inputs Xin ∈ R
N×T , we construct

tactile spatial graphs and tactile temporal graphs as illustrated in

Figure 3.

The tactile spatial graphGs(t) = (V t ,Et) at time step t explicitly

captures the spatial structural information in the data, while the

tactile temporal graph Gt(n) = (Vn,En) for a specific taxel n

explicitly models the temporal dependency in the data. V t =

{vtn|n = 1, ...,N} andVn = {v
t
n|t = 1, ...,T} represent nodes ofGs(t)

and Gt(n), respectively, and the attribute of vtn is the event feature

of the n-th taxel at time step t. Et = {eti,j|i, j = 1, ...,N} represents

the edges of Gs(t), where e
t
i,j ∈ {0, 1} indicates whether the nodes

vti , v
t
j are connected (denoted as 1) or disconnected (denoted as

0). Et is formed by the Minimum Spanning Tree (MST) algorithm,

where the Euclidean distance between taxels d(vti , v
t
j ) = ‖(x, y)vti

−

(x, y)vtj
‖2 is used to determine whether the edges are in the MST.

Since the 2D coordinates (x, y) of taxels do not change with time, Et

remains the same throughout time. Moreover, the adjacency matrix

of Et is symmetric (i.e., the edges are indirect) as we assume the

mutual spatial dependency in the data. En = {e
p,q
n |p, q = 1, ...,T}

represents the edges of Gt(n), where e
p,q
n ∈ {0, 1} and each edge

is direct. Based on different temporal dependency assumptions, we

propose two kinds of tactile temporal graphs shown in Figure 3B.

One is sparse since we assume the current state only directly

impacts the nearest future state. While the other is dense since we

assume the current state has a broad impact on the future states. En
remains the same for all N taxels.

3.2.2.2. Hybrid_LIF_GNN

To process the data from tactile graphs and capture the complex

spatio-temporal dependencies in the event-based tactile data, we

propose the Hybrid_LIF_GNN (see Figure 4), which fuses spatial

and temporal spiking graph neural networks. Specifically, we adopt

the spatial spiking graph neural network with TLIF neurons (Gu

et al., 2020), which is a spike-based tactile learning framework

powered by STBP (Wu et al., 2018). It uses temporal recurrent

FIGURE 3

(A) The tactile spatial graph Gs at time step t generated by the Minimum Spanning Tree (MST) algorithm (Gu et al., 2020). Each circle represents a taxel

of NeuTouch. (B) Based on event sequences, we propose two di�erent tactile temporal graphs Gt for a specific taxel n = 1: the above one is the

sparse tactile temporal graph, while the below one is the dense tactile temporal graph.
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FIGURE 4

The structure of the Hybrid_LIF_GNN, where “SSG” is the spatial spiking graph layer, “SSFC” is the spatial spiking fully-connected layer, “TSG” is the

temporal spiking graph layer, and “TSFC” is the temporal spiking fully-connected layer. The spatial spiking graph neural network processes the T

tactile spatial graphs and adopts the temporal recurrent neuronal dynamics (shown with red arrows) of TLIF neurons to extract features. The

temporal spiking graph neural network processes the N tactile temporal graphs and employs the spatial recurrent neuronal dynamics (shown with

purple arrows) of LLIF neurons to extract features. Finally, the model fuses the predictions from two networks and obtains the final predicted label. (3,

64) represents the hop size and the filter size of spiking graph layers. (128), (256), and (10) represent the sizes of fully-connected layers, where we

assume the number of classes (K) is 10.

neuronal dynamics to capture the spatial structure information

from the tactile spatial graphs. Inspired by this model, we develop

the temporal spiking graph neural network with LLIF neurons,

which is also powered by STBP. Our temporal spiking graph neural

network utilizes spatial recurrent neuronal dynamics to extract

the temporal dependencies in the tactile temporal graphs. Finally,

we fuse the spiking features from two networks and obtain the

final prediction.

To be more specific, the spatial spiking graph neural network

takes as input tactile spatial graphs, and it has one spatial

spiking graph layer and three spatial spiking fully-connected layers,

where TLIF neurons that employ the temporal recurrent neuronal

dynamics are the basic building blocks. On the other hand, the

temporal spiking graph neural network takes as input tactile

temporal graphs, and it has one temporal spiking graph layer and

three temporal spiking fully-connected layers, where LLIF neurons

that possess the spatial recurrent neuronal dynamics are the basic

building blocks.

Based on Equation 5, the membrane potential ui(t) and output

spiking state oi(t) of TLIF neuron i in the spatial spiking graph layer

are decided by:

ui(t) = αui(t − 1)(1− oi(t − 1))+ I(t),

oi(t) =

{

1 if ui(t) ≥ uth;

0 otherwise,

(13)

where I(t) = GNN(Gs(t)) is to capture the spatial structural

information. The membrane potential ui(t) and output spiking

state oi(t) of TLIF neuron i in spatial spiking fully-connected layers

are also decided by Equation 13, where I(t) = FC(Pre(t)) and Pre(t)

is the previous layer’s output at time step t.

Based on Equation 10, the membrane potential ui(l) and output

spiking state oi(l) of LLIF neuron i in the temporal spiking graph

layer are decided by:

ui(l) = βui(lprev)(1− oi(lprev))+ I(l),

oi(l) =

{

1 if ui(l) ≥ uth;

0 otherwise,

(14)

where I(l) = GNN(Gt(l)) is to model the temporal dependencies

in the data. The membrane potential ui(l) and output spiking state

oi(l) of LLIF neuron i in temporal spiking fully-connected layers are

also decided by Equation 14, where I(l) = FC(Pre(l)) and Pre(l) is

the previous layer’s output at location l. l is the taxel n ∈ N in event-

driven tactile learning. To fairly compare with other baselines, we

use TAGConv (Du et al., 2017) as GNN in this paper.

