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Introduction: Resting-state brain network with physiological and pathological

basis has always been the ideal data for intelligent diagnosis of major depression

disease (MDD). Brain networks are divided into low-order networks and high-

order networks. Most of the studies only use a single-level network to classify

while ignoring that the brain works cooperatively with different levels of

networks. This study hopes to find out whether varying levels of networks will

provide complementary information in the process of intelligent diagnosis and

what impact will be made on the final classification results by combining the

characteristics of different networks.

Methods: Our data are from the REST-meta-MDD project. After the screening,

1,160 subjects from ten sites were included in this study (597 MDD and 563 normal

controls). For each subject, we constructed three different levels of networks

according to the brain atlas: the traditional low-order network based on Pearson’s

correlation (low-order functional connectivity, LOFC), the high-order network

based on topographical profile similarity (topographical information-based high-

order functional connectivity, tHOFC) and the associated network between them

(aHOFC). Two sample t-test is used for feature selection, and then features

from different sources are fused. Finally, the classifier is trained by a multi-layer

perceptron or support vector machine. The performance of the classifier was

evaluated using the leave-one-site cross-validation method.

Results: The classification ability of LOFC is the highest among the three

networks. The classification accuracy of the three networks combined is similar to

the LOFC network. These are seven features chosen in all networks. In the aHOFC

classification, six features were selected in each round but not seen in other

classifications. In the tHOFC classification, five features were selected in each

round but were unique. These new features have crucial pathological significance

and are essential supplements to LOFC.

Conclusion: A high-order network can provide auxiliary information for low-

order networks but cannot improve classification accuracy.

KEYWORDS

multi-layer brain function network, major depression disease (MDD), intelligent
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1. Introduction

In recent years, because neuroimaging can directly provide
in vivo brain function and structure information, more and more
people have begun to use machine learning technology to extract
imaging markers for intelligent diagnosis of major depression
disease (MDD) (Gao et al., 2018). However, most of the studies are
data-driven, and neither the data selection nor the interpretation
of the results pays attention to the histopathological basis of
MDD. Despite years of efforts, the pathological and physiological
mechanism of MDD itself is still unclear. Many autopsy studies
have shown that the density of global glial cells in emotion-related
brain regions is decreased in depressed patients (O’Leary and
Mechawar, 2021) [as shown in Figure 1: (Cotter et al., 2001)]. The
glial cells provide metabolic and regulatory support to neurons,
in which astrocytes are responsible for increasing the number of
mature and functional synapses (Pannasch et al., 2011). The neural
circuit pathways of the brain depend not only on neurons but
also on glial cells that significantly affect structural and functional
connections (Fields et al., 2015). The latest findings showed a strong
correlation between the brain’s microscopic neural circuits and the
macroscopic fMRI-based resting-state functional network (Kahali
et al., 2021). Therefore, we have reason to believe that the resting-
state functional network carrying pathological features is one of the
ideal data for the intelligent diagnosis of MDD.

As we all know, the human brain network is composed of
different subnets. The whole brain supports functional separation
and integration, presenting the so-called small-world attribute
(Bassett and Bullmore, 2006), and different hierarchical subnets
complete information collection and processing. The medium
and low-level systems are responsible for collecting information,
and the high-level systems are accountable for integrating and
abstracting information. The human brain can change the
collection and synthesis of information by adjusting the mental
state. For example, the level of attention can change perception,
information collection, and synthesis (Keller et al., 2019). Based
on this neuropsychological mechanism, someone has developed a
high-order functional connectivity (HOFC) network specially used
to provide high-level information in the brain network (Zhang
et al., 2016). A study showed that HOFC could improve the
differences between groups, better capture individual differences,
improve the modularity of the brain network, and provide
supplementary information for the traditional low-order functional
connectivity (LOFC) network. The results showed that multi-
layer features extracted from different levels of networks could
more accurately identify mild cognitive impairment (Zhang et al.,
2016), even early mild cognitive impairment (Zhang et al.,
2017). Therefore, we would like to know whether combining
the characteristics of different brain networks can provide more
abundant information and higher accuracy for the intelligent
diagnosis of MDD.

We use a multicenter, extensive sample data to test our
hypothesis in this study. First, we constructed three types of
networks: 1. LOFC; 2. topographical information-based high-order
functional connectivity [tHOFC (Zhang et al., 2016)] 3. associated
HOFC [aHOFC (Zhang et al., 2017)]. Then two samples t-test is
used to extract the features, and the multi-layer features are fused.
Finally, MDD is classified by using a multi-layer perceptron (MLP)

or support vector machine (SVM) training classifier. The whole
experimental flow is shown in Figure 2.

