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Recent changes in cannabis accessibility have provided adjunct therapies 
for patients across numerous disease states and highlights the urgency in 
understanding how cannabinoids and the endocannabinoid (EC) system interact 
with other physiological structures. The EC system plays a critical and modulatory 
role in respiratory homeostasis and pulmonary functionality. Respiratory control 
begins in the brainstem without peripheral input, and coordinates the preBötzinger 
complex, a component of the ventral respiratory group that interacts with the 
dorsal respiratory group to synchronize burstlet activity and drive inspiration. An 
additional rhythm generator: the retrotrapezoid nucleus/parafacial respiratory 
group drives active expiration during conditions of exercise or high CO2. 
Combined with the feedback information from the periphery: through chemo- 
and baroreceptors including the carotid bodies, the cranial nerves, stretch of the 
diaphragm and intercostal muscles, lung tissue, and immune cells, and the cranial 
nerves, our respiratory system can fine tune motor outputs that ensure we have 
the oxygen necessary to survive and can expel the CO2 waste we produce, and 
every aspect of this process can be influenced by the EC system. The expansion in 
cannabis access and potential therapeutic benefits, it is essential that investigations 
continue to uncover the underpinnings and mechanistic workings of the EC 
system. It is imperative to understand the impact cannabis, and exogenous 
cannabinoids have on these physiological systems, and how some of these 
compounds can mitigate respiratory depression when combined with opioids or 
other medicinal therapies. This review highlights the respiratory system from the 
perspective of central versus peripheral respiratory functionality and how these 
behaviors can be  influenced by the EC system. This review will summarize the 
literature available on organic and synthetic cannabinoids in breathing and how 
that has shaped our understanding of the role of the EC system in respiratory 
homeostasis. Finally, we  look at some potential future therapeutic applications 
the EC system has to offer for the treatment of respiratory diseases and a possible 
role in expanding the safety profile of opioid therapies while preventing future 
opioid overdose fatalities that result from respiratory arrest or persistent apnea.
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1. Introduction

A functioning respiratory system is critical to survival (Prabhakar and Semenza, 2015; 
Agrawal and Mabalirajan, 2016) and preserved across many species. The role of the 
endocannabinoid (EC) system in respiratory homeostasis remains to be fully elucidated. The 
infancy of our understanding of the interactions of the EC system and respiratory physiology 
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should not equal an assumed lack of influence over each other. Recent 
studies have shown that administration of a cannabinoid2 receptor 
(CB2R) inverse agonist (Wiese et  al., 2020) or a brain penetrant 
cannabinoid1 receptor agonist (CB1R; Wiese et al., 2021) induced 
respiratory depression (Wiese et al., 2021) – suggesting a tonic role of 
the CB2R and CB1R in modulation of respiratory functionality. The EC 
system has repeatedly been shown to play a holistic regulatory role in 
many other activities, from experiencing pleasure, to cognitive 
abilities, and even in the perception of pain (Gardner and Vorel, 1998), 
making it no surprise that the EC system is also involved in respiratory 
behavior. It is well established that cannabinoids from the cannabis 
plant act on our EC system, lending to the discovery of the EC system 
itself (Gaoni and Mechoulam, 1964). To date all but three states in the 
US participate in some form of legal cannabis access (Control CfD, 
2017), and a recent Gallup poll showed that ~12% of US adults report 
consistently smoking cannabis (Hrynowski, 2019). Researchers have 
long been working to understand the impact of cannabis on the body 
as well as in combination with other medication therapies, including 
opioids (Epstein and Preston, 2015; Hurd et al., 2015; Jicha et al., 2015; 
Manini et al., 2015; Mayet et al., 2015; Hrynowski, 2019). While some 
observational studies have found conflicting results (Ghasemiesfe 
et al., 2018; Darke et al., 2019), studies since have been able to delineate 
some of the changes cannabis smoke can have on the body, such as 
upper lobe emphysematous changes (Gates et al., 2014), hyperinflation 
(Hancox et al., 2022), bronchiolitis (Gates et al., 2014), alveolar cell 
hyperplasia with atypia and fibrosis (Darke et  al., 2019), sputum 
production and increased cough (Ghasemiesfe et al., 2018). It is worth 
stating that this was seen with traditional combustion delivery 
methods, as opposed to other routes of cannabis administration, and 
no evidence to date suggests cannabis smoke leads to chronic 
obstructive pulmonary disease like tobacco smoke does (Owen et al., 
2014). But these changes alone do not paint the full picture of the role 
the EC system has in respiratory functionality. With the increasing 
number of people utilizing cannabis and cannabinoids on their own 
or as an adjunct to other treatments (Mauro et al., 2019; Goodwin 
et al., 2021), especially in combination with analgesics, it is imperative 
to understand how the EC system and cannabinoids influence our 
respiratory system.

This review will explore cannabinoids and the EC system in the 
context of respiratory regulation, highlighting CB1R and CB2R 
influence in the context of central versus peripheral activation, 
followed by the effects of organic and synthetic cannabinoids on 
breathing. A summary of cannabinoids effects on breathing is laid out 
in Figure 1. While additional research is available on cannabinoid 
tolerance (Deng et al., 2015; Bradford and Bradford, 2016; Bradford 
et al., 2018; Wiese and Wilson-Poe, 2018; Soliman et al., 2021) or sex 
differences (De Fonseca et al., 1994; Craft et al., 2013; Channappanavar 
et al., 2017; Cooper and Craft, 2018; Gargaglioni et al., 2019; Silver and 
Hur, 2020; Albrechet-Souza et al., 2021; Boullon et al., 2021; Levine 
et al., 2021; Silveyra et al., 2021; Llorente-Berzal et al., 2022; Simone 
et al., 2022) could affect breathing, they are outside the scope of this 
review. We will discuss future possible therapeutic applications for 
treatment of respiratory diseases as well as a possible role in preventing 
future opioid overdose fatalities that result from respiratory arrest or 
persistent apnea.

The respiratory system is made up of two main components, a 
reflexive and cognitive component. The reflexive component is always 
at work; meticulously monitoring carbon dioxide (CO2) levels, pH 

changes, and expelling waste 24/7 without any conscious thought or 
input (Guyenet, 2011; Ogoh, 2019). The other component is the 
cognitive side. The reflexive component can be overridden and altered 
by a conscious choice to intervene such as when engaging in breathing 
exercises, holding ones’ breath, or smoking of a substance (Evans et al., 
1999; Mckay et al., 2003; Butler, 2007; Raux et al., 2007). It is these 
intentional altered inhales that aid the gas exchange of inhaled 
compounds from the lungs into the bloodstream, such as cannabis or 
other inhalants The effects felt through inhalation are almost 
immediate thanks to the efficiency of this fine-tuned respiratory 
system (Hickey, 2020). The most common route of cannabis and 
synthetic cannabinoid (SC) consumption is through inhalation, 
making it vital to public safety that we understand the effects these 
compounds have on lung tissue and function, as well as how our 
endogenous cannabinoids influence our respiratory behavior for 
future therapeutic discovery.

2. Central and peripheral respiratory 
influence of cannabinoids and the 
endocannabinoid system

2.1. Cannabinoids and the 
endocannabinoid system

The EC system is highly integrated in multiple organ systems of 
the brain and body, and involved in multiple ways in all homeostatic 
regulation (Evans et al., 1999; Mckay et al., 2003; Butler, 2007; Raux 
et al., 2007; Guyenet, 2011; Soliman et al., 2021). Both cannabinoid 
receptors, CB1R and CB2R, have varying distributions in the body, 
purporting different roles between the two. Within the central nervous 
system (CNS) CB1R are primarily localized within the CNS on 
presynaptic cells for inhibitory feedback to the cell (Ghasemiesfe et al., 
2018), as well as some non-neural tissue. CB2Rs are involved in 
inflammation and immunology in the periphery, as well as the CNS, 
where they are highly expressed in immune cells (Galiègue et al., 
1995) and microglia (Schmöle et al., 2015) on the CNS, regulating 
immune functions (Soliman et  al., 2021). With the ubiquitous 
distribution of cannabinoid receptors within the CNS, especially the 
CB1R, it is no surprise that the EC system plays a direct role in fine 
tuning the process of breathing and can be manipulated by exogenous 
or endogenous cannabinoids. Locations of known EC system 
influence are shown in Figure 2. While drug administration through 
inhalation is fast and effective, cannabinoids have been shown to 
influence respiratory rate through other routes of administration 
(Ryberg et al., 2007; Webster and Schmidt, 2019), as well as offering a 
more personalized treatment plan for patients who do not tolerate 
inhalation, or an alternative to traditional combustion based methods 
of drug delivery. While reports of direct CNS administration of the 
dual CB1/CB2R agonist, WIN 55212-2, produced respiratory 
depression (Pfitzer et al., 2004), imagining studies for cannabinoid 
receptors have been inconsistent in confirming receptor presence and 
exact concentration levels in brainstem respiratory nuclei (Ryberg 
et al., 2007; Huxtable et al., 2010; Lorea-Hernandez et al., 2016).

