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Introduction: The dynamic reconfiguration of network oscillations is connected

with cognitive processes. Changes in how neural networks and signaling pathways

work are crucial to how epilepsy and related conditions develop. Specifically,

there is evidence that prolonged or recurrent seizures may induce or exacerbate

cognitive impairment. However, it still needs to be determined how the seizure brain

configures its functional structure to shape the battle of strong local oscillations vs.

slow global oscillations in the network to impair cognitive function.

Methods: In this paper, we aim to deduce the network mechanisms underlying

seizure-induced cognitive impairment by comparing the evolution of strong local

oscillations with slow global oscillations and their link to the resting state of healthy

controls. Here, we construct a dynamically efficient network of pathological seizures

by calculating the synchrony and directionality of information flow between nine

patients’ SEEG signals. Then, using a pattern-based method, we found hierarchical

modules in the brain’s functional network and measured the functional balance

between the network’s local strong and slow global oscillations.

Results and discussion: According to the findings, a tremendous rise in strong

local oscillations during seizures and an increase in slow global oscillations after

seizures corresponded to the initiation and recovery of cognitive impairment.

Specifically, during the interictal period, local strong and slow global oscillations are

in metastable balance, which is the same as a normal cognitive process and can

be switched easily. During the pre-ictal period, the two show a bimodal pattern of

separate peaks that cannot be easily switched, and some flexibility is lost. During

the seizure period, a single-peak pattern with negative peaks is showcased, and

the network eventually transitions to a very intense strong local oscillation state.

These results shed light on the mechanism behind network oscillations in epilepsy-

induced cognitive impairment. On the other hand, the differential (similarity) of

oscillatory reorganization between the local (non) epileptogenic network and the

global network may be an emergency protective mechanism of the brain, preventing

the spread of pathological information flow to more healthy brain regions.
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1. Introduction

Oscillations arise from neuronal interactions that promote
communication and information processing between regions of
a functional neural network (Engel et al., 2001; Buzsaki and
Draguhn, 2004; Wang et al., 2020; Földi et al., 2021). Recent
studies have shown that network oscillations temporally link neurons
and enhance synaptic plasticity, supporting long-term information
consolidation and is a cognitive process necessary for learning
and memory (Goltsev et al., 2013; Holmes, 2015; Sadaghiani
and Kleinschmidt, 2016). Specifically, tiny timing mistakes in
neuronal or oscillatory activity may be magnified in more extensive
networks, resulting in cognitive impairment (Buzsáki, 2007). This
shows that using network oscillations to investigate cognitive
impairment is a viable treatment strategy. Many studies are
becoming more interested in the impact of network oscillations
on cognitive impairment, focusing on specific frequencies and
amplitudes of oscillation (Wilke et al., 2011; Ibrahim et al.,
2012; Guo et al., 2018). However, the mechanism through which
oscillatory reorganization influences cognitive impairment remains
unknown.

In the present study, we surveyed the mechanisms through
which network oscillations contribute to seizure-induced cognitive
impairment. As a starting point, we investigated the findings
of prior studies on the topic. Previous research has shown a
causal relationship between the pathophysiological mechanisms
that cause seizures and the biology of cognitive impairment, with
oscillations acting as one of the essential links (Jensen et al.,
2007; Guo et al., 2018). Gamma oscillations are closely associated
with sustained learning and memory functions, and oscillation
abnormalities may result in cognitive deficits (Ibrahim et al.,
2012; Guo et al., 2018). Cognitive memory may be disrupted by
seizures caused by intermittent oscillations (Binnie and Marston,
1992; Holmes and Lenck-Santini, 2006; Lévesque et al., 2018). In
epileptic patients, abnormalities in brain connection produced by
oscillations and impaired temporal coding affect cognition (Holmes,
2015). In patients with temporal lobe epilepsy, seizure-evoked
circuits are localized in memory-supporting brain regions, and these
regions generate essential physiological high-frequency oscillations
required for memory processing (Axmacher et al., 2008; Ewell
et al., 2019). However, most research has been limited to specific
oscillations or epileptic disorders. Consequently, little is known
about the systematic contributions of oscillatory reorganization
to cognitive impairment. In addition, several studies have shown
that strong local oscillations are more widespread in neuronal
networks, with the local connection of neurons limiting their
extension (Abela et al., 2014). Slow global oscillations reflect
the integration of neuronal activity across regions of the brain
throughout sensory or cognitive processes. However, recording
technologies have limited investigations of precise mechanisms
(Sheybani et al., 2019). There is no evidence that the encoded
form of slow global oscillations applies to distributed networks
in epileptic diseases. As a result, future research should examine
the effects of oscillatory reorganization on seizures and cognitive
impairment via the joint of strong local oscillations and slow global
oscillations.