2. Materials and methods

2.1. Subjects

All data in this study are from the REST-meta-MDD project.
The brain imaging data of 1,300 depressed patients and 1,128
healthy controls through 25 research groups in 17 hospitals in
China were collected in this project (Yan et al., 2019). We further
screened the data to meet the needs of this study. For detailed
methods, please refer to our previous paper (Long et al., 2022). In
simple terms, it is to remove data whose repetition time is not 2.0;
Delete the data of subjects with time series of 0; Finally, each site’s
data is tested for gender and age matching, and the unmatched sites
are deleted. This means that the data of all sites in this study have
passed the age and gender matching test. In the end, data from 10
sites (1,160 subjects) were included in this study. Table 1 shows
the subject information. For more details, please refer to Yan et al.
(2019).

Three types of networks are constructed in this study: 1. LOFC,
2. tHOFC, 3. aHOFC. To make the results more universal, we
chose the most widely used anatomical automatic labeling (AAL)
(Tzourio-Mazoyer et al., 2002) as a brain atlas.

2.2. Data pre-processing

The data preprocessing was performed by DPARSF. Global
signal regression was performed on all data. The time series were
extracted according to the AAL brain atlas, and then the average
time series of each brain region was calculated. Please refer to the
literature for the detailed data preprocess (Yan et al., 2019).

2.3. Definition of brain network

All networks in this study were generated by the BrainNetClass
Toolkit (Zhou et al., 2020). To distinguish HOFC, we call Pearson-
based functional connectivity (FC) as LOFC, defined as follows:
the brain is divided into n regions of interest (ROI) according to
the brain atlas. The ith ROI can be expressed as a vector xi =
[x1i, x2i, . . . , xTi]′ ∈ RT (’indicates transposition), the whole brain
signal can be expressed by matrix X = [x1, x2, . . . , xN ] ∈ RT×N .
The network was expressed as a weighted graph W ∈ RN×N . Each
element in the matrix is a Pearson correlation (PC) between two
brain regions. The PC-derived function network is usually used as
a benchmark for comparison with other advanced methods. The
formula is as follows:

FCij =

∑T
t=1 (xi (t)− xi)(xj (t)− xj)√∑T

t=1 (xi (t)− xi)2
√∑T

t=1 (xj (t)− xj)2
(1)

tHOFC takes the FC between each ROI and all other ROIs as
the first-order feature and then calculates the PC between them
based on the first-order feature. The obtained coefficient is the
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FIGURE 1

Glial cells and neurons in layer 6 of the anterior cingulate cortex. C1–C3 were control subjects (male, 44 years old), and D1–D3 were patients with
major depression (female, 52 years old). Patients with major depression had fewer glial cells and smaller neurons (Nissl staining; bar, 12 µm).

FIGURE 2

Flow chart of the study.

HOFC based on the connection topology attribute. The formula is
as follows:

tHOFCij =

∑
k (wik − wi.)(wjk − wj.)√∑

k (wik − wi.)2
√∑

k (wjk − wj.)2
(2)

Among wi. = {wik|k ∈ N, k 6= i},i, j, k = 1, 2, . . . ,N, k 6= i, j.
Since LOFC is used as the first-order feature instead of the bold
time-series signal in the tHOFC calculation, the result is essentially
different from that of LOFC. Studies have shown that tHOFC can
provide supplementary information for conventional LOFC and
help reveal the differences between subjects with mild cognitive
impairment (MCI) and normal controls (Zhang et al., 2016, 2019).

Associated high-order functional connectivity is defined based
on the mutual relationship between the topological attributes of
tHOFC and LOFC, and the calculation method is similar to FC
and tHOFC (Eq. 3). It measures the functional correlation between
layers (the lower layer and the higher layer). It is a supplement
to the information contained in LOFC and tHOFC. Some studies
showed that combining these three networks can further improve
the diagnostic accuracy of MCI (Zhang et al., 2017). Theoretically,
unlike LOFC and tHOFC, the aHOFC matrix is not symmetric,
and the self-connection is not 1. However, we find that the upper
and lower triangles are highly related. Therefore, to simplify the
calculation, we change the aHOFC into a symmetric matrix by
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W← (W + W∧’) / 2 (Zhou et al., 2020).

