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Sepsis-associated encephalopathy (SAE) is an acute neurological deficit caused by

severe sepsis without signs of direct brain infection, characterized by the systemic

inflammation and disturbance of the blood–brain barrier. SAE is associated

with a poor prognosis and high mortality in patients with sepsis. Survivors

may exhibit long-term or permanent sequelae, including behavioral changes,

cognitive impairment, and decreased quality of life. Early detection of SAE can

help ameliorate long-term sequelae and reduce mortality. Half of the patients

with sepsis suffer from SAE in the intensive care unit, but its physiopathological

mechanism remains unknown. Therefore, the diagnosis of SAE remains a

challenge. The current clinical diagnosis of SAE is a diagnosis of exclusion; this

makes the process complex and time-consuming and delays early intervention

by clinicians. Furthermore, the scoring scales and laboratory indicators involved

have many problems, including insufficient specificity or sensitivity. Thus, a new

biomarker with excellent sensitivity and specificity is urgently needed to guide

the diagnosis of SAE. MicroRNAs have attracted attention as putative diagnostic

and therapeutic targets for neurodegenerative diseases. They exist in various body

fluids and are highly stable. Based on the outstanding performance of microRNAs

as biomarkers for other neurodegenerative diseases, it is reasonable to infer

that microRNAs will be excellent biomarkers for SAE. This review explores the

current diagnostic methods for sepsis-associated encephalopathy (SAE). We also

explore the role that microRNAs could play in SAE diagnosis and if they can be

used to make the SAE diagnosis faster and more specific. We believe that our

review makes a significant contribution to the literature because it summarizes

some of the important diagnostic methods for SAE, highlighting their advantages

and disadvantages in clinical use, and could benefit the field as it highlights the

potential of miRNAs as SAE diagnostic markers.
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1. Introduction

Sepsis is defined as life-threatening organ dysfunction caused
by a dysregulated host response to infection (Singer et al., 2016).
Sepsis is a critical healthcare problem, affecting tens of millions of
people worldwide each year, with one in three to one in six deaths
(Fleischmann et al., 2016; Reinhart et al., 2017; Rhee et al., 2017;
Fleischmann-Struzek et al., 2020; Rudd et al., 2020). According to
the National Institute of Health, sepsis-associated encephalopathy
(SAE) is an acute diffuse neurological deficit caused by severe sepsis
without signs of direct infection of the brain. It is characterized
by systemic inflammation, disturbance of the blood-brain barrier
(BBB), and changes in consciousness that can range from confusion
to delirium or even lead to coma induction (Ebersoldt et al., 2007).
SAE is one of the main manifestations of sepsis, which can manifest
as the first organ dysfunction and contribute to a worse prognosis
in patients with sepsis. The mortality rate increases with increasing
severity (Gofton and Young, 2012) and affects up to 70% of patients
with sepsis (Widmann and Heneka, 2014). Patients who survive
SAE may exhibit long-term or permanent sequelae, including
behavioral changes, cognitive impairment, decreased quality of life,
or premature death (Feng et al., 2019). Data suggest that SAE occurs
in 9 to 71% of cases (Sprung et al., 1990; Iacobone et al., 2009; Zhang
et al., 2012; Molnár et al., 2018) and is one of the most common
causes of encephalopathy in intensive care units (ICU) all over the
world (Bleck et al., 1993; Eidelman et al., 1996; Ely et al., 2004).
Differences in the incidence of SAE suggest that current diagnostic
criteria are limited or not easily enforceable clinically. Given the
enormous health impact of SAE, specific, accurate, and easy-to-use
new diagnostic criteria for this condition are urgently needed.

2. Current diagnostic methods

Currently, SAE is still a diagnosis of exclusion. Based on the
daily neurological assessment, when sepsis-related encephalopathy
is suspected, it is first necessary to judge the patient’s mental status
according to the rating scale and determine the manifestations
of encephalopathy, which may be mild in the early stages.
Secondly, an unabridged neurological examination is completed
and necessary auxiliary tests are conducted to assist in the diagnosis
or rule out other diagnoses. At the same time, it is essential
to exclude the interference of sedatives, direct infection of the
central nervous system, cerebrovascular disease, traumatic brain
injury, brain tumors, metabolic encephalopathy, and drug side
effects. It is also necessary to check the source of infection, obtain
appropriate culture and drug sensitivity test results, actively treat
sepsis, and give symptomatic and supportive treatment (Figure 1;
Iacobone et al., 2009).

The rest of this paper describes the universal rating scales,
auxiliary tests, and biomarkers used to diagnose SAE.