Moreover, there may be a mutually suppressive relationship
between strong local oscillations and slow global oscillations. High-
frequency oscillations are connected with local neuronal interactions,

whereas slow rhythmic oscillations at lower frequencies are more
crucial for the long-distance integration of large-scale networks (Von
Stein and Sarnthein, 2000; Donner and Siegel, 2011; Goltsev et al.,
2013; Ibrahim et al., 2013). When α oscillation energy rises in a
specific brain region, neurogenesis in that region generally decreases.
However, oscillatory reorganization’s precise effect on cognitive
impairment has yet to be investigated, and many fundamental
concerns remain unanswered. We have yet to determine, for instance,
what change patterns occur in strong local oscillations under the
effect of seizures, nor whether strong local oscillations play a role
in suppressing slow global oscillations. In this research, we aimed to
answer these crucial questions.

Furthermore, brain function does not originate from isolated
brain regions but through interactions in large-scale networks (van
Diessen et al., 2014), which seem essential for both physiological
and pathological conditions. On the one hand, such connections
might propagate seizures; or instance, interconnected focal regions
may have suffered damage due to peaked wave dissemination,
which often results in widespread cognitive impairment (Harkin
et al., 2007). Alternatively, other research shows that the brain may
have a mechanism to protect healthy brain regions from seizures,
which may cause permanent damage. For instance, seizure cessation
is characterized by somewhat uniform oscillatory suppression
(Truccolo et al., 2014). Intermittent epileptiform discharges have
remote inhibitory effects on cognition (Shamshiri et al., 2017;
Ung et al., 2017; Guo et al., 2018; Watson, 2018). However, the
mechanisms and pathophysiology that control particular functions
have yet to be entirely understood. It is uncertain if the resting or
task state of the healthy brain exists or has been altered in epileptic
patients.

In this research, the pathophysiological mechanisms underlying
epilepsy-induced cognitive impairment may be associated with
the oscillatory reorganization of functional networks. We focus
specifically on the mutually inhibiting effect of strong local
oscillations and slow global oscillations. The experiment was based
on a quantitative analysis of the synchronization and directionality
of information flow between the SEEG signals of nine patients with
pathological epilepsy to create a dynamic network. Previous research
has only used indicators of complex networks, focusing on particular
global or local connection changes. In contrast, we utilize methods
based on characteristic mode to identify hierarchical modules and
quantify strong local oscillations and slow global oscillations in the
network to examine dynamic networks comprehensively. To provide
new information, we identify the particular variation rules of strong
local oscillations versus slow global oscillations during various seizure
phases. These models and findings help characterize an unrecognized
dynamic network oscillatory reorganization mechanism in cognitive
impairment induced by epilepsy.

2. Materials and methods

2.1. Data preparation

In this research, nearly 100 channels (electrodes) of SEEG
data from nine patients hospitalized with refractory focal epilepsy
at the Sanbo Brain Hospital of Capital Medical University were
visually analyzed and extensively exploited to validate our results
independently. The Ethics Committee approved the SMBC of
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Capital Medical University’s study technique, and a negotiated
informed special dispensation was prepared for all participants.
This information cannot be shared with the general public due to
hospital regulations. Furthermore, the sampling frequency was set
at 512 Hz and the average monitoring time was 1 week. Interictal,
preictal, seizure, and post-ictal periods were analyzed to determine
the network features of people with epilepsy. For each patient,
we devised criteria for categorizing the various seizure stages, as
indicated in Table 1. These criteria were based on the clinical seizures
recognized by physicians.

The data for the control group in this study were collected
from the EEG Motion/Image Dataset public dataset (Schalk et al.,
2004), which includes over 1,500 1- and 2-min EEG recordings from
109 volunteers with 64 electrodes. The volunteers were required to
perform a variety of motion and visual tasks. We selected nine data
points from healthy individuals from which we extracted segments of
resting or task-state EEG to compare with patients.

2.2. Statistic method for epileptic effective
brain network

Usually, Pearson correlation coefficients are employed to
establish functional networks for analyzing resting-state brain
network alterations in healthy individuals. However, compared to
FMRI data, the SEEG data employed in this work includes more
complex dynamic changes in transients due to its temporal and
spatial features. Consequently, this research establishes an effective
network based on the statistical method proposed in Quiroga et al.
(2002), which may improve the assessment of the information flow in
the brain network of patients with epilepsy.

We build a dynamic and efficient network by estimating the
synchronization and directionality of developing information flow
to represent pathological epilepsy. Therefore, it is essential to define
events for time series. Here, the events are defined as the local
maximums in the time series, i.e.,{

xtk > xtk+m, m = −M + 1, . . . ,−1, 1, . . . ,M − 1
xtk > xtk±M + h

(1)

where tk is the event occurrence time, M = 10h = 30 are the two
control parameters shaping the event.