aHOFCij =

∑
k (tHOFCik − tHOFCi.)(wjk − wj.)√∑

k (tHOFCik − tHOFCi.)2
√∑

k (wjk − wj.)2
(3)

2.4. Feature selection

As shown in the upper left corner of Figure 3, the brain
network constructed based on fMRI is a symmetric matrix
(size:116× 116). The upper triangle part is compressed into a one-
dimensional vector to form initial features (1 × 6670). Too many
indistinguishable features will adversely affect the classification
results and reduce the robustness of the model. This study used
a two-sample t-test to choose the features with discrimination.
For learning, the reduced dimension features are sent to the
classifier. For the multi-network joint classification, different
features produced from three networks are connected to form a
vector, the multi-layer feature (Long et al., 2012), and then put
into the classifier for training. To ensure the model’s generalization
performance, we adopt leave-one-site cross-validation (LOSCV).

2.5. Classifier

This study uses two types of mathematical models to construct
classifiers: deep learning and support vector machine. The first
is the linear support vector machine (SVM). SVM is the most
commonly used classification method and has achieved good
results on small data sets (Gao et al., 2018). The second is deep
learning models. As the classification tasks become more and more
complex and the amount of data increases, more complex deep
learning models are used for the intelligent diagnosis of MDD. MLP
is a typical deep learning model.

The MLP classifier is based on domain-adversarial training of
neural networks (DANN). The selected features are sent to the
MLP for learning. Changing the size of the convolution weight
matrix can achieve the implicit dimensionality reduction of the
data in the upper layer, and the generated data is used as the input
of the next layer.

The DANN model is implemented based on Pytorch and uses
the adam optimizer to train the network model. The learning rate is
0.001. The network is divided into three parts: feature extractor (the
first part), label predictor (the second part), and domain classifier
(the third part). The details are shown in Figure 3. They use
the adversarial relationship between the feature extractor and the
domain classifier to mix source and target domain samples in a
specific space. After the feature extractor, domain classifier, and
label predictor are all trained, the source domain and target domain
can be mixed and classified.

The second and third sub-networks are feedforward networks
with the same structure. They contain two fully connected

TABLE 1 Subject information.

Number 1,160 Number of sites 10

Male 434 Female 726

MDD 597 Normal controls 563

convolutional layers and transfer or update feature information
through batch normalization (BN), rectification linear unit (ReLU),
and Dropout (BN-ReLU-Dropout = 0.5). In parameter information
transmission, the number of hidden layer nodes in each layer is
0.5 times the number of hidden layer nodes in the previous layer.
Finally, the classification result is obtained through the sigmoid
function. The lower part has a particular process called a gradient
reversal layer (GRL) which multiplies the error transmitted to this
layer by a negative number -λ so that the training objectives of
the network before and after GRL will be opposite to achieve the
effect of confrontation. The error of the whole network is generated
by supervised source domain learning error (Ly) and unsupervised
target domain learning error (Ld), both of which are calculated by
binary cross entropy loss (BCELoss). Weighted BCEloss solves the
class imbalance problem with the super parameter Wc, where c is
the class index, defined as (Eqs 4–6):

L =
1

Nall

Nall∑
n=1

(

c∑
c=1

WcE(yn,c, y′n,c) (4)

Wc =
e1/Nc∑C
c=1 e1/Nc

(5)

E
(
yn,c, ŷn,c

)
= −

(
yn,clogŷn,c

)
+
(
1− yn,c

)
log

(
1− ŷn,c

)
(6)

where L is the weighted BCELoss, Nc is the sample numbers of class
c, Nsall, and C are the total numbers of samples and classes, and
E(Ync,Ŷnc) represents the BCELoss for the label truth Ync and the
predicted probability Ŷnc.

The random gradient descent optimizer uses the loss gradient
calculated by backpropagation to update the network parameters.
After many experiments, the GRL is placed between the feature
extraction network and the domain classification network. The
error transmitted to this layer is multiplied by a negative number-
λ. The network training objectives before and after GRL are
opposite to achieve the effect of confrontation.