The most studied and well understood EC lipids are anandamide 
(AEA), a partial agonist, and 2-arachidonoylglycerol (2-AG), a full 
agonist (Soliman et al., 2021), at both CB1R and CB2R. Both ligands 
are produced on demand in the postsynaptic cell for retrograde 
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regulation of presynaptic activity and glial cell function. Endogenous 
cannabinoid ligands, AEA and 2-AG, are synthesized intracellularly 
(Matias et al., 2002), further supporting a critical role of the EC system 
in the homeostatic process. Cannabinoids and EC lipids are not the 
only active compounds to consider about this system, as some of their 
metabolites, like 2-arachidonoyglycerol ether (Levine et al., 2021), 
have also been shown to activate and modulate CB1R and CB2R 
(Turcotte et al., 2016). Other endogenous molecules have been shown 
to activate CB1R and CB2R, such as oleamide, N-oleoyl dopamine, 
N-arachidonoyl-dopamine, O-arachidonoyl-ethanolamine, noladin, 
and virodhamine, just to name a few (Porter et al., 2002; Ralevic, 2003; 
Bradshaw and Walker, 2005); for review of EC metabolites see 
(Pertwee, 1997; Bradshaw and Walker, 2005; Turcotte et al., 2016). All 
of these lipids predominantly target the CB1R and CB2R, but have been 
shown to bind to other targets such as orphan receptors; GPCR 
GPR-55 (Ryberg et al., 2007; Turcotte et al., 2016), GPR18 (McHugh 
et  al., 2012), GPR110 (Lee et  al., 2016), GPR119 (Brown, 2007) 
transient receptor potential channels (TRP; De Petrocellis et al., 2012), 
and peroxisome proliferator-activated receptors (PPARs; Brown, 2007; 
Bozkurt, 2019). Orphan GPCRs which respond to cannabinoid 
ligands have emerged as putative cannabinoid receptors. While 
cannabinoids have been shown to bind to these GPCRs and ion 
channels, their effect on breathing have yet to be fully elucidated.

Both CB1R and CB2R are GPCRs that negatively couple to adenylyl 
cyclase, activate potassium (K+) channels, and inhibit calcium influx to 
hyperpolarize the cell and attenuate vesicular release (Schmid et al., 2003; 
Yoshihara et al., 2004; De Petrocellis et al., 2012; Jinwala and Gupta, 2012; 
Gamage et al., 2018; Bozkurt, 2019). CB1R and CB2R also stimulate the 

mitogen-activated protein kinase (MAPK) pathway (Carroll et al., 2012; 
Jinwala and Gupta, 2012), potentially explaining how this system 
communicates to recruit necessary support cells to regulate neuronal 
behavior. Specifically, agonism of CB1Rs activates the MAPK pathway, 
impacting cell transcription, translation, motility, shape, proliferation, 
and differentiation from the resulting phosphorylation of nuclear 
transcription factors, and that can cause CB1R desensitization and 
internalization if prolonged (Carroll et al., 2012; Jinwala and Gupta, 
2012). For a list of receptors and location see table 1 by Bozkurt (2019) 
review (Bozkurt, 2019). Given the wide-spread distribution of CB1R and 
CB2Rs, understanding their contributions to respiratory control can 
be evaluated by peripheral versus central contributions.

CB1R activation in the periphery is involved in the functional 
reactivity of the airways through stimulation that inhibits the 
contraction of airway smooth muscle via acetylcholine inhibition 
from cholinergic nerves (Bozkurt, 2019). The CB1Rs are found to 
couple to Gαi that can lead to GIRK coupling similar to mu opioid 
receptors (MOR), hyperpolarizing the neurons (Pertwee et al., 2010; 
Merighi et al., 2012) to reduce respiratory rate (Doherty et al., 1983; 
Schmid et al., 2003; Alon and Saint-Fleur, 2017) yet, unlike that of 
opioids, lack the ability to cause a persistent apnea. This is thought to 
be due to MORs found both pre- and post synaptically (Alon and 
Saint-Fleur, 2017; Cohen and Weinstein, 2018) producing additional 
inhibitory feedback while CB1Rs are predominantly found 
presynaptically (Vanderah, 2007; Tree et al., 2010). Additionally, the 
ability to track and observe our oxygen (O2) saturation and respiratory 
rate appear to be a CB1R driven effect, yet whether the CB1R effect is 
peripherally or centrally mediated remains to be uncovered.

FIGURE 1

Effects of pharmacologically targeting central or peripheral CB1 and CB2 receptors on respiratory function. Respiratory outcomes are represented by 
their mechanism of action; with CB1 selective affinity to the left and CB2 selective affinity to the right. Outcomes are also represented with peripherally 
mediated outcomes along the bottom and centrally, or systemic outcomes, along the top.
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Literature has also shown CB2Rs enhance the release of anti-
inflammatory factors, as well as modulate respiratory drive 
(Komorowska-Müller and Schmöle, 2020). Complimentary 
qRT-PCR assay confirmed heavy populations of CB2Rs in the 
preBötzinger complex (pBc; Schmöle et al., 2015; Wiese et al., 2020); 
unpublished immunohistochemistry assays revealed an abundance 
of CB2Rs co-localized with Iba1, not GFAP, suggesting their location 
to be on microglia and not astrocytes (unpublished data, Largent-
Milnes lab) aligning with prior reports. Activated microglia decrease 
the amplitude of nearby neuron action potentials, including those of 
the pBc (Camacho-Hernández et al., 2019) suggesting a possible 
protective mechanism for CB2R agonists to inhibit activated 
microglia. CB2R have also been found on multiple types of immune 
cells, including white blood cells, B lymphocytes, natural killer cells 
(Fernández-Ruiz et al., 2007), polymorphonuclear leukocytes such 
as eosinophils (Oka et al., 2004; Chouinard et al., 2011, 2013) and 
other monocytes (Galiègue et  al., 1995). They are implicated in 
inflammatory responses of the periphery and CNS, acting through 
sensory nerves (Ogoh, 2019). The predominant cell type expressing 
CB2R are B lymphocytes (Fernández-Ruiz et al., 2007), with the level 
of expression contingent on the type and strength of the stimuli 
(Muller et al., 2018). Robust localization of CB2R in immune cells 
may purport a role for immunosuppression. Studies across several 
disease states have shown the role of cannabinoids in 
immunosuppression through induction of apoptosis, inhibition of 

cell proliferation, inhibition of the production of cyto- and 
chemokines, reduce cytokine activation and T cell proliferation, as 
well as induction of regulatory T lymphocytes. Antagonists of the 
CB2R have shown to prevent THC-induced apoptosis (Fernández-
Ruiz et  al., 2007), while antagonism of the CB1R failed to show 
similar results (Malfait et  al., 2000; Croxford and Miller, 2003) 
further highlighting the immunoprotective effects of the CB2R 
(Fernández-Ruiz et al., 2007). Chronic inflammatory respiratory 
conditions, such as allergic asthma, recruit eosinophils to the 
airways in response (Bozkurt, 2019). These densely packed white 
blood cells with CB2Rs that respond to such inflammatory conditions 
further suggest a homeostatic role of the EC system in respiratory 
function and warrants continued investigations of ways to 
manipulate this mechanism therapeutically for people with 
inflammatory respiratory conditions.