Let the event sequences of time series x1 (n) and x2 (n) (total
step length L) be t1r (r = 1, . . . ,m1) and t2s (s = 1, . . . ,m2), where
m1 (� L) and m2(� L) are the total number of event occurrences
in x1 (n) and x2 (n), respectively. The time difference between event
occurrences in various time series is then used to determine the
causality and synchronization of events. In the time delay scale τ,
if an event is recorded in the sequence x1 (n) immediately after an
event occurs in the sequence x2 (n), then it is considered that the
intensity of the causal effect of x1 (n) on x2 (n) will be enhanced by
one step. Conversely, x2 (n) is one step more causality for x1 (n). In
addition, regardless of the sequence of events in x1 (n) and x2 (n),
as long as two related events are observed to occur close enough,
they are considered a simultaneous occurrence, and the amount of
synchronization is correspondingly increased by one step.

eτ
(
x1
|x2)
=

m1∑
r=1

m2∑
s=1

Eτ
rs,E

τ
rs =


1, 0 < t1r − t2s ≤ τ

1
2 , t1r = t2s

0, others
(2)

Remember sequence x2 (n) for x1 (n) event-causal eτ(x1
|x2), the

size of representative sequence x2(n) for x1(n) the causal role of
strength. The global time delay,

τ = min
r=1,...m1,s=1,...,m2

{τrs} ,

τrs =
1
2

min
{
t1r+1 − t1r , t

1
r − t1r−1, t

2
s+1 − t2s , t

2
s − t2s−1

}
(3)

is used to limit the smallest time interval between two adjacent events,
where τrs is the local time delay for each pair of adjacent (temporally
closest) events (r, s), Eτ

rs = 1/2 is such set to prevent from double
counting for the two simultaneous events. On the contrary, eτ(x2

|x1)

quantifies the causality from x1(n) to x2 (n).
Based on eτ

(
x1
|x2) and eτ(x2

|x1), we then define the degree of
simultaneity Qτ and causality qτ for x1(n) and x2(n) as follows:

Qτ
=

eτ
(
x2
|x1)
+ eτ(x1

|x2)
√
m1 ·m2

, qτ
=

eτ
(
x2
|x1)
− eτ(x1

|x2)
√
m1 ·m2

(4)

Both are normalized to 0 ≤ Qτ
≤ 1, − 1 ≤ qτ

≤ 1. Qτ
= 1

when and only when all events in both signals occur together. qτ
=

1 when and only when all events from x1(n) act for all events
from x2 (n).

Second, to examine the evolution trend of synchronization and
causality between the two sequences over time, Qτ and qτ are
evaluated for each time step, while their cumulative consequences are
investigated over time. We define qτ (n) as Equation(5),{

qτ (n) = eτn
(
x2
|x1)
− eτn

(
x1
|x2)

Qτ (n) = eτn
(
x2
|x1)
+ eτn

(
x1
|x2)

eτn
(
x1
|x2)
=

m1∑
r=1

m2∑
s=1

Eτ
rs2

(
n− t1

r
)

(5)

where n = 1, 2, . . . , L is the time point within the series, and 2 is the
step function, i.e., 2 (x) = 1 when x > 0 and 2 (x) = 0 when x ≤ 0.
qτ (n) could be thought of as a random sequence; when the event in
x1 causes the event in x2 to occur, it increases by one step, and vice
versa, it diminishes by one step. The synchronization of progressive
events is defined by Qτ (n) in Equation (5), where Qτ (n) improves by
one step if a pair of events in x1 and x2 occur within the period τ and
remains nearly constant otherwise.

The rate of change of synchronization at time point n is calculated
by averaging the synchronization expansion throughout 1n steps
(1n = 5120 in the current calculation) using dQτ (n) in Equation (6),

dQτ (n) =
Q (n)− Q (n−1n)
√

1n1 ·1n2
, dqτ (n) =

q (n)− q (n−1n)
√

1n1 ·1n2
(6)

where 1n1 and 1n2 correspond to the number of events in x1 and x2

in the band [n−1n, n], respectively. Similarly, we might define the
rate of change of the causal level at time point n as choosing to follow
dqτ (n) in Equation (6), where dQτ (n) > 0 and dqτ (n) > 0 represent
a positive increment of synchronization and causality within 1n
steps, respectively, and < 0 represents a negative escalation within
1 n steps.

Specifically, the synchronization growth rate dQτ (n) and the
causal level change rate dqτ (n) at time point n are determined for
any two nodes i and j in the network whose relevant time series are
xi and xj. The magnitude of the weighted directed action of node i
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TABLE 1 Clinical patient characteristics.

Patient Age (years) Duration (years) Side Electrodes/contacts Recorded seizures Pathology

1 17 12 R 15/124 4 FCD Ia

2 9 5 L 11/116 6 FCD Ib

3 4 7/12 R 13/122 9 FCD IIa

4 7 1 L 10/120 101 FCD IIb + FCD Ic

5 5 3 R 10/108 2 FCD Ib

6 16 3 L and R 15/119 4 FCD Ib + FCD IIb

7 7 5 L 13/116 1 FCD Ib

8 27 12 L 8/108 5 HS.

9 15 9 R 8/117 17 FCD Ib + GMH

FCD, cortical dysplasia; HS, hippocampal sclerosis; GMH, ectopic gray matter.

on node j at time point n is represented by aij(n), which also contains
data on the synchronization level between the two nodes, as described
by Equation (7),

aij (n) =

{
γ · dqτ

ij (n) · dQ
τ
ij (n) , dqτ

ij (n) > 0
0, dqτ

ij (n) ≤ 0
(7)

where the amplification factor γ = 1000 is considered in this
research. Furthermore, it is assumed that there are no self-connecting
rings in the network, i.e., aii (n) = 0, i = 1, 2, . . . , n0, where n0 is the
maximum number of nodes in the network.