3. Results

Although the three networks represent different meanings, a
single feature in each network is the FC between two brain regions
(HOFC or LOFC). There are seven features selected in each round
of the three networks (p < 0.01). In the aHOFC classification, 26
features were selected in each round, six of which were not seen
in other networks and were all related to the cerebellum. In the
tHOFC classification, 36 features were selected in each round, five
unique, with the highest number of FC between the cerebellum
and the temporal lobe. In general, the cerebellum appears most
frequently, which indicates that the cerebellum plays a crucial role
in the pathological changes of MDD. The changes in the cerebellum
and default mode network (DMN), occipital lobe, and frontal lobe
can also distinguish MDD from ordinary people. See Figure 4 and
Table 2 for more details.

In this experiment, two p-values were selected for feature
selection (p < 0.01 and p < 0.05). When p < 0.05, using
SVM as a classifier can achieve a classification accuracy of
60.25. The classification ability of different levels of networks
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FIGURE 3

The domain-adversarial training of neural networks.

FIGURE 4

Features selected for networks. The whole brain was divided into six subnets marked with different colors: (1) DMN; (2) attention network; (3) visual
network; (4) subcortical network; (5) cerebellum. The brain networks were visualized with the BrainNet Viewer (Xia et al., 2013); see Table 2 for
abbreviations of brain regions on the map.

TABLE 2 Features selected for networks.

Network Functional connectivity

ALL (ACG.L, FFG.R) (LING.L, STG.L)(LING.R, STG.L) (LING.L,
STG.R) (THA.R, CRBL7b.L) (CRBLCrus1.R, Vermis3)

aHOFC (PreCG.R, CRBL3.R) (SPG.R, CRBL9.R) (SOG.R, CRBL9.R)
(MTG.L, Vermis12) (CRBL9.L, Vermis6) (CRBLCrus2.L, Vermis10)

tHOFC (ACG.L, HES.L) (TPOmin.R, CRBL10.L) (HES.L, Vermis3)
(SOG.R, Vermis9) (TPOmin.R, Vermis9)

R, right; L, left; ACG, anterior cingulate and paracingulate gyrus; FFG, fusiform gyrus; LING,
lingual gyrus; STG, superior temporal gyrus; THA, thalamus; CRBLCrus1, cerebellum crus 1;
PreCG, precentral gyrus; CRBL3, cerebellum superior 3; SPG, superior parietal gyrus;
CRBL9, cerebellum inferior 9; SOG, superior occipital gyrus; MTG.L, middle temporal gyrus;
CRBLCrus2, cerebellum crus 2;HES, Heschl gyrus; TPOmin, temporal pole, middle temporal
gyrus; CRBL10, cerebellum inferior 10. ALL shows the features selected in each round of the
three networks; aHOFC showed the unique features chosen in each round of the aHOFC;
tHOFC showed the unique features selected in each round of the tHOFC.

is LOFC > HOFC (P < 0.05). The test results in Figure 5
show no statistical difference between the classification efficiency
of LOFC and the combined networks (P > 0.05), indicating

that the other two networks do not increase the classification
ability. The classification results are similar based on aHOFC and
tHOFC networks, but both are worse than multi-layer network
classification. The choice of classifier (SVM or DANN) does no
effect accuracy. During feature selection, p-value selection (0.01
or 0.05) has no effect on classification results. When the classifier
is SVM, and feature selection is p < 0.05, the classification effect
is better than that of DANN (p < 0.01). Epoch’s best results are
generally higher than the best test results, which suggests that we
still need to find the best time to stop searching for the optimal
solution during training. See Figure 5 and Table 3 for detailed
results.

4. Discussion

To the best of our knowledge, this is the first time to use
deep learning technology to realize MDD automatic classification
in combination with a multi-layer network (Rahaman et al., 2020;
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FIGURE 5

Classification accuracy comparison. aHOFC: all classification results based on aHOFC; tHOFC: all classification results based on tHOFC; LOFC: all
classification results based on LOFC; Combined: classification result of three network features fusion. DANN (p < 0.01): using DANN as a classifier,
the p-value of feature selection is 0.01; SVM (p < 0.05): using SVM as the classifier, the p-value of feature selection is 0.05. The inequalities represent
statistical differences between the two groups of data.

TABLE 3 Average Classification accuracy.