2.2. Central respiratory control and the 
endocannabinoid system

Inspiratory drive comes from the central pattern generator (CPG) 
in the brainstem via the preBötzinger Complex (pBc), a nucleus 
located in the ventral lateral medulla and part of the ventral respiratory 
group. The pBc interacts with the dorsal respiratory group and the 
central termini of the hypoglossal and vagal nerves to generate 

FIGURE 2

CB1/CB2 receptor distribution and current understanding of their role in respiratory function. Dots in the brain represent centrally mediated effects, 
dots in the lungs and abdomen represent peripherally mediated effects. Dot size corresponds to concentration levels of the receptor within the region.
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respiratory rhythm (Del Negro et al., 2018; Varga et al., 2020) In the 
dorsal region of the pons, also known as the pneumotaxic center, the 
parabrachial nucleus, containing Kölliker-Fuse nucleus, provides tonic 
excitatory inputs to the pBc to provide smooth transitions from 
inspiration to expiration by inhibiting the rhythmic burstlet 
conversion to motor output bursts arising from the pBc (Varga et al., 
2019). The dorsal respiratory group receives inputs from the apneustic 
center in the lower pons, as well as feedback from the periphery to 
inhibit expiration and allow for inspiration to, again, occur. The 
stretch mechanoreceptors from the lungs, diaphragm, and intercostal 
muscles (Del Negro et al., 2018; Webster and Schmidt, 2019; Varga 
et al., 2020), as well as inputs from chemoreceptors and baroreceptors 
of the carotid bodies and aortic arch, all relay this feedback to the 
nucleus tractus solitarius, heavily populated with CB1Rs (Glass et al., 
1997), and the dorsal respiratory group, for modulation of respiratory 
rate. Additional feedback is provided by the vagal and glossopharyngeal 
nerves to the nucleus tractus solitarius about O2, CO2, and pH levels 
from lung mechanoreceptors and peripheral chemoreceptors to 
further refine the necessary burstlets to maintain O2 levels for 
cell survival.

The pneumotaxic center inhibits the pBc and apneustic center, 
while the apneustic center promotes activity of the pBc. The pBc then 
sends signals to inhibit the pneumotaxic center, moving the tongue 
out of the way via the hypoglossal nerve during inspiration (Ghali, 
2019). The nucleus ambiguous controls the pharynx, larynx, and soft 
palate during inspiration, while the nucleus retroambiguus sends 
signals to the diaphragm and intercostal muscles in response to 
inspiration and expiration. While cannabinoid receptors were not 
traditionally thought to exist in respiratory nuclei, recent studies have 
confirmed their presence in the pBc (Wiese et al., 2020), as well as 
neighboring regions controlling motor output has been well 
established (Glass et al., 1997).

The other CPG, is known as the retrotrapezoid nucleus 
(Eljaschewitsch et al., 2006)/parafacial (Pfitzer et al., 2004) respiratory 
group, which controls active expiration, during conditions of exercise 
or high CO2 concentrations (Janczewski and Feldman, 2006). The 
retrotrapezoid nucleus is believed to promote breathing immediately 
following birth (Shi et al., 2021) and is opioid insensitive since the 
endogenously released opioids to comfort the mother and baby during 
the birthing process (Chernick and Craig, 1982) would be detrimental 
on the opioid sensitive pBc (Gray et al., 1999), making this potentially 
opioid insensitive region an area of promise for future research into 
prevention of the deadly effects of over ingestion of opioids. Genetic 
knockout mice for selective genes that play a role in active expiration 
as early as birth (Chatonnet et al., 2007), are unable to survive 24 h 
post-delivery without administration of naloxone to maintain 
rhythmic properties of the opioid sensitive pBc (Jacquin et al., 1996).

2.2.1. PreBötzinger complex and the 
endocannabinoid system

The pBc is responsible for the synchronization of the neuronal 
burstlets that control automatic inspiration, but not expiration. The 
pBc neurons are characterized neurokinin 1 receptor (NK1) 
containing cells that are the targets of neurotransmitters such as 
substance P, GABA and glutamate. These input neurons as well as the 
pBc neurons themselves are provided support by astrocytes and 
microglia (Feldman and Del Negro, 2006; Montandon et al., 2011; 
Anderson et al., 2016; Sun et al., 2019). Substance P activation of NK1 

neurons in somatostatin-containing neurons of the pBc is reported to 
drive bursts, while Mu opioid receptors (MOR) on these same 
neurons, when activated, inhibit these same events. In addition, the 
pBc burslet activity for synchronized inspiration has been shown to 
be modulated by multiple additional receptors including CB1Rs and 
CB2Rs (Feldman and Del Negro, 2006; Montandon et  al., 2011; 
Anderson et al., 2016), purinergic receptors, TRP subtype channel 3, 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 
receptors (Jacquin et  al., 1996), N-methyl-D-aspartate (NMDA) 
receptors, developing brain homeobox protein 1 (DBX1) receptors, 
gastrin releasing peptide receptors, adenosine receptors, nicotinic 
acetylcholine receptors, and muscarinic acetylcholine receptors 
(Smith et al., 1991; Feldman and Del Negro, 2006; Montandon et al., 
2011; Anderson et al., 2016; Camacho-Hernández et al., 2019).

The pBc and other respiratory nuclei, including the Bötzinger 
complex just anterior to the pBc, and a subset of neurons in the 
ventrolateral medulla are heavily populated with MORs (Del Negro 
et  al., 2018), and NK1Rs, which are colocalized on somatostatin 
neurons within the pBc (Del Negro et  al., 2018). A fatal opioid 
overdose occurs following activation of MORs within the pBc causing 
desynchronization of burstlets, and consequently respiratory arrest or 
persistent apnea. This increase in time it takes to synchronize burstlets 
slows inspiration but has no impact on the frequency of expiration 
(Feldman and Del Negro, 2006; Sun et al., 2019), eventually resulting 
in death; this outcome from hyperpolarization following MOR 
activation can be  reversed with the opioid antagonist, naloxone 
(Montandon et al., 2011). The fact that levels of CB1Rs and CB2Rs in 
the central respiratory nuclei are less than MORs is partly due to their 
restricted expression to only presynaptic inhibition instead of pre- and 
postsynaptic inhibition like MORs, possibly explaining why no deaths 
have been reported by cannabis despite the many similarities in 
actions opioid and cannabinoid receptors share (Glass et al., 1997).

2.2.2. Support cells, the preBötzinger complex, 
and the endocannabinoid system

Glia, support cells found in the extracellular environment that are 
involved in neuronal homeostasis, include microglia and astrocytes 
(Jäkel and Dimou, 2017). Astrocytes have been shown to support this 
environment via Kir4.1 channels that regulate baseline potassium (K+) 
levels in the pBc (Neusch et al., 2006). Kir4.1 is an inwardly rectifying 
K+ channel exclusively expressed in glial cells within the CNS that 
modulates extracellular K+ homeostasis, maintains astrocyte resting 
membrane potential, and facilitates glutamate uptake (Funk et al., 
2015). Additionally, astrocytes have been well defined in supportive 
roles maintaining water and ion concentrations, blood–brain barrier 
integrity, and membership in the tripartite synapse (Jäkel and Dimou, 
2017). Astrocytes within the pBc are morphologically different 
compared to astrocytes within the brainstem by their different K+ 
channel expression patterns (Glass et al., 1997; Funk et al., 2015), 
likely reflective of their role in respiratory modulation (SheikhBahaei 
et  al., 2018). While not fully understood, studies to date suggest 
astrocytes assist in the exchange of K+ and Cl− on neighboring 
GABAergic neurons and regulate extrasynaptic glutamate 
concentrations via an exchange with cystine. It has also been shown 
that declines in this glutamate/cystine exchange can promote 
trafficking of mGLU5 receptors to the extrasynaptic membrane and 
are believed to be  directly involved in the onset of long-term 
depression. This integrated involvement of astrocytes and the behavior 
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of glutamatergic and GABAergic neurons support evidence that they 
may be actively involved in respiratory rhythm generation within the 
pBc. A certain subset of astrocytes within the pBc have demonstrated 
increased rises of calcium immediately preceding inspiratory neuronal 
firing (Okada et al., 2012). Inhibition of astrocytes has been shown to 
depress breathing in vivo (Young et al., 2005). Astrocytes in the pBc 
release ATP which under hypoxic conditions increases respiratory 
activity (Rajani et al., 2018). Though the exact role of astrocytes in the 
pBc is poorly understood, it is thought that they modulate the 
respiratory network (Funk et al., 2015).