The spatial spiking graph neural network finally outputs the

spiking feature O1 ∈ R
K×T and predicts the label vector O′1 ∈ R

K

by averaging O1 over the time window T,

O′1 =
1

T

T
∑

t

O1(t), (15)

where O1(t) ∈ R
K . The temporal spiking graph neural network

finally outputs the spiking features O2 ∈ R
K×N and predicts the

label vector O′2 ∈ R
K by averaging O2 over the spatial domain N,

O′2 =
1

N

N
∑

l

O2(l), (16)

where O2(l) ∈ R
K . To fuse the predictions from these two

networks, we take the mean or element-wise max of these two

label vectors O′1 and O′2 and obtain the final predicted label vector

O′ ∈ R
K . The predicted label is associated with the neuron with the

largest value.
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3.3. Implementations

In this section, we first introduce the location orders to

enable the spatial recurrent neuronal dynamics of location spiking

neurons. Then, we present the implementation details and

timestep-wise inference algorithms for the proposed models.

3.3.1. Location orders
To enable the spatial recurrent neuronal dynamics of location

spiking neurons, we need to manually set the location orders of

location spiking neurons. Specifically, we propose four kinds of

location orders for event-driven tactile learning and explore their

robustness on the event-driven tactile tasks. As shown in Figure 5,

three location orders are designed based on the major fingerprint

patterns of humans – arch, whorl, and loop. And one location order

randomly traverses all the taxels. Four concrete examples are shown

below. Each number in the brackets represents the taxel index.

• An example for the arch-like location order: [11, 25, 35, 4, 18,

30, 7, 2, 20, 37, 29, 12, 9, 33, 23, 16, 1, 6, 15, 21, 27, 34, 39, 24,

17, 10, 31, 38, 28, 14, 3, 22, 32, 8, 19, 36, 5, 13, 26]

• An example for the whorl-like location order: [21, 15, 16, 23,

27, 24, 17, 6, 9, 12, 20, 29, 33, 34, 31, 28, 22, 14, 10, 1, 2, 7, 18,

30, 37, 39, 38, 32, 19, 8, 3, 4, 11, 25, 35, 36, 26, 13, 5]

• An example for the loop-like location order: [1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]

• An example for the random location order: [4, 7, 12, 9, 2, 1, 6,

15, 10, 3, 5, 8, 14, 17, 21, 22, 13, 26, 19, 24, 27, 28, 32, 36, 38,

31, 34, 39, 37, 33, 23, 29, 30, 35, 25, 11, 18, 20, 16].

3.3.2. Hybrid_SRM_FC
Similar to the spike-count loss of prior works (Shrestha and

Orchard, 2018; Taunyazoz et al., 2020), we propose a location

spike-count loss to optimize the SNN with LSRM neurons:

LLSRM =
1

2

K
∑

k=0

(
N
∑

l=0

ok(l)−

N
∑

l=0

ôk(l)

)2

, (17)

which captures the difference between the observed output spike

count
∑N

l=0 ok(l) and the desired spike count
∑N

l=0 ôk(l) across

the K neurons. Moreover, to optimize the Hybrid_SRM_FC, we

develop a weighted spike-count loss:

L1 =
1

2

K
∑

k=0

((
T
∑

t=0

ok(t)+ λ

N
∑

l=0

ok(l)

)

−

T+N
∑

c=0

ôk(c)

)2

, (18)

which first balances the contributions from two SNNs and then

captures the difference between the observed balanced output

spike count
∑T

t=0 ok(t)+ λ
∑N

l=0 ok(l) and the desired spike count
∑T+N

c=0 ôk(c) across the K output neurons. For both LLSRM and

L1, the desired spike counts have to be specified for the correct

and incorrect classes and are task-dependent hyperparameters.

We set these hyperparameters as in Taunyazoz et al. (2020).

To overcome the non-differentiability of spikes and apply the

backpropagation algorithm, we use the approximate gradient

proposed in SLAYER (Shrestha and Orchard, 2018). Moreover,

based on the SLAYER’s weight update in the temporal domain,

we can derive the weight update for the SNNs with LSRM

neurons in the spatial domain. Please check more details in our

Github repository.

To demonstrate the applicability of our model to the spike-

based temporal data, we propose the timestep-wise inference

algorithm of the Hybrid_SRM_FC, which is shown in Algorithm 1.

The corresponding timestep-wise training algorithm can be derived

by incorporating the weighted spike-count loss.

3.3.3. Hybrid_LIF_GNN
To train the Hybrid_LIF_GNN, we define the loss function that

captures the mean squared error between the ground truth label

FIGURE 5

Location orders. (A) Arch-like location order. (B) Whorl-like location order. (C) Loop-like location order. (D) Random location order.
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Input: event-based tactile inputs Xin ∈ R
N×T, N

taxels, and the total time length T.

Output: timestep-wise predictions of O1, O2, and O.