2.3. Hierarchical modular division of
functional connection matrix

Wang Rong et al. (Wang et al., 2021) proposed that the activation
and combination of various structural modal interactions in the
eigenmodes lead to generating multiple dynamical modes in the
system by nature. Moreover, in this study, to discover the dynamical
oscillation reorganization law of the directed weighted network,
we propose a new hierarchical eigenmode analysis method that
includes examining complex numbers. In particular, the directed
weighted network and functional connection matrix in Figure 1 is
an epitome of the causal effects network calculation results. Since the
functional connection matrix is asymmetric, the resulting eigenvalues
and eigenvectors must include complex conjugate numbers. It is
well known that the eigenvalues on the exact number field domain
represent the magnitude of the stretching transformation, whereas
the eigenvectors represent the direction. In comparison, the complex
domain adds a rotational transformation. Under the transformation
of polar coordinates, a+ bi becomes r (cosθ+ i ∗ sinθ), where
r =
√
a2 + b2 represents the stretching quantity, and θ = arctan b

a
represents the rotation. Additionally, the complex eigenvector
component m+ ni is multiplied with the corresponding eigenvalue
a+ bi, representing the real rotation of the basis vector ϕ and the
stretching transform q (Hitzer, 2002):

(
a+ bi

)
(m+ ni) = r (cosθ+ i∗sinθ) ∗q (cosϕ+ i∗sinϕ) =

rq [cosθcosϕ− sinθsinϕ+ i∗ (sinθcosϕ+ cosθsinϕ)] =

rq [cos (θ+ ϕ)+ i∗sin (θ+ ϕ)] (8)

On this foundation, we consider the modal lengths of the
eigenvalues and eigenvectors that correspond precisely to the
magnitude of the change in a stretch, which makes more physical
sense than merely considering the real part.

Immediately following, we provide the specific modal analytical
method. First, the eigenvalues are sorted by mode length from largest
to smallest 32

i (i = 1, . . . ,N) and the corresponding eigenvectors
are rearranged. In order to depict the actual global level of slow
oscillations in the brain, the first eigenvector corresponding to the
largest eigenvalue modal length was not divided at the first level. The
global slow oscillations can be expressed as:

Hin =
H1

N
=

32
1M1(1− p1)

N2 (9)

where the parameters and variations can be explained later.
Level 2 eigenvector separated brain regions into three sub-

modules: balance, strong oscillation, and weak oscillation.
After the entire module was divided into three parts, the latter
oscillatory deformation was much higher than the former.
(AVG+ SD,AVG+ 2∗SD) represents a balanced oscillatory
deformation while cognitive patterns are switched more flexibly, and
cognition is at a greater level (complex planes Á and Ä in Figure 1).
(AVG+ 2∗SD, +∞) represent a strong oscillatory deformation
with significant feature differences and shifts. Moreover, the greater
the amplitude of the oscillation, the more it may negatively impair
cognition (complex planes Â and Å in Figure 1). (0,AVG+ SD)

denotes a weakening of the oscillation level and a slowing of
cognition, tending toward a mode that occurs when the oscillation
gets suppressed (complex planes À and Ã in Figure 1). Where AVG
and SDrepresent the set’s mean and standard deviation, respectively,
this set is made up of the modal lengths of all components of the
whole eigenvector. Nonetheless, it is challenging to quantify the
degree of rotation in measures of complex numbers. In this part, we
do not distinguish between the effect of the rotation angle on the
magnitude of oscillations at each level; further explanation will be
given in the Section “4. Discussion.”

As the sequence of functional patterns rises, the FC network
modularizes until it reaches a state of high modularity. In this process,
the case from layer 2 to layer N represents the deformation intensity
of the strong local oscillation, expressed as

Hse =

N∑
i=2

Hi

N
=

N∑
i=2

32
iMi(1− pi)

N2 (10)
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FIGURE 1

Example illustration and detailed description of the eigenmode analysis method. This diagram demonstrates a weighted directed network with four
nodes. This network is then assigned a functional connectivity matrix corresponding to the hundred-dimensional matrix acquired from the real epilepsy
causal effects network. The eigenvalues and eigenvectors of this matrix are then determined. The eigenvectors are then retrieved in modal length, and
their interpretation in the complex plane is provided. The module is subdivided into three submodules based on the modal lengths of the eigenvectors,
and the subfigure at the bottom left depicts the precise meaning and classification links of the hierarchical modularity method to oscillatory dynamic
reorganization.

where Mi is the number of modules within layer i, which is weighted

as Hi =
32

i Mi
N (i = 1, . . . ,N). N is the number of regions in total.