Prior studies have shown that either the inhibition (or 
depletion) of microglia, or their activation, reduces the respiratory 
rates (Lorea-Hernandez et  al., 2016). Beyond extracellular 
homeostatic maintenance, phenotypically classified as M0, 
microglia are also critical mediators of neuroinflammation 
(Hülsmann et al., 2000; Erlichman and Leiter, 2010; Huxtable et al., 
2010) and respond quickly to small extracellular K+ changes to 
become activated (Varga et al., 2020). Once activated, phenotypically 
classified as M1, microglia mediated neuroinflammation by 
phagocytizing pathogens, recruiting inflammatory cells, and the 
production of chemokines and cytokines (Hickman et al., 2018), as 
well as upregulating adaptive immune responses (Orihuela et al., 
2016). Once the threat has dampened, the healing process begins 
via polarization into an M2 microglia phenotype, or alternative 
activation state. Here microglia begin to express growth factors and 
anti-inflammatory mediators to aid in recovery (Franco et  al., 
1988). While three distinct phenotype classification states have been 
established, it is understood that these states exist on a spectrum 
and are not an all or none classification. Microglia, when activated, 
decrease the amplitude of the action potentials in nearby neurons 
(Camacho-Hernández et al., 2019) so microglia activation in the 
pBc could have a negative impact on burstlets that reach 
burst threshold.

Further research has uncovered CB2R knockout (KO) mice to 
be  unable to fully polarize to an M2 microglia phenotype 
(Komorowska-Müller and Schmöle, 2020), further supporting the 
necessity of CB2Rs to facilitate polarization to an M2 phenotype. 
The M2 phenotype is further stratified into M2a and M2c 
activation states. Stimuli typical of these activation states have 
been shown to increase synthesis of endogenous EC ligands such 
as 2-AG and AEA further suggesting a role for the EC signaling 
system (Mecha et  al., 2015) in the M2 phenotype and anti-
inflammatory effects. Studies comparing administration of AEA 
as well as administration of a CB1/2 receptor agonist, such as WIN 
55212-2, has also shown to suppress proinflammatory cytokines 
such as IL-5 and inducible nitric oxide synthetase. Conversely, 
inhibition of CB2R in the setting of inflammation is known to 
exacerbate neuronal damage more so than CB1R inhibition 
allowing microglia to pursue a pro-inflammatory response 
(Eljaschewitsch et  al., 2006). Despite initial reports that CB2R 
expression was present only in the periphery, studies have shown 
CB2R expression in the brain in both pathological and 
nonpathological conditions (Schmöle et al., 2015). Furthermore, 
the implication of ECs producing an anti-inflammatory state 
postulates a role for ECs in respiratory homeostasis within the 
CNS (Cabral et al., 2008; Montandon et al., 2016; Varga et al., 
2020). For a review of microglia CB2Rs see (Komorowska-Müller 
and Schmöle, 2020).

2.3. Peripheral respiratory control and the 
endocannabinoid system

In the periphery, receptors and neurotransmitters work together 
to regulate sympathetic activation instead of the maintenance 
mechanisms seen in the CNS. Among the cannabinoid receptors, 
CB1R plays a role in the functional reactivity of the airways through 
stimulation that inhibits the contraction of airway smooth muscle via 
inhibition of acetylcholine from cholinergic nerves (Bozkurt, 2019). 
It is believed that AEA activation of peripheral CB1Rs is one means to 
control bronchial contractility. This control is dependent on the 
current state of the bronchial muscle. During the capsaicin-evoked 
bronchospasm, when the muscle is contracted, AEA can ease this 
contraction, likely by inhibiting prejunctional release of excitatory 
neurotransmitters and neuropeptides (Bozkurt, 2019). Alternatively, 
bronchoconstriction can be seen because of CB1R activation when the 
smooth muscle is relaxed following the removal of a constricting 
influence on the vagus nerve (Calignano et al., 2000). CB2Rs are likely 
to play a role in the mechanisms for neurogenic inflammation, acting 
through sensory nerves (Bozkurt, 2019). Chemoreceptors located on 
carotid arteries respond to changes in blood O2 levels, baroreceptors 
sense blood pressure changes, and activated pulmonary stretch 
receptors release surfactant, reducing surface tension for the transition 
to expiration (Calignano et al., 2000). These stretch receptors interact 
with chemoreceptors and baroreceptors to continuously inform the 
central respiratory centers, via the vagal and glossopharyngeal nerves, 
to maintain respiratory homeostasis (Rice et al., 1997; Calignano et al., 
2000; Niederhoffer et al., 2003; Schmid et al., 2003). ECs are produced 
and their receptors are expressed in each of these areas.

As a first line of defense, the respiratory system contains numerous 
immune cells, the abundance of those cells being alveolar macrophages 
(Adams et al., 2017) to protect us against aerosolized bacteria, viruses 
and toxins are bronchial epithelial cells, alveolar macrophages and 
dendritic cells of the lungs (Turcotte et  al., 2016). While most 
abundant in alveoli, other leukocytes express CB1Rs and CB2Rs and 
play a role in lung immunity (Turcotte et al., 2016). Recent literature 
has begun to uncover the role the EC system plays in this line of 
defense. CB1Rs and CB2Rs have been found via mRNA and proteins 
(Galiègue et al., 1995) detection in vagal afferents (Niederhoffer et al., 
2003), nerve fibers that innervate bronchioles (Calignano et al., 2000), 
and bronchiolar smooth muscle cells (Pertwee, 1997; Ständer et al., 
2005; Izzo and Sharkey, 2010; Szymaszkiewicz et al., 2018), as well as 
the peripheral termini of lung tissue (Rice et al., 1997; Calignano et al., 
2000; Niederhoffer et al., 2003; Schmid et al., 2003) and are believed 
to play a homeostatic role in bronchial contractility (Calignano et al., 
2000). This is important given that current literature has not reported 
CB1Rs and CB2Rs expression in the epithelial cells of the primary 
airway despite the presence of their mRNA being found in the human 
bronchial epithelial cell line, 16HBE14o (Turcotte et  al., 2016). 
Recently the lung tissue of patients with adenocarcinoma was utilized 
to isolate macrophages and revealed CB1Rs and CB2R mRNA and 
proteins in macrophages associated with the tumor and non-tumor 
collected samples (Staiano et al., 2016). Levels of CB2R were higher 
than CB1R in alveolar and monocyte macrophages, but they were 
found to be  functionally opposite in extracellular signal-regulated 
kinases ½ (ERK1/2) phosphorylation assays. Airway epithelial cells 
are part of that first line of defense that can identify pathogens and 
activate leukocytes in conditions of inflammation (Weitnauer et al., 
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2016) making their role and response to cannabinoids and ECs of 
great interest for future directions and potential future therapies. Thus, 
highlighting the multitude of outcomes the EC system can produce 
through different mechanisms within the respiratory defense system 
of the periphery.

The ability of the mammals to track and observe our O2 saturation 
and respiratory rate appear to also be a CB1R driven effect, but the 
mechanisms underlying these effects remain unknown. In one study 
the cannabinoid reuptake inhibitor, AM404, was administered to 
investigate the effects of the endogenous cannabinoids on breathing. 
This increase in cannabinoid availability reduced respiratory rate and 
arterial O2 saturation. This effect was completely abolished in CB1R 
KO mice (Iring et  al., 2017). While other studies have reported 
respiratory benefits from peripherally restricted CB1R agonism when 
coadministered alongside morphine (Wiese et al., 2021). These data 
lend support for further investigation of peripheral versus brain 
penetrant CB1R agonism to play different roles in respiratory 
functionality. Below we detail some of these actions in the periphery.