1: for t← 1 to T do

2: obtain X ∈ R
N×t

3: obtain X̄′ = concatenate(X′, 0) ∈ R
T×N, where X′ ∈ R

t×N,

and 0 ∈ R
(T−t)×N

4: O1(t) = 0 ∈ R
K×t, O2(t) = 0 ∈ R

K×N

5: O(t) = 0 ∈ R
K×(t+N)

6: O1(t) = SNN_TSRM(X) ⊲ SNN_TSRM for the

fully-connected SNN with TSRM neurons

7: O2(t) = SNN_LSRM(X̄′) ⊲ SNN_LSRM for the

fully-connected SNN with LSRM neurons

8: O(t) = concatenate(O1(t),O2(t))

9: end for

Algorithm 1. Timestep-wise inference algorithm of the Hybrid_SRM_FC,

adopted from Kang et al. (2022).

Input: event-based tactile inputs Xin ∈ R
N×T, N

taxels, and the total time length T

Output: timestep-wise label vectors of O′1, O′2, and O′

1: for t← 1 to T do

2: form t tactile spatial graphs Gs with X ∈ R
N×t

3: obtain X̄′ = concatenate(X′, 0) ∈ R
T×N, where X′ ∈ R

t×N,

and 0 ∈ R
(T−t)×N

4: form N tactile temporal graphs Gt with X̄′

5: O′1(t),O
′
2(t),O

′(t) = 0 ∈ R
K

6: for i← 1 to t do

7: O′1(t) += SSGNN(Gs(i)) ⊲ SSGNN for the spatial

spiking graph neural network

8: end for

9: O′1(t) /= t

10: for j← 1 to N do

11: O′2(t) += TSGNN(Gt(j)) ⊲ TSGNN for the temporal

spiking graph neural network

12: end for

13: O′2(t) /= N

14: O′(t) = mean(O′1(t),O
′
2(t)) ⊲ max can be used

15: end for

Algorithm 2. Timestep-wise inference algorithm of the Hybrid_LIF_GNN.

vector y and the final predicted label vector O′.

L2 = ‖y− O′‖2. (19)

We utilize the spatio-temporal backpropagation (Wu et al.,

2018) to derive the weight update for the SNNs with LLIF

neurons. Moreover, to overcome the non-differentiability

of spikes, we use the rectangular function (Wu et al.,

2018) to approximate the derivative of the spike function

(Heaviside function) in Equations 13, 14. Please check

more implementation details in our Github repository.

Algorithm 2 presents the timestep-wise inference algorithm of the

Hybrid_LIF_GNN.

4. Experiments

We extensively evaluate our proposed models and demonstrate

their effectiveness and efficiency on event-driven tactile learning,

including event-driven tactile object recognition and event-driven

slip detection. Specifically, we first conduct experiments on

the Hybrid_SRM_FC to show that location spiking neurons

can improve event-driven tactile learning. Then, we utilize the

experiments on the Hybrid_LIF_GNN to show that location

spiking neurons are user-friendly and can be incorporated into

more powerful spike-based learning frameworks to further

boost event-driven tactile learning. The source code and

experimental configuration details are available at: https://

github.com/pkang2017/TactileLSN.

4.1. Hybrid_SRM_FC

In this section, we first introduce the datasets and models

for the experiments. Next, to show the effectiveness of the

Hybrid_SRM_FC, we extensively evaluate it on the benchmark

datasets and compare it with state-of-the-art models. Finally, we

demonstrate the superior energy efficiency of the Hybrid_SRM_FC

over the counterpart ANNs and show the high-efficiency benefit

of LSRM neurons. We implement our models using slayerPytorch2

and employ RMSProp with the l2 regularization to optimize them.

4.1.1. Datasets
We use the datasets collected by NeuTouch (Taunyazoz

et al., 2020), including “Objects-v1” and “Containers-v1” for

event-driven tactile object recognition and “Slip Detection” for

event-driven slip detection. Unlike “Objects-v1” which only

requires models to determine the type of objects being handled,

“Containers-v1” asks models about the type of containers being

handled and the amount of liquid (0, 25, 50, 75, and 100%)

held within. Thus, “Containers-v1” is more challenging for event-

driven tactile object recognition. Moreover, the task of event-

driven slip detection is also challenging since it requires models

to detect the rotational slip within a short time, like 0.15 s for

“Slip detection.” We provide more details about the datasets in

the Supplementary material. Following the experimental setting

of Taunyazoz et al. (2020), we split the data into a training set (80%)

and a testing set (20%), repeat each experiment for five rounds, and

report the average accuracy.

4.1.2. Comparing models
We compare our model with the state-of-the-art SNNmethods

for event-driven tactile learning, including Tactile-SNN (Taunyazoz

et al., 2020) and TactileSGNet (Gu et al., 2020). Tactile-SNN

employs TSRM neurons as the building blocks, and the network

structure of Tactile-SNN is the same as the fully-connected

SNN with TSRM neurons in the Hybrid_SRM_FC. TactileSGNet

2 https://github.com/bamsumit/slayerPytorch
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TABLE 2 Accuracies on benchmark datasets for the Hybrid_SRM_FC.

Method Type Objects-v1 Containers-v1 Slip detection

Tactile-SNN (Taunyazoz et al., 2020) SNN 0.75 0.57∗ 0.82∗

TactileSGNet (Gu et al., 2020) SNN 0.79 0.58 0.97

GRU-MLP (Taunyazoz et al., 2020) ANN 0.72 0.46∗ 0.87∗

CNN-3D (Taunyazoz et al., 2020) ANN 0.90 0.67∗ 0.44∗

Hybrid_SRM_FC SNN 0.91 0.86 1.0

∗These values come from Taunyazoz et al. (2020). The best performance is in bold.