Nevertheless, the heterogeneous structure of module sizes causes
variations in the evaluation of separation and integration parameters;
hence, similar to Wang et al. (2021), we also introduce the correction
factor pi =

∑
j

∣∣∣mj −
N
Mi

∣∣∣ /N, where mj(j = 1, . . . ,Mi) is the module

size.
In addition, we set Hsb = Hin −Hse: if Hsb < 0, the brain’s

functional network is biased toward a state of strong local oscillatory
deformation, which has a facilitative effect; if Hsb > 0, which implies
that the network is biased toward a state under which slow global
oscillations cooperate, the structure of the entire network is stable;
if Hsb = 0, a sub-stable balance is reached between strong local
oscillations and slow global oscillations, and the contribution of the
original network to strong local oscillations is roughly equal to the
suppression of strong local oscillations by slow global oscillations.
Every Hsb value is normalized to the range [−1, 1]. The closer Hsb
is to−1, the greater the strong local oscillations and the more excited
the proto-network state. The closer Hsb is to 1, the higher the degree
of slow global oscillation and the greater the suppression of strong
local oscillations.

In conclusion, causality and synchronization were used to assess
the strength of directional propagation of information flow between
two epilepsy network nodes to construct a weighted epilepsy effective
network. Meanwhile, we fed SEEG into this network and analyzed the
output functional connection matrix. Using a modular hierarchical
analysis of the eigenmodes, a dynamic description of the brain
network’s strong local oscillations versus slow global oscillations in
the temporal and spatial dimensions of the patient’s seizures were
constructed. Ultimately, the dynamic reconfiguration of network
oscillations may be the source of cognitive impairment produced
by epilepsy. Figure 2 shows the main flowchart of the whole
research.

3. Results

3.1. Potential reason for cognitive
impairment: Disruption of the balance
between strong local and slow global
oscillations

We discovered that epileptic seizures damage the metastable
balance between local strong and slow global oscillations in large-
scale networks. Specifically, we investigated the Hsb metrics of
healthy individuals, which reflect the metastable balance between
strong local oscillations and slow global oscillations. Figure 3 shows
the fluctuation of the Hsb indication for nine healthy controls
over time. We can observe that the Hsb fluctuates evenly around
0 and is primarily stable around 0. This indicates that healthy
brain networks have balanced oscillatory states and switch between
strong local oscillations and slow global oscillations more frequently,
hence maintaining regular cognitive functional activity. The brain
network’s facilitation of strong local oscillations plays off against the
suppression of strong local oscillations by slow global oscillations, yet
the network is in balance overall. For comparison, we analyzed the
variation of brain network states in epileptic patients.

Patient 1 had the exact opposite features compared to healthy
controls, as shown in Figure 4. The strong local oscillation index Hse
and the slow global oscillation index Hin exhibited rapid, irregular
fluctuations within the range [−1, 1]. Similarly, the balance index
Hsb exhibited the same alterations (Figure 4), which seemed very
distinctive from healthy individuals. The primary data implies that
the disruptive impact of seizures on the metastable balance of strong
local oscillations and slow global oscillations is rather severe. In
addition, both strong local oscillations and slow global oscillations
in the functional network were enhanced after a period of seizure.
In particular, the degree of enhancement is much greater for strong

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1126875
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1126875 January 17, 2023 Time: 10:41 # 6

Fan et al. 10.3389/fnins.2023.1126875

FIGURE 2

The entire workflow of the experimental procedure is in this paper. First, the SEEG data are examined, processed, and computed to establish the network
of causal effects. The epilepsy causal impact network then generates a functional connectivity matrix that reflects the synchronization and causality
between SEEG data from various locations. Immediately after this, we conducted a statistical analysis of the functional connectivity matrix using
eigenmode hierarchical analysis to capture the slow global oscillation index vs. the strong local oscillation index for each patient under each data sample.

FIGURE 3

The fluctuations of the Hsb index over time for nine healthy subjects are plotted. Hsb refers to the sub-steady-state equilibrium evaluation index of slow
global oscillations relative to strong local oscillations. If Hsb = 0, the two are in sub-steady state equilibrium; if Hsb < 0, the network state is more skewed
toward strong local oscillations; and if Hsb > 0, slow global oscillations are more robust in the network. Independent of time, it was noted that the
distribution of Hsb in healthy participants centered around 0. Each subplot’s legend numbers reflect the number of healthy subjects, the horizontal axis is
the time series t, and the vertical axis is the Hsb size, normalized to the interval [−1, 1].

local oscillations than for slow global oscillations, and it recovers to
pre-seizure levels after a seizure. As a result, changing strong local
oscillations and slow global oscillations in the functional network

may be a pathogenic mechanism that leads to cognitive impairment.
In contrast, the interictal phase is associated with a decrease in the
flexibility of both strong local oscillations and slow global oscillations.
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We assume that not only is there cognitive impairment during
seizures but also a general divergence between the configuration of
the patient’s network’s functional structure and the course of cognitive
activity in healthy individuals.

3.2. New network oscillation dynamic
reconfiguration discoveries may be
relevant to cognitive impairment
pathophysiology

Hsb changes in the form of the distribution of peak nuclear
density may be a sign of cognitive impairment caused by seizures.
To further validate our conclusion, we investigated the dynamics of
strong local oscillations against slow global oscillations throughout
various seizure phases for each patient. Figure 5 displays the seizure
periods in the Hsb kernel density distribution results for each of the
three patients. This study demonstrates a high degree of similarity
across state transitions, showing that the dynamic hierarchy of
oscillatory reorganization of brain networks varies considerably. The
states are divided into four groups corresponding to Figure 5’s four
colors.