2.3.1. Chemoreceptors and baroreceptors and 
the endocannabinoid system

Cannabinoids may act on peripheral sites such as on 
chemoreceptors and baroreceptors. Through in-situ hybridization, 
CB1Rs have been found to have some expression in the nodose-
petrosal-jugular ganglia, superior cervical ganglia, and some sparse 
localization within the carotid body (Roy et al., 2012). Chemoreceptors 
are what sense gas and pH levels. They respond when O2 levels rise 
and fall, as well as CO2 levels. They also provide feedback on pH levels 
in the blood so alterations can be  made if necessary. Central 
chemoreceptors are located below the ventrolateral surface of the 
medulla. As arterial partial pressure of carbon dioxide (PCO2) rises, it 
diffuses across the blood brain barrier to raise the CO2 content of 
cerebrospinal fluid where it eventually hydrates to carbonic acid and 
ionizes to reduce the pH of cerebrospinal fluid. These pH sensitive 
receptors within the medulla detect this change and release 
L-glutamate (Mifflin, 1992), along with ATP, relay to the pBc to 
increase the respiratory rate in order to decrease arterial PCO2 
(Machado and Bonagamba, 2005; Braga et al., 2007). It has also been 
suggested that respiratory depression resulting from CB1R activation 
may involve peripheral arterial chemoreceptors; other studies have 
reported a protective benefit from peripheral CB1R activation (Wiese 
et al., 2021) leaving future studies to fully parse out the role of the 
peripheral CB1R. Expression of CB1R within the carotid body 
implicates a role for blood flow regulation thereby affecting respiratory 
control. Central chemoreceptors do not directly respond to partial 
pressure of oxygen (PO2), only PCO2. Peripheral chemoreceptors, on the 
other hand, which are located on carotid and aortic bodies, are 
stimulated by increased PCO2, decreased blood pH, and decreased PO2 
(Machado and Bonagamba, 2005) to alert the central respiratory 
centers of necessary alterations needed to maintain homeostasis. In 
addition, CB1Rs can act through the carotid body by forming 
heterodimers with other GPCRs present such as delta opioid receptors, 
MOR, adenosine 2A receptors, and dopamine 2 receptors (Porzionato 
et al., 2018).

Baroreceptors are rapid acting mechanoreceptors located in the 
carotid sinus and aortic arch sensing changes in arterial blood 
pressure. Previous studies imply that increases in blood pressure may 
abruptly prolong expiration in response to baroreceptor activation 

(Baekey et al., 2010). Cannabinoids may also act via a modulating role 
in the baroreceptor reflex. Activation of cannabinoid receptors in the 
nucleus of tractus solitarius (Distribution Po, n.d.; Cohen and 
Weinstein, 2018), through administration of WIN 55212-2 and 
CP 55940, elicits a baroreflex-like response through a decrease in 
arterial pressure and sympathetic inhibition, which is antagonized 
with pretreatment of the CB1R antagonist, AM281 (Baekey et  al., 
2010). An intact baroreceptor reflex was required to demonstrate the 
baroreflex-like response as sino-aortic-denervated rats demonstrated 
attenuated responses to WIN 55212-2, implicating a more modulatory 
role of cannabinoids (Durakoglugil and Orer, 2008).

Few studies have focused solely on synthetic cannabinoids (SCs) 
effects on peripheral receptors within the respiratory system, such as 
chemoreceptors and baroreceptors. Prior literature has shown 
activation of chemo- and baroreceptors can increase bronchial airway 
resistance, reducing overall respiratory functions. This has been 
explored as a possible mechanism of central CB1R stimulation to 
explain the respiratory depression seen from SCs (Alon and Saint-
Fleur, 2017).

2.3.2. Lung tissue and the endocannabinoid 
system

Cannabinoids, both exogenous and endogenous, have shown to 
have potentially therapeutic benefits due to their inhibitory effects on 
immune functions and cell recruitment in lung inflammation. 
Conversely, cannabinoids have also shown to slow respiratory 
pathogen clearance and be deleterious on lung function (Turcotte 
et al., 2016). Other conflicting findings have shown an absence of 
cannabinoid effects altogether, but many of these studies were 
conducted in naïve animals, while studies in pathological models have 
demonstrated beneficial effects from cannabinoids (De Petrocellis 
et al., 2017).

Lung tissue terminals, structural cells, and leukocytes (Turcotte 
et al., 2016) have all been shown to contain CB1Rs (Rice et al., 1997; 
Calignano et  al., 2000) and control bronchial contractility and 
function in a homeostatic role (Calignano et al., 2000). In one study, 
capsaicin-evoked bronchospasm was relaxed following a local 
administration of a CB1R agonist via inhibition of vagal input, 
suggesting CB1Rs role as a homeostatic respiratory regulator 
(Calignano et al., 2000). This promotion of homeostatic respiration 
by peripheral CB1R activation may explain how a peripherally 
restricted CB1R agonist can have a different effect than a brain 
penetrant CB1R agonist (Wiese et  al., 2020, 2021). Alveolar 
macrophages extracted from people who consume cannabis via 
combustion regularly have decreased capability to ingest/remove 
staphylococcus aureus (Baldwin et  al., 1997), produce less nitric 
oxide (Shay et al., 2003), and caused a weakened host defense through 
decreased cytokine priming (Roth et al., 2004). Following capture of 
these antigens, dendritic cells migrate to lymph nodes to pass the 
antigen to naïve T cells (Turcotte et  al., 2016). CB2Rs have been 
shown to facilitate this migration to the lymph nodes (Lu et al., 2006). 
This migration process becomes impaired following 
tetrahydrocannabinol (THC) exposure and could leave the individual 
open to impaired immune responses from pulmonary pathogens (Lu 
et al., 2006). As with the rest of the EC system, there are still future 
studies necessary to fully uncover the mechanisms by which cannabis 
consumption impacts the respiratory immune system as other data 
have found benefits from THC on the severity of acute respiratory 
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distress syndrome through alterations of lungs microbiota 
(Mohammed et al., 2020).

2.3.3. Cranial nerves and the endocannabinoid 
system

The sensory nerves of the respiratory system include the vagal, 
glossopharyngeal, phrenic, and intercostal nerves (Del Negro et al., 
2018). The vagal and glossopharyngeal nerves relay all the necessary 
information in response to peripheral respiratory actions to the 
central respiratory nuclei to make needed modifications and signal 
when to transition to the next phase in the respiratory cycle. 
Expression of CB1Rs within nuclei of the glossopharyngeal and vagal 
nerve have suggested a peripheral role in sensory and autonomic 
function for ECs (Burdyga et al., 2004; Yoshihara et al., 2004; Ye et al., 
2019). The phrenic and intercostal nerves send information from the 
diaphragm while the internal intercostal nerves relay additional 
stretch information from the intercostal muscles. These nerves bring 
in information from mechanoreceptors that sense pressure and stretch 
changes in the lungs, as well as O2 saturation, CO2 saturation, and pH 
levels via chemoreceptors all to fine tune the respiration sequence (Del 
Negro et al., 2018).