TABLE 3 Ablation studies on the Hybrid_SRM_FC.

Method Type Objects-v1 Containers-v1 Slip detection

Tactile-SNN (Taunyazoz et al., 2020) SNN 0.75 0.57 0.82

Location Tactile-SNN SNN 0.89 0.88 0.82

Hybrid_SRM_FC λ = 1 SNN 0.91 0.86 1.0

Hybrid_SRM_FC λ = 0.5 SNN 0.92 0.89 0.98

Hybrid_SRM_FC-loop SNN 0.91 0.86 1.0

Hybrid_SRM_FC-arch SNN 0.91 0.86 0.99

Hybrid_SRM_FC-whorl SNN 0.92 0.86 0.98

Hybrid_SRM_FC-random SNN 0.91 0.86 0.99

utilizes TLIF neurons as the building blocks and the network

structure of TactileSGNet is the same as the spatial spiking graph

neural network in the Hybrid_LIF_GNN. As in Taunyazoz et al.

(2020), we also compare our model against conventional deep

learning, specifically Gated Recurrent Units [GRUs; Cho et al.

(2014)] withMulti-layer Perceptrons (MLPs) and 3D convolutional

neural networks [3D_CNN; Gandarias et al. (2019)]. The network

structure of GRU-MLP is Input-GRU-MLP, where MLP is only

utilized at the final time step. And the network structure of CNN-

3D is Input-3D_CNN1-3D_CNN2-FC, where FC is for the fully-

connected layer.

4.1.3. Basic performance
Table 2 presents the test accuracies on the three datasets. We

observe that the Hybrid_SRM_FC significantly outperforms the

state-of-the-art SNNs. The reason why our model is superior to

other SNNs could be 2-fold: (1) different from state-of-the-art

SNNs that only extract features with existing spiking neurons, our

model employs an SNNwith location spiking neurons that enhance

the representative ability and enable the model to extract features

in a novel way; (2) our model fuses the SNN with TSRM neurons

and the SNN with LSRM neurons to better capture complex spatio-

temporal dependencies in the data. We also compare our model

with ANNs, which provide fair comparison baselines for fully

ANN architectures since they employ similar lightsome network

architectures as ours. From Table 2, we find out that our model

outperforms the counterpart ANNs on the three tasks, which might

be because our model is more compatible with event-based tactile

data and better maintains the sparsity to prevent overfitting.

4.1.4. Ablation studies
To examine the effectiveness of each component in the

proposed model and validate the representation ability of location

spiking neurons on event-driven tactile learning, we separately

train the SNN with TSRM neurons (which is exactly Tactile-SNN)

and the SNN with LSRM neurons (which is referred to as Location

Tactile-SNN). From Table 3, we surprisingly find out that Location

Tactile-SNN significantly surpasses Tactile-SNN on the datasets for

event-driven tactile object recognition and provides comparable

performance on event-driven slip detection. The reason for this

could be 2-fold: (1) the time durations of event-driven tactile object

recognition datasets are longer than that of “Slip detection,” and

Location Tactile-SNN with LSRM neurons is good at capturing

the mid-and-long term dependencies in these object recognition

datasets; (2) like Tactile-SNN, Location Tactile-SNN with LSRM

neurons can still capture the spatial dependencies in the event-

driven tactile data ("Slip detection") due to the spatial recurrent

neuronal dynamics of location spiking neurons. Moreover, we

examine the sensitivity of λ in Equation 18 and the robustness

of location orders. From Table 3, we notice the results of related

models are close, proving that the λ tuning and location orders do

not significantly impact task performance.

4.1.5. Timestep-wise inference
We evaluate the timestep-wise inference performance of

the Hybrid_SRM_FC and validate the contributions of the two

components in it. Moreover, we propose a time-weighted

Hybrid_SRM_FC to better balance the two components’

contributions and achieve better overall performance.

Figures 6A–C show the timestep-wise inference accuracies of
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FIGURE 6

The timestep-wise inference (Algorithm 1) for the SNN with TSRM neurons (SNN_TSRM), the SNN with LSRM neurons (SNN_LSRM), the

Hybrid_SRM_FC, and the time-weighted Hybrid_SRM_FC on (A) “Objects-v1,” (B) “Slip Detection,” and (C) “Containers-v1.” Please note that we use

the same event sequences as Taunyazoz et al. (2020) and the first spike occurs at around 2.0 s for “Objects-v1” and “Containers-v1.” From the figure,

we can see that the models with location spiking neurons have not reached the saturated levels while the blue line (the models with only traditional

spiking neurons) has already reached the saturated levels. This demonstrates the potential of location spiking neurons and the models with location

spiking neurons could provide the better performance by increasing the time on these tasks.

the SNN with TSRM neurons, the SNN with LSRM neurons, the

Hybrid_SRM_FC, and the time-weighted Hybrid_SRM_FC on

the three datasets. Specifically, the output of the time-weighted

Hybrid_SRM_FC at time t is

Otw(t) = concatenate((1− ω) ∗ O1(t),ω ∗ O2(t)),

ω =
1

1+ e−ψ∗(
t
T−1)

,
(20)

where the hyperparameter ψ balances the contributions of the

two components in the hybrid model and T is the total time

length. From the figures, we can see that the SNN with TSRM

neurons has good “early” accuracies on the three tasks since it well

captures the spatial dependencies with the help of Equation 11.