During the interictal phase (Figure 5, first column), the peaks
were single-peaked or equally distributed, showing normal cognitive
function and the ability to transition between local strong and
slow global oscillations. During the pre-ictal phase, the distribution
of strong local oscillations and slow global oscillations showed
a bimodal pattern with independent peaks, suggesting reduced
switching flexibility and good cognitive condition by epileptic
waves (Figure 5, second column). Immediately after and most
notably during the seizure period, the network was significantly
biased toward strong local oscillations, exhibiting a single-peaked
concentration pattern and accumulating negative values, suggesting
almost complete cognitive loss of the brain during seizures (Figure 5,
third column). Cognitive activity returned to normal in the late
seizure phase, when strong local oscillations reverted to a bimodal
pattern or uniform distribution with slow global oscillations, similar
to the interictal phase (Figure 5, fourth column).

In contrast, the oscillatory patterns of the functional network are
often diffused and distributed in states of strong local oscillations
and weak global oscillations. Subsequently, seizures cause them
to be concentrated in hyper-intense strong local oscillations
states, gradually dispersed following the seizure. The increased
concentration of network oscillatory patterns during seizures may
be substantially responsible for the start of cognitive impairment
associated with epilepsy. However, a fascinating phenomenon was
discovered: this decrease in regularity was not absolute. In addition,
the peak distribution of network oscillation patterns for a particular
patient during a specific seizure period was random. However, seizure
variability is not entirely random since the overall trend of attack
change remained consistent between patients. Because of differences
in seizure intensity, duration, and brain network regions, the impact
of these specificities on the results is insignificant.

In order to highlight how changes in the state of strong local
oscillation and slow global oscillation vary between patient episodes,
we estimated the change in the balance state between local strong
and slow global oscillations at the peak for eight patients. The x-axis
coordinate value of the Hsb distribution’s maximum density (blue
dashed line in Figure 6) was drastically decreased and restored

not only after a seizure but also happened many times. This
analysis suggests that seizures cause a significant increase in the
number of strong local oscillations in large-scale brain networks and
that the inhibitory influence of slow global oscillations on strong
local oscillations has almost completely disappeared at this time.
However, after a seizure, protective mechanisms in the brain may
prevent the loss of cognitive overload. The observed pattern of rapid
increases followed by declines in concentration was commonly seen
in patients, validating the generalizability of the concentration as
mentioned above fluctuations. Again, based on patient-specificity, it
is worthwhile to investigate that the indicated characteristics vary in
time of commencement and degree of severity and may occur during
either phase of the episode.

3.3. Pathological mechanisms that prevent
cognitive loss: The oscillatory
reconfiguration of networks at various
sizes

Given that high levels of strong local oscillations are expected
throughout a vast network of distinct patients, we can also
anticipate that network features will not limit these measures.
To assess this, we also identified smaller, more specialized (non-
epileptogenic) local networks for each patient. According to clinical
case reports, each local (non)epileptogenic network included 64 loci
with (non)epileptiform discharges during the interictal and ictal
phases. In addition, Hsb plunge intervals and the exact time and
number of high-level, locally intense oscillations were evaluated.

Figure 7 demonstrates that despite variations in the size and
type of the patient’s functional brain networks, the sudden interval
of Hsb of each patient is the same, and the number of high-level
localized strong oscillations is identical or varies by one. Notably, the
sudden interval of Hsb was more frequent and more prolonged in the
localized epileptogenic network. Thus, whereas seizures considerably
impact the interplay between strong local oscillations and slow global
oscillations within the localized epileptogenic network, high levels
of strong local oscillations do not significantly impair cognitive
performance within the brain network.

Let us consider the emergence of high levels of locally strong
oscillations to represent an extreme cognitive state. It makes sense to
consider the relationship between the period during which high levels
of locally strong oscillations emerge and when they become clinically
apparent. We discovered that the moment of creation of high-level,
local, strong oscillations was random among the various patients and
network types examined in this research (Figure 7). In principle,
the onset of high-level strong local oscillations should correspond
with the clinically characterized onset of a seizure or the number
six. However, high-level local oscillations are more prevalent during
the interictal or pre-ictal phase and less commonly during the late
phase. Therefore, can high-level strong local oscillations be utilized
as a biomarker to identify seizures, and is this information clinically
relevant? Cognitive impairment brought on by high-level strong local
oscillations before seizures? This needs additional investigation.

Few research has compared local non-epileptogenic networks
with epileptogenic networks, another original and novel aspect of our
study. First, we discovered that seizures also impact the local non-
epileptogenic brain network. Although seizures are far less common
in this network than in the localized epileptogenic network, this
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FIGURE 4

Fitted curves of the change in strong local oscillations versus global slow oscillation metrics for patient 1. In each subplot, the green (yellow) curve
represents the global (local) epilepsy network, the red dashed line represents the onset time, the horizontal axis represents the time series t, and the
vertical axis represents the Hsb size, normalized to [−1, 1]. Dramatic swings vary from those of healthy people and are modified by time. (top) the
variation of patient 1’s local strong oscillations Hse over time; (middle) the change of patient 1’s global slow oscillation index Hin over time; and (bottom)
the variation of patient 1’s sub-stable equilibrium index Hsb between strong local and slow global oscillations over time.