3. Organic and synthetic cannabinoids 
on breathing

The most common, and well known organic cannabinoid is Δ9-
tetrahydrocannabinol (THC), a mixed CB1R/CB2R partial agonist 
(Makriyannis, 2014; Nikas et al., 2015), that does not cause respiratory 
depression (Tree et al., 2010), and has been shown to be beneficial in 
the treatment of chronic pain, migraines, anorexia, nausea, just to 
name a few (Wills and Parker, 2016; Yuill et  al., 2017; Wiese and 
Wilson-Poe, 2018; Mohammed et  al., 2020). The experienced 
psychoactive effects seen with cannabis use are largely attributed to 
the result of THC activation on the multiple receptor targets it may 
occupy, including CB1R, CB2R, as well as GPR55 (Ryberg et al., 2007), 
GPR18 (McHugh et al., 2012), serotonin 3A (Barann et al., 2002), 
PPARγ (Vara et al., 2013), and TRP channels 2, 3, and 4 (De Petrocellis 
et al., 2011, 2012), explaining just how THC can have such a wide 
spectrum of therapeutic benefits for such a broad list of ailments, as 
well as impacts on cognitive functioning, motor movements, and 
possible immunosuppression (Vachon et al., 1976; Calignano et al., 
2000; Owen et al., 2014). Medicinal benefits of THC also appear to 
be easily modulated by other cannabinoids (LaVigne et al., 2021), for 
review see (Morales et  al., 2017), making fine tuning individual 
therapies with THC a very promising and future public health benefit. 
Multiple studies have shown in healthy volunteers and volunteers with 
chronic bronchial asthma, of minimal or moderate severity, that the 
use of THC results in bronchodilation (Lee et al., 2001; Croxford and 
Miller, 2003; Vanderah, 2007; Rieder et  al., 2010), and the 
concentrations of THC that demonstrate this protective finding are 
concentrations that do not result in central or cardiovascular effects 
(Tashkin et al., 1973, 1976; Vachon et al., 1976; Hartley et al., 1978) 
suggesting a possible peripherally driven mechanism. Conversely, 
disruption of the alveolar epithelium and vascular endothelium of any 
kind is known as an acute lung injury (Lu et al., 2006). Under these 
conditions the use of cannabinoids as a treatment option proved 
beneficial in all (Ribeiro et al., 2015; Fujii et al., 2019) but one study 

showed CBD to be  pro-inflammatory under these conditions 
(Karmaus et al., 2013).

Another common organic cannabinoid is cannabidiol (CBD). 
CBD has also shown promising effects, likely also due to the 
promiscuous affinity CBD has to multiple receptors, for review see 
(Morales et al., 2017). Studies of systemic administration have shown 
that CBD reduces the inflammation response and structural changes 
that take place during the remodeling process of asthma (Vuolo et al., 
2019), as well as stunt inflammatory parameters following acute lung 
injury (Ribeiro et al., 2015). Reductions in airway responsiveness have 
also been observed following CBD treatment (Vuolo et al., 2019). CBD 
also influences airway smooth muscle tone and reduces contractions 
caused by endogenous cannabinoids suggesting beneficial effects for 
the treatment of obstructive airway disorders (Dudášová et al., 2013). 
Furthermore, in respiratory studies, CBD was shown to prevent 
morphine-induced respiratory depression in room air but lost those 
protective effects under a CO2 challenge (Wiese et al., 2021).

Synthetic cannabinoids (SCs) are a class of cannabinoids that were 
developed by chemists to investigate and further understand the EC 
system (Pertwee, 1997; Carroll et  al., 2012; Yuill et  al., 2017; 
Szymaszkiewicz et  al., 2018). They were not designed for human 
consumption (Jinwala and Gupta, 2012), as many of these compounds 
are selective to the CB1R with an ability to cross the blood–brain 
barrier and can be dangerous (Gunderson et al., 2014), while some 
experiences have been unpleasant to the person, examples of these 
compounds being utilized by people outside the laboratory have been 
reported as case studies (AAPCC, n.d.; Gunderson et al., 2014; Tait 
et al., 2016; Alon and Saint-Fleur, 2017; Cohen and Weinstein, 2018; 
Darke et  al., 2019; Mathews et  al., 2019) and have been equally 
important in understanding the mechanisms by which the EC system 
functions (Schmid et al., 2003; Robson, 2005; Jinwala and Gupta, 
2012; Trecki et al., 2015; Adams et al., 2017; Tournebize et al., 2017; 
Ivanov et  al., 2019). An overview of these different outcomes on 
breathing can be seen in Figure 1. Preclinical and clinical studies have 
shown CB1R brain penetrant SCs to result in respiratory depression 
(Schmid et al., 2003; Jinwala and Gupta, 2012; Alon and Saint-Fleur, 
2017; Wong and Baum, 2019). Inhalation of SCs can damage 
bronchiolar epithelium and the protective surfactant layer within 
alveoli causing hypoxia and acidosis from the resulting interference in 
effective gas exchange (Pertwee et al., 2010). These results have been 
shown to influence respiratory function by increasing airway 
resistance (Alon and Saint-Fleur, 2017) and reductions in blood 
pressure and circulating noradrenaline resulting in sympathetic 
inhibition and increased vagal tone (Niederhoffer et al., 2003; Schmid 
et  al., 2003). SCs have also been shown to suppress cough and 
bronchospasms through inhibition of the excitatory effects of 
noradrenaline in the airways, which may provide an explanation for 
respiratory depression through vagal transmission (Calignano et al., 
2000). Additionally, other adverse effects have been seen with the use 
of SCs such as tachycardia, paranoia, acute kidney injury, seizures, 
nausea and vomiting, calls to poison control, and trips to the 
emergency room (Tait et al., 2016; Cohen and Weinstein, 2018; Darke 
et al., 2019; Mathews et al., 2019). If peripheral CB1Rs also assist in the 
suppression of respirations, this may be the mechanism at which they 
are able to do so (Calignano et al., 2000). Yet, other studies have found 
protective benefits from selective CB1R activation in combination with 
morphine (Wiese et al., 2021). Since many phytocannabinoids, as well 
as mixed cannabinoid agonists, also show an affinity for the CB1R but 
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do not induce respiratory depression (Wiese et  al., 2020), 
understanding how CB1R activation drives respiratory depression is 
vital to ensuring safe consumption of these opioid adjuncts.

While SCs have shown respiratory depression through CB1R 
activation in prior studies, there has not been a clear delineation as to 
whether these effects are directly a cause of central or peripheral CB1R 
activation (Pfitzer et al., 2004). The CB1R mechanism of action is 
similar to the MOR to reduce the neuron’s ability to depolarize 
(Pertwee et al., 2010; Merighi et al., 2012) and lends itself that selective, 
central CB1R activation could induce respiratory depression (Doherty 
et  al., 1983; Schmid et  al., 2003; Alon and Saint-Fleur, 2017). 
Furthermore, with only presynaptic CB1Rs, compared to MORs that 
are found on pre and postsynaptic terminals (Lopez-Moreno et al., 
2010; Scavone et  al., 2010), may explain why fatal respiratory 
depression has not been seen from central CB1R activation compared 
to MOR activation in this region. As with other potent cannabinoid 
agonists at the CB1R (Gunderson et al., 2014; Ivanov et al., 2019), SCs 
activate the MAPK pathway, impacting cell transcription, translation, 
motility, shape, proliferation, and differentiation from the resulting 
phosphorylation of nuclear transcription factors, that if prolonged, 
can cause CB1R desensitization and internalization (Carroll et al., 
2012; Jinwala and Gupta, 2012) Administration of the cannabinoid, 
WIN 55212-2, a mixed CB1R/CB2R agonist, in preclinical models has 
been shown to produce a depressed effect on respirations (Schmid 
et al., 2003; Pfitzer et al., 2004). Following the inhibition of respiratory 
depression with the administration of SR-141716, a CB1R inverse 
agonist, it was concluded that the depressive effect was a CB1R 
mediated mechanism (Pfitzer et al., 2004).

Prior literature has shown that CB1R activation reduces airway 
contraction and cholinergic induced contractions, while still providing 
an improvement of static lung elastance and reduced collagen fiber 
content helping to keep the alveoli from collapsing (Wang et al., 2016). 
However, other studies have postulated other mechanisms of the 
pulmonary pathways (Tucker et al., 2001; Akerman et al., 2007). In a 
condition of capsaicin induced cough, the endogenous cannabinoid, 
AEA, inhibited the cough response as well as the associated 
bronchoconstriction, but when administered on its own induced 
bronchoconstriction (Calignano et al., 2000). These effects were only 
reversed following the administration of the CB1R inverse agonist, 
SR-141716, suggesting a CB1R mediated effect. It is worth noting that 
AEA has been shown to activate TRPV receptors, giving pause for 
speculation that these results were completely CB1R driven (Tucker 
et al., 2001; Akerman et al., 2007).