However, its accuracies do not improve too much at the later stage

since it does not sufficiently capture the temporal dependencies. In

contrast, the SNN with LSRM neurons has fair “early” accuracies,

while its accuracies jump a lot at the later stage since it models

the temporal dependencies in Equation 12. The Hybrid_SRM_FC

adopts the advantages of these two components and extracts spatio-

temporal features from various views, which enables it to have a

better overall performance. Furthermore, after employing the time-

weighted output and shifting more weights to the SNN with TSRM

neurons at the early stage, the time-weighted Hybrid_SRM_FC can

have a good “early” accuracy as well as an excellent “final” accuracy.

4.1.6. Energy e�ciency
To further analyze the benefits of the proposed model and

location spiking neurons, we estimate the gain in computational

costs compared to fully ANN architectures. Typically, the number

of synaptic operations is used as a metric for benchmarking the

computational energy of SNN models (Lee et al., 2020; Xu et al.,

2021). In addition, we can estimate the total energy consumption

of a model based on CMOS technology (Horowitz, 2014).

Different from ANNs that always conduct real-valued matrix-

vector multiplication operations without considering the sparsity

of inputs, SNNs carry out event-based computations only at the

arrival of input spikes. Hence, we first measure the mean spiking

rate of layer l in our proposed model. Specifically, the mean spiking

rate of the layer l in the SNN with existing spiking neurons is given

by:

F
(l)
1 =

1

T

∑

t∈T

#spikes of layer l at time t

#neurons of layer l
, (21)

where T is the total time length. And the mean spiking rate of the

layer l in the SNN with location spiking neurons is given by:

F
(l)
2 =

1

N

∑

n∈N

#spikes of layer l at location n

#neurons of layer l
, (22)

where N is the total number of locations. We show the

mean spiking rates of Hybrid_SRM_FC layers in the

Supplementary material. With the mean spiking rates, we can

estimate the number of synaptic operations in the SNNs. Given M

is the number of neurons, C is the number of synaptic connections

per neuron, and F indicates the mean spiking rate, the number of

synaptic operations at each time or location in layer l is calculated

asM(l)×C(l)×F(l), where F(l) is F
(l)
1 or F

(l)
2 . Thus, the total number

of synaptic operations in our hybrid model is calculated by:

OPHybrid =
∑

l

M(l)×C(l)×F
(l)
1 ×T+

∑

l′

M(l′)×C(l′)×F
(l′)
2 ×N,

(23)

where l is the spiking layer with existing spiking neurons and l′

is the spiking layer with location spiking neurons. Generally, the

total number of synaptic operations in the ANNs is
∑

l M
(l) × C(l).

Based on these, we estimate the number of synaptic operations in

the Hybrid_SRM_FC and ANNs like the GRU-MLP and CNN-3D.

As shown in Table 4, all the SNNs achieve far fewer operations than

ANNs on the three datasets.

Moreover, due to the binary nature of spikes, SNNs perform

only accumulation (AC) per synaptic operation, while ANNs

perform the multiply-accumulate (MAC) computations since

the operations are real-valued. In general, AC computation is

considered to be significantly more energy-efficient than MAC. For
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TABLE 4 The number of synaptic operations (#op, ×106) and the compute-energy benefit (the compute-energy of ANNs / the compute-energy of

SNNs, 45 nm) on benchmark datasets for the Hybrid_SRM_FC.

Method Type Objects-v1 Containers-v1 Slip detection

#op GRU-MLP ANN 5.89 5.89 2.72

#op CNN-3D ANN 4.17 4.07 1.75

#op SNN with TSRM neurons SNN 0.31 0.42 0.022

Compute-energy benefit 68.60–96.90× 49.42–71.52× 405.68–630.55×

#op SNN with LSRM neurons SNN 0.29 0.41 0.023

Compute-energy benefit 73.33–103.58× 50.63–73.27× 388.04–603.13×

#opHybrid_SRM_FC SNN 0.60 0.83 0.045

Compute-energy benefit 35.45–50.07× 25.01–36.19× 198.33–308.27×

example, an AC is reported to be 5.1× more energy-efficient than

a MAC in the case of 32-bit floating-point numbers [45 nm CMOS

process; Horowitz (2014)]. Based on this principle, we obtain the

computational energy benefits of SNNs over ANNs in Table 4.

From the table, we can see that the SNN models are 10× to 100×

more energy-efficient than ANNs and the location spiking neurons

(LSRM neurons) have the similar energy efficiency compared to

existing spiking neurons (TSRM neurons).

These results are consistent with the fact that the sparse

spike communication and event-driven computation underlie the

efficiency advantage of SNNs and demonstrate the potential of our

model and location spiking neurons on neuromorphic hardware.

4.2. Hybrid_LIF_GNN

In this section, to show the usability of location spiking neurons

and further boost event-driven tactile learning, we conduct a series

of experiments with the Hybrid_LIF_GNN, which is powered by

the popular spike-based learning framework – STBP (Wu et al.,

2018). Specifically, we first compare our model with the state-

of-the-art models with TLIF neurons and GNN structures. Then,

we conduct several ablation studies to examine the effectiveness

of some designs in the Hybrid_LIF_GNN. Next, we demonstrate

the superior energy efficiency of our model over the counterpart

Graph Neural Networks (GNNs) and show the high-efficiency

benefits of location spiking neurons. Finally, we compare with the

Hybrid_SRM_FC on the same benchmark datasets to validate the

superiority of the Hybrid_LIF_GNN.3

4.2.1. Datasets
To fairly compare with other published models with TLIF

neurons (Gu et al., 2020), we evaluate the Hybrid_LIF_GNN

on “Objects-v0” and “Containers-v0.” These two datasets are

the initial versions of “Objects-v1” and “Containers-v1.” We

demonstrate their differences in the Supplementary material. To

show the superiority of the Hybrid_LIF_GNN on event-driven

tactile learning, we compare it with the Hybrid_SRM_FC on

“Objects-v1,” “Containers-v1,” and “Slip detection.” During the

3 In this section, to be consistent with Gu et al. (2020), we use accuracies

(%).

experiments, we split the data into a training set (80%) and a

testing set (20%) with an equal class distribution. We repeat each

experiment for five rounds and report the average accuracy.