FIGURE 5

Distribution of Hsb kernel density of the large-scale network in patients 1, 6, and 9 at different periods of seizures. To further examine the distribution of
peak density changes, we intercepted four segments with the same data points from the time series of Hsb, indicating interictal, pre-ictal, seizure, and
post-ictal phases, corresponding to the four colors from left to right in the figure. kernel density charts for various simultaneous seizure periods for
patients 1, patient 6, and patient 9. In each subplot, the x-axis indicates the magnitude of the normalized Hsb value, the y-axis represents the density
magnitude, and the y-axis labels reflect a time for a particular patient.

network is likely to be more intense. Second, periods with high levels
of strong local oscillations in the local non-epileptogenic network
were much closer to those in the global network (Figure 7). In
conclusion, our findings indicate that networks of varying sizes
exhibit significant levels of robust local oscillations during epileptic
seizures. In response to the severe oscillatory reconfiguration of large-
scale brain networks, the brain often develops pathological protective
mechanisms against cognitive impairment.

4. Discussion

Quantitative evaluation of oscillatory reorganization is now
restricted to the oscillatory frequency range. Understanding how this
research significantly advanced network oscillatory recombination
influences and contributed to seizure-induced cognitive impairment.
The oscillatory reconfiguration of a network comprises both strong
local oscillation and slow global oscillation, as well as the inhibitory
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FIGURE 6

A statistical line chart of the maximal Hsb nucleus density for seizure durations in eight epileptic individuals. On average, we subdivided each seizure
phase into two sections and chose two interictal intervals to examine. Specifically, the x-axis values of each subplot represent several seizure periods:
0–2 for the interictal period 1, 2–4 for the interictal period 2, 4–6 for the pre-ictal period, 6–8 for the seizure period, and 9–10 for the post-ictal period.
In addition, we counted the peaks in the Hsb nucleus density distribution plot during each phase and recorded the Hsb values corresponding to the peaks
together with the density values to create this line graph. The patient number is the title of each subplot, the blue dashed line represents the magnitude
of the maximum density of Hsb values for each time interval, as measured by the left y-axis, and the solid red line represents the maximum density value
for each time interval, as measured by the right y-axis.

and facilitative influences between them. In addition, we analyzed
particular changes in oscillatory reconfiguration at various seizure
periods and network limitation sizes.

Numerous studies have studied the relationship between
oscillations and cognitive impairment. However, there are few
theoretical investigations on the impact of network oscillations on
epilepsy-induced cognitive impairment. Our experimental findings
on network oscillations are consistent with earlier research. During
wakefulness, the human brain reaches a critical condition and
produces many transient α oscillations in global synchronization
(Kim and Lee, 2020). Nevertheless, different brain disturbances
(such as sleep, anesthesia, and trauma) may lead the brain to
depart from the critical state (Hutt et al., 2018). This supports
our hypothesis that, during the resting state, the brain is in
a metastable balance between local strong and slow global
oscillations and that seizures may disturb this balance. Another
investigation has shown intermittent discharges contribute to
cognitive impairment or epileptogenesis (Staley et al., 2005).
Moreover, this investigation revealed that psychopathically elevated
band θ connectivity was related to a greater incidence of seizures
(Ibrahim et al., 2013). This may indicate that significantly amplified
strong local oscillations may be a marker for seizures and
a trigger for the onset of cognitive impairment in epileptic
patients.

Our findings imply that slow global oscillations aid cognitive
recovery after seizures, which is the outcome of a brain-protective

mechanism. In addition, the degree of substantial enhancement
of strong local oscillations was significantly greater in the local
epileptogenic network than in the large-scale network, and the
frequency and number of occurrences of substantial enhancement
of strong local oscillations were more similar to those in the local
non-epileptogenic network, which may be another manifestation of
a brain protective mechanism. Slow oscillatory synchronization has
been shown to contribute to functional connections across widely
dispersed neuronal populations (Llinás et al., 2005). It has been
discovered that abnormal slow-wave activity occurs in the brain
after seizures marked by impaired consciousness (Yang et al., 2012).
These findings are comparable to those we inferred for slow global
oscillations.

The specificity of oscillatory recombination in various epileptic
patients at different periods is of interest to us. Furthermore, several
research might support our findings. For instance, the strength of
network connections may be connected to individual variations in
cognitive function, and spontaneous oscillatory activity may explain
the diversity of task-evoked responses (Boly et al., 2008; Lewis et al.,
2009). Additionally, exceptional results on local non-epileptogenic
networks have been well supported by previous research. In the
kainite mouse model of hippocampal epilepsy, it was shown that
the rapid ripples indicative of epileptic symptoms is not localized to
the lesion, despite being predominant in the lesion (Sheybani et al.,
2018, 2019). Specifically, it has been shown that the time of spike
appearance may connect with various cognitive impairment degrees
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FIGURE 7