In one study using intraesophageal HCl instillation to assess 
cannabinoid receptor inhibitory effects on the sensory nerve pathways 
involved in bronchoconstriction and airway microvascular leakage 
found administration of WIN 55212-2 (CB1/CB2 agonist) or JWH 133 
(CB2R agonist) abolished all associated neurogenic inflammation (Cui 
et al., 2007). These data support the prior literature that has found 
administration of the CB2R agonist, JWH 133, inhibits citric acid 
induced coughing (Patel et al., 2003) and main bronchi contraction 
induced by capsaicin in preclinical models (Yoshihara et al., 2004). 
These findings all suggest a role for the CB2R as a potential therapeutic 
for inflammatory respiratory conditions.

The SC, FUB-AMB, is reportedly over 80 times as potent at the 
CB1R as THC (Ivanov et al., 2019) in addition to a 9-13-fold greater 
affinity for the CB2R compared to CB1R (Gamage et  al., 2018). 
FUB-AMB was reportedly involved in multiple mass casualties and 

“zombie outbreaks” from New York to New Zealand (Adams et al., 
2017; Gamage et al., 2018; Ivanov et al., 2019). It is also possible that 
SCs have additional unknown receptor selectivity and binding affinity 
themselves, or by their metabolites (Trecki et al., 2015; Gamage et al., 
2018) with non-cannabinoid receptors (Jinwala and Gupta, 2012) 
setting the stage for an unpredictable experience. In addition to the 
unpredictability of the synthetic compound, the vehicle or carrier oil 
it is in can also have a variety of additional compounds as well. 
Everything from THC, cannabidiol (CBD), nicotine, caffeine, and 
tocopherol – a class of compounds containing vitamin E that was 
associated with multiple hospitalizations from vaping (Dresen et al., 
2010) – have been found in mixtures said to contain SCs. These 
adulterations with additional ingredients lead to misidentification of 
the substance being used by the consumer and increase the chances 
for unknown toxicities (Tofighi and Lee, 2012).

4. Therapeutic targeting of the 
endocannabinoid system

Promise with cannabinoids as a therapeutic intervention for 
respiratory ailments has also been seen as recently as with the 
COVID-19 pandemic, although with some conflicting outcomes 
(Pascual Pastor et al., 2020; Malinowska et al., 2021; Paland et al., 
2021; Beasley, 2022; Pereira et al., 2022). Recent publications have 
reported therapeutic cannabis has shown protective effects at 
preventing contracting COVID-19 (Pascual Pastor et  al., 2020; 
Malinowska et al., 2021; Pereira et al., 2022), the ease of COVID-19 
symptom severity (Pascual Pastor et al., 2020), as well as increased 
susceptibility to COVID-19 infection and exacerbation of COVID-19 
symptoms (Paland et al., 2021; Beasley, 2022; Pereira et al., 2022). 
These contradicting results further highlight the importance and need 
of further research aimed at understanding all the ways in which 
cannabis and the EC system can be utilized therapeutically, and where 
possible cultivation manipulations stand to increase the safety of 
cannabis consumption through targeted manipulations in the 
cannabinoid makeup and profiles of cultivated cannabis.

Another potential mechanism for the treatment of a vast array of 
respiratory ailments comes from the role the central CB1R plays in O2 
saturation and its impact on respiratory rate (Iring et al., 2017). This 
means pharmacological manipulations to the respiratory system 
through altered endogenous cannabinoid availability may be plausible 
treatments for respiratory conditions that involve low levels of O2 
saturation or irregular breathing patterns. Cannabinoid reuptake 
inhibitors are becoming another area of promise to increase 
endogenous cannabinoid concentrations by increasing the available 
upstream synthesizing enzymes available to produce the endogenous 
ligands (Hülsmann et al., 2000). While previous clinical trials found 
adverse effects from brain penetrant CB1R antagonists (Nguyen et al., 
2019), future drug development may hold the key to well tolerated 
central CB1R antagonists for use by humans (Lazary et al., 2011). 
Additionally, administration of synthetic cannabinoid agonists and 
antagonists offer a similar potential outcome for means of treatment 
of respiratory ailments.

Further research has begun to dive into the pharmacodynamics 
of cannabis terpenes and their analogs (LaVigne et al., 2021; Liktor-
Busa et al., 2021). With over 500 independent compounds identified 
to exist within cannabis (Rock and Parker, 2021) and more than 700 

https://doi.org/10.3389/fnins.2023.1126004
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wiese et al. 10.3389/fnins.2023.1126004

Frontiers in Neuroscience 10 frontiersin.org

cultivated varieties (Hazekamp and Fischedick, 2012) that all offer a 
unique combination of cannabinoid compounds and concentrations. 
With some of the most common compounds, CBD, THC, and beta-
caryophyllene to name a few, showing effects in conditions of pain or 
anxiety (Gertsch et al., 2008; LaVigne et al., 2021; Soliman et al., 2021), 
the full scope of outcomes and future therapeutics from specific poly-
cannabinoid compositions are only beginning to be investigated. It 
will be important to continue investigations with these cannabinoids 
individually and in conjunction with other compounds, as some 
synergistic actions are found between some cannabinoids and other 
drugs, such as opioids, that allow for reductions in necessary dosing 
to achieve pain relief (Fattore et al., 2005; Abrams et al., 2011; Scavone 
et al., 2013; Bachhuber et al., 2014; Kral et al., 2015; Kazantzis et al., 
2016; Lucas and Walsh, 2017; Maher et al., 2017; Hughes et al., 2018; 
Liang et al., 2018; Wiese and Wilson-Poe, 2018; Lake et al., 2019; 
Liktor-Busa et  al., 2021). Our current understanding of these 
compounds is promising at possible future potential therapeutic 
targets able to influence the EC system, and other systems through 
physiological agonism/antagonism modulation, such as is seen with 
cannabinoid terpenes that can directly modulate cannabinoid receptor 
activity through actions on the receptors themselves or through off 
target influence, as seen with such activity at the TRP channels or on 
the adenosine system (LaVigne et al., 2021).

Another potential area of promise is the interaction between the 
EC system and the opioid system. While the receptors of both systems 
are of the GPCR family and result in inhibition of neuronal activity 
(Bushlin et al., 2010; Quirion et al., 2020; Zhang et al., 2020), there are 
some key differences that highlight a potential point of intervention 
to reduce the negative side effects of opioids, that include the escalating 
number of fatal overdoses seen with the current overdose epidemic. 
The most notable difference is the location of receptors, specifically 
within the pBc, where the location of receptors on the pre- and 
postsynaptic neuron can completely abolish the burstlet activity of the 
pBc CPG that reflexively controls breathing (Sun et al., 2019), while 
CB1Rs are only found presynaptically, preventing complete inhibition 
of this vital respiratory nuclei (Alon and Saint-Fleur, 2017; Iring et al., 
2017; Wiese et al., 2021). Furthermore, microglial CB2Rs appear to 
have an ability to override some of this inhibition offering another 
point of intervention to prevent the fatal effects seen from over 
ingestion of opioids currently (Wiese et al., 2020).