4.2.2. Comparing models
We compare the Hybrid_LIF_GNN with the state-of-the-art

methods with TLIF neurons and GNN structures (Gu et al.,

2020) on event-based tactile object recognition. Specifically, we

compare the TactileSGNet series. The general network structure

is the same as the spatial spiking graph neural network, which is

Input-Spiking TAGConv-Spiking FC1-Spiking FC2-Spiking FC3.

The other models in the series are obtained by substituting the

Spiking TAGConv layer:

• TactileSGNet-MLP, which uses the Spiking FC layer with TLIF

neurons to process the input. The network structure is Input-

Spiking FC0-Spiking FC1-Spiking FC2-Spiking FC3.

• TactileSGNet-CNN, which takes the network structure of

Input-Spiking CNN-Spiking FC1-Spiking FC2-Spiking FC3.

The tactile input is organized in a grid structure according to

the spatial distribution of taxels, and the Spiking CNN with

TLIF neurons is utilized to extract features from this grid.

• TactileSGNet-GCN, where the graph convolutional network

(GCN) is used as the GNN in Equation 13. The network

structure is Input-Spiking GCN-Spiking FC1-Spiking FC2-

Spiking FC3.

Moreover, we also compare the Hybrid_LIF_GNN against fully

GNNs. Specifically, the GNNs have the same network structures

as the Hybrid_LIF_GNN, including one recurrent TAGConv-FC1-

FC2-FC3 for T tactile spatial graphs, one recurrent TAGConv-FC1-

FC2-FC3 for N tactile temporal graphs, and one fusion module

to fuse the predictions from two branches. The major difference

between our model and GNNs is that GNNs employ artificial

neurons and adopt different activation functions in Equations 13,

14 while our model utilizes the spiking neurons and takes the

Heaviside function as the activation function.

4.2.3. Basic performance
We report the test accuracies on the two event-driven tactile

object recognition datasets in Table 5. From this table, we can
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TABLE 5 Accuracies (%) on datasets for the Hybrid_LIF_GNN.

Method Type Objects-v0 Containers-v0

TactileSGNet-MLP (Gu et al., 2020) SNN 85.97∗ 58.83∗

TactileSGNet-CNN (Gu et al., 2020) SNN 88.40∗ 60.17∗

TactileSGNet-GCN (Gu et al., 2020) SNN 85.14∗ 58.83∗

TactileSGNet-TAGConv (Gu et al., 2020) SNN 89.44∗ 64.17*

Recurrent GNN-linear GNN 92.36 70.67

Recurrent GNN-elu GNN 91.11 74.67

Recurrent GNN-LeakyRelu GNN 89.31 73.00

Hybrid_LIF_GNN-sparse-mean SNN 93.33 79.33

Hybrid_LIF_GNN-dense-mean SNN 92.50 78.67

Hybrid_LIF_GNN-sparse-max SNN 85.56 77.00

Hybrid_LIF_GNN-dense-max SNN 85.14 76.00

∗These values come from Gu et al. (2020). All the Hybrid_LIF_GNNmodels use the loop-like location order. “Sparse” is for “sparse tactile temporal graph,” “dense” is for “dense tactile temporal

graph,” “mean” is for “mean fusion,” and “max” is for “max fusion.” The best performance is in bold.

see that the Hybrid_LIF_GNN significantly outperforms the

TactileSGNet series (Gu et al., 2020). The reason why ourmodel can

achieve the better performance could be 2-fold: (1) different from

the TactileSGNet models that only utilize TLIF neurons to extract

features from the tactile spatial graphs, our model also employs

the temporal spiking graph neural network with LLIF neurons to

extract features from the tactile temporal graphs; (2) our model

fuses the spatial and temporal spiking graph neural networks to

capture complex spatio-temporal dependencies in the data. We

also compare our model with fully GNNs by replacing the spike

functions in Equations 13, 14 with activation functions, such as

linear, elu, or LeakyRelu. These models provide fair comparison

baselines for fully GNN architectures since they employ the same

network architecture as ours. From Table 5, we observe that the

Hybrid_LIF_GNN outperforms the counterpart GNNs on the two

datasets, which might be because our model is more compatible

with event-based tactile data and better maintains the sparsity to

prevent overfitting.

4.2.4. Ablation studies
We further provide ablation studies for exploring the optimal

design choices. From Table 5, we find out that the combination

of “sparse tactile temporal graph” and “mean fusion” performs

better than other combinations. The reason for this could be

2-fold: (1) the dense tactile temporal graph involves too many

insignificant temporal dependencies and does not differentiate the

importance of each dependency; (2) the max fusion results in

information loss.