Distribution of neural network sizes in nine epilepsy patients. (A) The Hsb plunge interval for each network size is formed by the highest and lowest values
of the blue curve in each subplot of Figure 6, which corresponds to the length of each bar. The y-axis value corresponding to the bottom of each bar on
the graph is the blue curve, which represents the most negligible value of Hsb, while the top represents the highest value of Hsb. The x-axis represents
the patient number, and the y-axis measures the interval maximums and minimums with the interval lengths. (B) Periods during which high-intensity
oscillations occur in networks of various sizes, namely, the most significant decrease followed by a rebound in each subplot of Figure 6’s blue dashed
line. In the graph, the three colors reflect the three network types, the x-axis represents the patient number, and the y-axis denotes the precise time
during which the steepest drop occurred, numbered as in Figure 6 to represent separate seizure episodes. (C) The frequency of high-intensity
oscillations in the various networks, mainly the frequency of the blue dash’s descent and subsequent rebound in each subplot of Figure 6. The x-axis
represents the number of patients, while the y-axis displays the frequency.

and kinds (Fonseca et al., 2007). This also verifies the variability of the
onset of substantial increases in localized slow oscillations.

It has been demonstrated that the physical process of oscillatory
steady-state reverberation generates eigenvectors and eigenvalues
of a system to quantify the eigenvalues implied in the geometry
of external objects and their spectral representations in order to
generate metrics and perform more accurate covariant inversion
transformations (Jolliffe and Cadima, 2016). Moreover, similarly
inside the CNS (Central Nervous System), complex eigenvalues
and complex eigenvectors might indicate the contrast between
covariant sensory and inverted motion vector representations of
external geometry, which compose the system’s functional geometry
(Pellionisz and Llinas, 1985). Our theoretical analysis then applies
more practically to complex eigenvalues and complex eigenvectors.
However, few studies provide a precise geometric understanding of
complex eigenvalues and complex eigenvectors in high-dimensional
spaces. As a result, we need to find an exact expression for the
quantization of rotation angles in these spaces, which necessitates
additional research.

Neurobiological systems that allow language processing are
distinguished by the bidirectional flow of information in directed
networks (Schoffelen et al., 2017). Graph-theoretic analysis of
directed connection estimates more precisely detects the dynamic
connectivity of functional networks in actual epileptic brains
than undirected functional connectivity estimates (Dehaene and
Changeux, 1997), creating new avenues for human connect omics.
Sadly, however, current studies are more based on the role of
Markov blankets on in- and out-degree, multivariate non-parametric
dynamic Granger causality with directed transfer functions to build
directed weighted networks (Lewis et al., 2009; Horvát et al., 2016;

Zafeiriou et al., 2020). Next, graph-theoretic analysis techniques,
such as typical path length, global efficiency, local efficiency, and
clustering coefficients (Rentzeperis and van Leeuwen, 2020; Friston
et al., 2021; Qin et al., 2022), were applied to the network. It is
pleasant to observe that our analysis of directed networks utilizing
the eigenmodal technique is relatively novel. However, we have
yet to devote much effort to enhancing the eigenmodal technique
to accurately represent the properties and dynamics of directed
weighted networks. Our team will likely develop more efficient
approaches and novel, generalizable findings in the future.

Nevertheless, there are still some limitations to consider when
interpreting our results. For instance, we should have considered
the correlation between centrality and node strength. It has been
demonstrated that metrics capturing network node correlations can
correctly identify motion-related regions in the pre-central and post-
central gyri as critical network components and prove the expected
hemispheric asymmetry (Frässle et al., 2021). Due to the private
nature of the epilepsy patient data, the quantity of data in this
research was inadequate to verify the generalizability of the results;
hence, future attempts will focus on examining the commonality
of network oscillatory reconfiguration using data from more public
databases. Second, the current work lacks simulations of kinetic
models to understand further the pathophysiological mechanisms
behind epileptic seizures’ cognitive impairment.

The search for the underlying mechanisms of seizure-induced
cognitive impairment has been a focal issue to which our study
contributes to some extent. In addition, the game interaction between
the network’s strong local and slow global oscillations offers a novel
method to consider the above difficulties. Their combination is
a significant contribution to the study of brain research, which
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might aid in detecting and treating brain illnesses. A deeper and
more specific study of network oscillatory reorganization might be
generalized to studying multiple brain disorders.

5. Conclusion

In conclusion, we investigate the dynamic reorganization of
network oscillations, including significant enhancement of strong
local oscillations during seizures, disruption of the metastable
balance between local strong and slow global oscillations, and
changes in the peak oscillation pattern during different periods of
seizures. All of these may be potential mechanisms for cognitive
impairment caused by seizures. In contrast, enhancing slow global
oscillations after seizures may be a significant indicator of cognitive
recovery. Significantly less dramatic than in the local epileptogenic
network, the substantial enhancement of strong local oscillations
in the global network occurred at periods and times more similar
to those in the local non-epileptogenic network. This may be a
manifestation of a brain protection mechanism. This study provides
an excellent opportunity to characterize better seizure-induced
cognitive impairment and its possible underlying mechanisms,
which may help guide early clinical assessment and treatment
aimed at preventing neuropsychological impairment in various
dynamic brain function networks in epileptic patients. In addition,
it offers a solid foundation for future study on weighted directed
functional networks.
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