The hyperpolarization of pBc neurons following MOR activation 
increases the extracellular K+ (Montandon et al., 2016; Varga et al., 
2020) and may sufficiently activate nearby microglia, switching from 
M0 to M1 phenotype. CB2R activation can facilitate the anti-
inflammatory effects of microglia through downstream cascade 
events. The anti-inflammatory effects of CB2R activation are regulated 
through microglial polarization (switch from M1 to M2 microglia 
phenotype), demonstrating a switch from a pro-inflammatory to an 
anti-inflammatory state (Mecha et al., 2015; Komorowska-Müller and 
Schmöle, 2020). Use of THC in multiple sclerosis has been shown to 
increase TNF-α, congruent with an anti-inflammatory state (Bradford 
and Bradford, 2016). In addition to the established modulatory role 
that microglia play in the pBc (Hülsmann et al., 2000; Erlichman and 
Leiter, 2010; Huxtable et  al., 2010), it is likely the activation of 
microglial CB2Rs is necessary for respiratory modulation and the 
physiological antagonism of MOR agonism in the pBc that would 
otherwise inhibit inspiration. Microglia are activated by opioid 
administration via toll-like4 and toll-like9 receptor agonism (de 

Oliveira et  al., 2022; Reusch et  al., 2022). Activation of microglia 
initiates proinflammatory responses as a result (Merighi et al., 2012). 
Co-administration of CB2R agonists with opioids has shown to reduce 
opioid induced proinflammatory responses (Tumati et al., 2012) and 
to be synergistic as pain therapeutics across acute, neuropathic, and 
complex pain states (Grenald et al., 2017; Yuill et al., 2017). Thus, 
selective CB2R agonism mitigation of opioid-induced respiratory 
depression by inhibiting microglial activation (Camacho-Hernández 
et  al., 2019) to resynchronize pBc neurons is plausible. Growing 
evidence suggests that glia-derived proinflammatory mediators 
enhance tolerance to the anti-nociceptive properties of MOR 
activation (Watkins et al., 2009). Antagonizing these pro-inflammatory 
mediators, such as IL-1β, IL-6 and TNF-α, attenuate the development 
of MOR induced tolerance as well as attenuation of opioid withdrawal 
induced hyperalgesia (Raghavendra et al., 2002, 2004; Cui et al., 2006) 
and may be related to the explanation of downstream effects that allow 
for CB2R mitigation of opioid induced respiratory depression. 
Moreover, endogenous CB2R ligands could create a physiological 
antagonism to opioid induced desynchronization of pBc neurons 
(Zhang et al., 2017).

Recent publications have shown an opposing role of central versus 
peripheral CB1R activation, with coadministration of the peripherally 
restricted CB1R agonist, PrNMI, and morphine, morphine-induced 
respiratory depression was completely prevented, while administration 
of the brain penetrant CB1R agonist, AM356, alongside morphine 
enhanced the already seen respiratory depression (Wiese et al., 2021). 
Conversely, administration of the brain penetrant CB2R agonist, 
AM2301, in combination with morphine was also able to prevent 
morphine induced respiratory depression, while the peripherally 
restricted CB2R agonist, AM1710, was not (Wiese et  al., 2020), 
supporting the CB2Rs ability to prevent respiratory depression to 
be completely mediated through central CB2Rs. In another study the 
administration of AM404, an EC reuptake inhibitor, in wild-type and 
CB1R KO mice uncovered the CB1R dependent manner of respiratory 
depression and arterial hypoxia, further supporting limitations of 
brain penetrant CB1R agonists and reuptake and hydrolysis inhibitors 
(Iring et al., 2017).

5. Conclusion

In this review we explored the respiratory system in the context of 
central versus peripheral control and how the EC system is currently 
known to influence that control. Next, we  reviewed the literature 
available on organic and synthetic cannabinoids effects on breathing 
and how that has shaped our understanding of the role the EC system 
has in respiratory homeostasis. Finally, we looked at some potential 
future therapeutic applications the EC system has to offer for 
treatment of respiratory diseases and a possible role in preventing 
future opioid overdose fatalities that result from respiratory arrest or 
persistent apnea.

It will be important to fully characterize the cell type and location 
within the central respiratory nuclei, as well as in the periphery if 
viable therapeutics are going to be developed. It will also be vital to 
understand dose response curves and off target binding affinity for 
other cannabinoid receptors, or even more selective agonists. 
Specifically in the case of the CB1R, as it appears to have opposed roles 
in the periphery and central nervous system. This means 
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understanding the dosing of peripherally restricted CB1R agonists to 
ensure they do not cross the blood brain barrier will also be of high 
importance for public safety since central CB1R activation enhances 
respiratory depression instead of mitigating it when administered 
alongside opioids (Wiese et  al., 2021). Additionally, with the 
similarities in the cannabinoid receptors, many ligands will spill over 
to bind the other cannabinoid receptor once the intended targets are 
all full or activate the other cannabinoid receptor in conditions of 
genetic deletions of the intended cannabinoid receptor (Wiese et al., 
2020). This is what was seen with escalating doses of CB2R agonists 
administered alongside morphine. The CB2R agonist began to leak 
over and activate central CB1Rs at the same time, causing enhanced 
respiratory depression and abolishing the protective feature of central 
CB2R activation alongside morphine. The ability to mitigate morphine 
induced respiratory depression through CB2R activation appears to 
be mediated centrally, as these effects have not been shown through 
activation of peripherally restricted CB2R. Activation of CB2R plays an 
additional role in modulating the immune system through the release 
of anti-inflammatory factors. There may also be  a role for 
immunosuppression as studies across several disease states have 
shown downstream effects of cannabinoid receptor activation to 
include induction of apoptosis, inhibition of cell proliferation, 
inhibition of cyto- and chemokine production, reduced cytokine 
activation, T cell proliferation, and induction of regulatory T 
lymphocytes. With the expansion of cannabis access, it is essential that 
investigations continue to uncover the underpinnings and mechanistic 
workings of the EC system, the impact cannabis, and exogenous 
cannabinoids have on these systems, and how some of these 
compounds can mitigate respiratory depression when combined 
with opioids.

Respiratory control is complex and begins in the brainstem 
without peripheral input (Del Negro et al., 2018). The key regions are 
coordinated through a CPG, the pBc, a component of the ventral 
respiratory group that interacts with the dorsal respiratory group to 
synchronize burstlet activity and produce inspirations (Ghali, 2019). 
An additional rhythm generator: the retrotrapezoid nucleus 
(Eljaschewitsch et al., 2006)/parafacial respiratory group drives active 
expiration during conditions of exercise or high CO2 (Janczewski and 
Feldman, 2006). Combined with the feedback information from the 
periphery: through carotid bodies, stretch of the diaphragm or 

intercostal muscles, chemo- and baroreceptors, lung tissue, immune 
cells, and the cranial nerves, our respiratory system can fine tune 
motor outputs that ensure we have the O2 necessary to survive and can 
expel the CO2 waste we produce. It is important that we understand 
all the ways we can treat and protect our respiratory system to ensure 
its ability to function for the duration of our lifetime. It is vital to 
public safety that we understand the effects these compounds have on 
lung tissue and function, as well as how our endogenous cannabinoids 
influence our respiratory behavior for future therapeutic discovery.
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Glossary

pBc preBötzinger complex

CB1R cannabinoid receptor 1

CB2R cannabinoid receptor 2

SC synthetic cannabinoid

EC endocannabinoid

CNS central nervous system

CPG central pattern generator

NK1 neurokinin-1 receptor

MOR mu opioid receptor

NMDA N-methyl-D-aspartate

DBX1 developing brain homeobox 1 receptor

PPARS peroxisome proliferator-activated receptors

K+ potassium

MAPK mitogen-activated protein kinase

AEA anandamide

2-AG 2-arachidonoylglycerol

KO knockout

ERK1/2 extracellular signal-regulated kinases ½

O2 oxygen

CO2 carbon dioxide

PO2 partial oxygen

PCO2 partial carbon dioxide

THC tetrahydrocannabinol

CBD cannabidiol

https://doi.org/10.3389/fnins.2023.1126004
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	The endocannabinoid system and breathing
	1. Introduction
	2. Central and peripheral respiratory influence of cannabinoids and the endocannabinoid system
	2.1. Cannabinoids and the endocannabinoid system
	2.2. Central respiratory control and the endocannabinoid system
	2.2.1. PreBötzinger complex and the endocannabinoid system
	2.2.2. Support cells, the preBötzinger complex, and the endocannabinoid system
	2.3. Peripheral respiratory control and the endocannabinoid system
	2.3.1. Chemoreceptors and baroreceptors and the endocannabinoid system
	2.3.2. Lung tissue and the endocannabinoid system
	2.3.3. Cranial nerves and the endocannabinoid system

	3. Organic and synthetic cannabinoids on breathing
	4. Therapeutic targeting of the endocannabinoid system
	5. Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Glossary

	References