4.2.5. Timestep-wise inference
Figure 7 shows the timestep-wise inference accuracies (%) for

the spatial spiking graph neural network, the temporal spiking

graph neural network, the Hybrid_LIF_GNN, and the time-

weighted Hybrid_LIF_GNN on the two datasets. Specifically, the

output of time-weighted Hybrid_LIF_GNN at time t is

O′tw(t) = O′1(t)(1−
t

ζT
)+ O′2(t)

t

ζT
, (24)

where ζ balances the contributions of the two components in the

hybrid model and T is the total time length. From the figure, we

can see that the spatial spiking graph neural network has a good

“early” accuracy with the help of tactile spatial graphs, while its

accuracy does not improve too much at the later stage since it

cannot well capture the temporal dependencies. In contrast, the

temporal spiking graph neural network has a fair “early” accuracy,

while its accuracy jumps a lot at the later stage since it models the

temporal dependencies explicitly. The Hybrid_LIF_GNN adopts

the advantages of these two models and extracts spatio-temporal

features from multiple views, which enables it to have a better

overall performance. Furthermore, after employing the time-

weighted output and setting ζ = 2 to shift more weights to the

spatial spiking graph neural network at the early stage, the time-

weighted model can have a good “early” accuracy as well as an

excellent “final” accuracy, see red lines in Figure 7.

4.2.6. Energy e�ciency
Following the estimation methods in Section 4.1.6, we

estimate the computational costs of the Hybrid_LIF_GNN and its

counterpart GNNs on the benchmark datasets.

We show the mean spiking rates of Hybrid_LIF_GNN layers

in the Supplementary material. Table 6 provides the number of

synaptic operations conducted in the Hybrid_LIF_GNN and the

counterpart GNNs with the same network structure. From the

table, we can see that the SNNs achieve far fewer operations

than GNNs on the benchmark datasets. Moreover, following the

45 nm CMOS technology energy principle in Section 4.1.6, we

obtain the computational energy benefits of SNNs over GNNs

in Table 6. From the table, we can see that the SNN models

are 10× to 100× energy-efficient than GNNs. Furthermore, by

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1127537
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kang et al. 10.3389/fnins.2023.1127537

FIGURE 7

The timestep-wise inference (Algorithm 2) accuracies (%) for the spatial spiking graph neural network (SSGNN), the temporal spiking graph neural

network (TSGNN), the Hybrid_LIF_GNN, and the time-weighted Hybrid_LIF_GNN on (A) “Objects-v0” and (B) “Containers-v0".

TABLE 6 The number of synaptic operations (#op, ×108) and the

compute-energy benefit (the compute-energy of GNNs/the compute-

energy of SNNs, 45 nm) on benchmark datasets for the Hybrid_LIF_GNN.

Method Type Objects-
v0

Containers-
v0

#op Recurrent GNNs in

Table 5

GNN 1.7188 2.2146

#op Spatial spiking graph

neural network

SNN 0.1132 0.1023

Compute-energy benefit 77.44× 110.41×

#op Temporal spiking

graph neural network

SNN 0.0297 0.0313

Compute-energy benefit 295.15× 360.85×

#opHybrid_LIF_GNN SNN 0.1429 0.1336

Compute-energy Benefit 61.34× 84.54×

comparing the number of synaptic operations in the spatial spiking

graph neural network with that in the temporal spiking graph

neural network, we find that the temporal spiking graph neural

network has the higher energy efficiency. The reason for this

could be that we employ the sparse tactile temporal graphs in the

temporal spiking graph neural network and such graphs require

fewer operations.

These results are consistent with what we show in Section 4.1.6

and demonstrate the potential of our models and location spiking

neurons (LLIF neurons) on neuromorphic hardware.

4.2.7. Performance comparison with the
hybrid_SRM_FC

To fairly compare with the Hybrid_SRM_FC (Figure 2),

we further test the Hybrid_LIF_GNN (Figure 4) on “Objects-

v1,” “Containers-v1,” and “Slip detection.” From Table 7,

we can see that the Hybrid_LIF_GNN outperforms the

Hybrid_SRM_FC on “Objects-v1” and “Containers-v1” and

they both achieve the perfect slip detection. The reason for

this is that the Hybrid_LIF_GNN adopts graph topologies and

has a more complicated structure than the Hybrid_SRM_FC.

Such comparison results are consistent with the comparison

between the Tactile-SNN and TactileSGNet in Table 2 and

demonstrate the benefit of spiking graph neural networks

and complex structures on event-driven tactile learning.

Through this experiment, we show that the location spiking

neurons can be incorporated into complex spike-based learning

frameworks and further boost the performance of event-driven

tactile learning.

5. Discussion and conclusion

In this section, we discuss the advantages and limitations

of conventional spiking neurons and location spiking neurons.

Moreover, we provide preliminary results of the location spiking

neurons on event-driven audio learning and discuss the potential

impact of this work on broad spike-based learning applications.

Finally, we conclude the paper.

5.1. Advantages and limitations of
conventional and location spiking neurons

This paper proposes location spiking neurons. Based on the

neuronal dynamic equations of conventional spiking neurons and

location spiking neurons, we can see that both of them can

extract spatio-temporal dependencies from the data. Specifically,

the conventional spiking neurons employ the temporal recurrent

neural dynamics to update their membrane potentials and

capture spatial dependencies by aggregating the information from

presynaptic neurons, see Equations 2, 5, 11, and 13. However,

location spiking neurons use spatial recurrent neural dynamics

to update their potentials and model temporal dependencies

by aggregating the information from presynaptic neurons, see

Equations 7, 10, 12, and 14.

Moreover, based on experimental results, we can see that

conventional spiking neurons are better at capturing spatial
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TABLE 7 Performance comparison between the Hybrid_SRM_FC with LSRM neurons and the Hybrid_LIF_GNN with LLIF neurons.