DANN (test) SVM DANN (best_test)

p < 0.01 p < 0.05 p < 0.01 p < 0.05 p < 0.01 p < 0.05

tHOFC 52.22± 3.77 53.64± 8.59 53.64± 4.47 55.44± 9.49 60.49± 6.91 60.12± 6.79

aHOFC 50.59± 4.68 52.89± 6.75 49.94± 5.09 52.33± 6.82 57.91± 5.77 60.53± 5.24

LOFC 55.66± 5.89 57.83± 5.28 59.00± 7.26 60.25± 5.86 63.86± 6.84 62.49± 7.74

Combined 54.02± 7.29 58.36± 3.27 59.14± 3.07 59.38± 5.28 60.62± 7.50 61.93± 7.95

DANN (test): classification result of domain-adversarial training of neural networks when the training accuracy is the highest. SVM, support vector machine; DANN (best_test), the highest
accuracy with each epoch using domain-adversarial training of neural networks; combined, connect the features selected by the three networks and then classify; Unit is the percentage (%).

Zhang et al., 2021; Chen et al., 2022). The results show that the
classification performance of low-order networks is higher than
that of high-order networks. The aHOFC and tHOFC can provide
new information for LOFC, but integration cannot improve
classification performance.

Studies have shown that tHOFC (Zhang et al., 2016) and
aHOFC (Zhang et al., 2017) are beneficial supplements to LOFC.
This study proves this again. For example, we found that the
cerebellar-cingulate gyrus is the most discriminative feature in the
aHOFC network, which may reflect the disorder of the cerebellar-
cortical-limbic circuit in MDD patients, leading to emotional
and cognitive impairment. This result is consistent with previous
studies (Lai and Wu, 2014). However, this FC does not appear in
the LOFC network, which indicates that HOFC can provide other
important information for LOFC.

We combine multiple networks at different levels for
classification, but the classification ability of integrated features is
similar to that of individual parts. It is possible that the simplicity
of the feature fusion method is the cause of this issue. Future
research needs to design more sophisticated ways to fuse features,
stimulating the advantages of multi-level network features and
improving classification performance. Previous studies have found
that the classification efficiency of HOFC is higher than that of

LOFC (Yan et al., 2019). However, these results did not appear in
this study. The following reasons may cause this: (1) The sample
size is different. This experiment is based on multicenter large
data samples and is tested separately on an independent test set.
Previous studies were based on small samples; and (2) Different
disease types. This study is to classify MDD, and prior studies have
classified Alzheimer’s disease (AD). Although they are both mental
diseases and may have some common pathological features, the
two conditions differ. The results of AD may not be generalized
to MDD. It also suggests that future research should develop more
robust and generalized network models to classify neuropsychiatric
diseases.

The classification accuracy of this study is low, and most of the
classification accuracy is below 60%. There are two main reasons
for this situation: (1) To ensure our conclusions’ robustness and the
classifier’s generalization, we use big data from 10 sites. Different
machine models, scanning parameters, and equipment status will
reduce the accuracy of multi-site data classification. Therefore, the
low accuracy is also reasonable. (2) Our cross-validation method
adopts LOSCV. We train the model by extracting data from
other research groups and classifying brand-new data. Although
this can ensure the classifier ‘s generalization, it reduces the
accuracy of the results.
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Another significant contribution of this study was selecting FCs
that genuinely represent the pathological changes of MDD. Our
results indicated that the FC changes between the cerebellum and
occipital lobe were the most distinguishing features. Studies have
shown that the MDD group demonstrated decreased cerebellar–
cerebral FC with the prefrontal lobe and DMN and increased FC
with visual recognition network (lingual gyrus, middle occipital
gyrus, and fusiform) (Guo et al., 2013). This enhancement has
been typically viewed as either a compensatory reallocation (Cabeza
et al., 2002; Grady et al., 2005) or dedifferentiation (Logan et al.,
2002) which the increased FC between the cerebellum and the
visual recognition network may compensate for the decrease in the
cerebellar–cerebral FC (Liu et al., 2012). Our results indicated that
the FC alteration was likely to be used to identify MDD.

This study has many limitations. First, we chose MLP as
the classifier. Since we use network data, the recently emerged
graph neural network is suitable for processing such data. Future
research should use more robust models for MDD classification.
Secondly, we only used fMRI data in this study. Clinical features
and gene information are also crucial for the classification of MDD.
Future research should integrate these data into the classification
framework to improve accuracy. Thirdly, there is no difference
between the classification results of SVM and MLP. This may be
because our sample size is not large compared with the database like
ImageNet. As the sample size gradually increases, DP will become
more and more competent for this classification in the future.

5. Conclusion

This study wants to know whether the integration of three
different levels of networks can improve the performance of MDD
intelligent diagnosis. Experimental results show that combining
different layers of networks cannot improve classification
accuracy, but higher-order networks can provide new features
for classification.
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