Method Type Objects-v1 Containers-v1 Slip detection

Hybrid_SRM_FC SNN 0.91 0.86 1.0

Hybrid_LIF_GNN‡ SNN 0.96 0.90 1.0

‡Represents Hybrid_LIF_GNN-sparse-mean-loop. The best performance is in bold.

FIGURE 8

The Hybrid_SRM_FC processes a spike audio sequence and predict its label. The network structure of this model is the same as what we show in

Figure 2.

dependencies which benefit the “early” accuracy, while location

spiking neurons are better at modeling mid-and-long temporal

dependencies which benefit the “late” accuracy. Networks built

only with conventional spiking neurons or networks built only

with location spiking neurons cannot sufficiently capture spatio-

temporal dependencies in the event-based data. Thus, we always

concatenate or fuse the networks to sufficiently capture spatio-

temporal dependencies in the data.

By introducing LSRM neurons and LLIF neurons, we verify

that the idea of location spiking neurons can be applied to

various existing spiking neuron models like TSRM neurons and

TLIF neurons and strengthen their feature representation abilities.

Moreover, we extensively evaluate the models built with these novel

neurons and demonstrate their superior performance and energy

efficiency. Furthermore, by comparing the Hybrid_LIF_GNN with

the Hybrid_SRM_FC, we show that the location spiking neurons

can be utilized to build more complicated models to further

improve task performance.

5.2. Potential impact on broad spike-based
learning applications

In this paper, we focus on boosting event-driven tactile learning

with location spiking neurons. And extensive experimental results

validate the effectiveness and efficiency of our models on the

tasks. Besides event-driven tactile learning, we can also apply

the models with location spiking neurons to other spike-based

learning applications.

5.2.1. Event-driven audio learning
To show the potential impact of our work, we apply the

Hybrid_SRM_FC (see Figure 2) to event-driven audio learning

and provide preliminary results. Please note that the objective

of this experiment is not necessarily to obtain state-of-the-

art results on event-driven audio learning, but to demonstrate

that location spiking neurons can bring benefits to the model

built with conventional spiking neurons on other spike-based

learning applications.

In the experiment, we use the N-TIDIGITS18

dataset (Anumula et al., 2018), which is collected by playing the

audio files from the TIDIGITS dataset (Leonard and Doddington,

1993) to the dynamic audio sensor–the CochleaAMS1b

sensor (Chan et al., 2007). The dataset includes both single

digits and connected digit sequences. We use the single-digit

part of the dataset, which consists of 11 categories, including

“oh,” “zero,” and digits “1–9.” A spike audio sequence of digit

“2” is shown in Figure 8, where the x-axis indicates the event

time, and the y-axis indicates the 64 frequency channels of the

CochleaAMS1b sensor. Each blue dot in the sequence represents

an event that occurs at time te and frequency fe. In this application,

we regard “frequency channels” as “locations” and apply the

Hybrid_SRM_FC to process the spike audio inputs, see Figure 8.

Through the experiments, the fully-connected SNN with TSRM

neurons achieves the test accuracy of 0.563. However, with the

help of LSRM neurons, the Hybrid_SRM_FC obtains the test

accuracy of 0.586 and correctly classifies the additional 57 spike

audio sequences. Moreover, we show the training and testing

profiles of the fully-connected SNN with TSRM neurons and
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the Hybrid_SRM_FC in the Supplementary material. From those

figures, we can see that our hybrid model converges faster and

attains a lower loss and a higher accuracy compared to the

fully-connected SNN with TSRM neurons.

From this experiment, we can see that location spiking

neurons can be applied to other spike-based learning applications.

Moreover, the location spiking neurons can bring benefits to the

models built with conventional spiking neurons and improve their

task performance. We believe there will be further improvements

on event-driven audio learning if we can incorporate the

location spiking neurons into state-of-the-art event-driven audio

learning frameworks.

5.2.2. Visual processing
Besides event-driven audio learning, a contemporary work (Li

et al., 2022) also validates the effectiveness of spatial recurrent

neuronal dynamics on conventional image classification. This work

incorporates the spatial recurrent neuronal dynamics into the full-

precision Multilayer Perceptron (MLP) and achieves the state-of-

the-art top-1 accuracy on the ImageNet dataset. Since the model

is full-precision and real-valued, it may lose the energy efficiency

benefits of binary spikes. Our location spiking neurons employ the

spatial recurrent neuronal dynamics but also keep the binary nature

of spikes. Based on these, we think our proposed neurons could

bring more potential to computer vision (e.g., event-based vision)

when they are incorporated into MLP (Tolstikhin et al., 2021) or

Transformer (Dosovitskiy et al., 2020) frameworks.

5.3. Conclusion

In this work, we propose a novel neuron model– “location

spiking neuron.” Specifically, we introduce two concrete location

spiking neurons—the LSRM neurons and LLIF neurons. We

demonstrate the spatial recurrent neuronal dynamics of these

neurons and compare them with the conventional spiking

neurons—the TSRM neurons and TLIF neurons. By exploiting

these location spiking neurons, we develop two hybrid models for

event-driven tactile learning to sufficiently capture the complex

spatio-temporal dependencies in the event-based tactile data. The

extensive experimental results on the event-driven tactile datasets

demonstrate the extraordinary performance and high energy

efficiency of our models and location spiking neurons. This could

further unlock their potential on neuromorphic hardware. Overall,

this work sheds new light on SNN representation learning and

event-driven learning.
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