3. Rating scales

The general ward confusion assessment method (CAM) or
the confusion assessment method in the intensive care unit
(CAM-ICU) is used to assess a patient’s mental status. In their

FIGURE 1

Diagnostic procedures for sepsis-associated encephalopathy.

respective environments, multiple studies have demonstrated
that CAM and CAM-ICU exhibit excellent sensitivity and
specificity (CAM: 94–100%, 89–95%; CAM-ICU: 97–100%, 89–
100%) (Inouye et al., 1990; Ely et al., 2001a,b; Vreeswijk et al.,
2008; Wei et al., 2008; Toro et al., 2010). However, studies
have shown that CAM is most likely to miss patients with
quiet delirium (Khan et al., 2012), whereas CAM-ICU, although
research has shown that it is a good ICU delirium screening
scale, only has about 41–47% sensitivity when ICU nurses use it
(van Eijk et al., 2011).
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In ICU, sedatives are frequently used to improve the comfort
and safety of patient, aid in the synchronization of patients
with mechanical ventilation, and prevent accidental extubation
(Devlin et al., 2001; Chen et al., 2022). However, the use of sedatives
may have some side effects, such as excessive sedation leading to
inability to awaken the patient even if the sedative is stopped or
awakening accompanied by agitation, both of which will interfere
with the judgment of the patient’s mental status (Ebersoldt et al.,
2007; Van Rompaey et al., 2009; Lahariya et al., 2014; Junior
et al., 2022). Therefore, before making a judgment, the sedation
state should be evaluated through the Richmond Restlessness and
Sedation Scale (RASS), which demonstrates excellent interrater
reliability and criterion, construct, and face validity (Ely et al.,
2003). A score of 0 means that the patient is in a conscious and
natural state (Ely et al., 2003). It is generally recommended that
a scale ≥ −1 be used for neurological examination or CAM-ICU
evaluation (Ely et al., 2003; Van Rompaey et al., 2009; Lahariya et al.,
2014; Junior et al., 2022).

The Glasgow Coma Scale (GCS) is a commonly used non-
specific method to assess the degree of a coma and has been
associated with the prognosis of sepsis-related encephalopathy
(Sonneville et al., 2017). However, this study is based on the premise
that GCS is one of the diagnostic criteria, and it cannot explain the
advantages of GCS as a diagnostic method. The main limitations
of GCS are that verbal responses are not assessable in mechanically
ventilated patients and that brainstem examination is not directly
considered (Sharshar et al., 2014).

The above scoring scales are non-specific methods and can
therefore only be used for screening rather than diagnosis.

4. Neurological examination

Once the patient has altered cognition or consciousness, a
detailed neurological examination is performed. This examination
examines verbal stimuli, painful stimuli, brainstem reflexes, motor
responses, and breathing patterns. Painful stimuli can elicit focal
movements, withdrawal, postural reflexes, or unresponsiveness.
Brainstem examination includes assessment of pupils and pupillary
reactivity, spontaneous eye position and movements, vestibular-
eyelid reflex, corneal reflexes, and cough and gag reflexes (Stevens
and Bhardwaj, 2006; Sharshar et al., 2011). In deeply sedated
patients, examination of pupil size, pupillary light reflex, corneal
reflex, pain upon stimulation with a finger, ocular head response,
and cough reflex may be more beneficial (Iacobone et al., 2009).

5. Metabolic analysis

Performing a comprehensive metabolic analysis includes
a complete blood count and analyses of the blood glucose,
blood gases, electrolytes, creatinine, ammonia, and alanine
aminotransferase levels to look for other known causes of
altered mental status, such as hypovolemia, hypoglycemia, diabetic
ketoacidosis, uremic encephalopathy, hepatic encephalopathy,
hypokalemia, hypoxemia, hypercapnia, and hyperemia (Iacobone
et al., 2009; Mazeraud et al., 2020).

TABLE 1 The presentation of several biomarkers of
sepsis-associated encephalopathy.

Biomarkers Sensitivity and specificity

NT-proCNP NA, p < 0.01 (Ehler et al., 2019b)

S-100B 85.4% sensitivity, 67.2% specificity (Yao et al., 2014)

NSE 54.2% sensitivity, 82.8% specificity (Yao et al., 2014)

NF NA (R = 0.53, p = 0.045) (Ehler et al., 2017); NA
(R = 0.534, p = 0.022) (Ehler et al., 2019a)

NT-proCNP, C-type natriuretic peptide; S-100B, S100 calcium-binding protein beta subunit;
NSE, neuron-specific enolase; NF, neurofilament.

6. Electrophysiological examination

An electroencephalogram (EEG) is very sensitive in diagnosing
sepsis-related encephalopathy. Young et al. (1992) studied 69
sepsis patients, 49 of whom had some degree of encephalopathy,
classified as mild or severe. They identified five classes of gradually
progressive EEG patterns: class 1 normal EEG, class 2: excessive θ

rhythms, class 3: increased δ rhythm, class 4: triphasic, and class
5: suppression or burst suppression. Mortality in SAE is associated
with the severity of EEG abnormalities: 0% for normal EEG, 19%
for excessive θ rhythms, 36% for increased δ rhythm, 50% for
triphasic waves, and 67% for suppression or burst suppression
(Young et al., 1992). However, EEG is not highly specific, and
EEG abnormalities are also common in other neurological injuries
(Young et al., 1992; Hosokawa et al., 2014), and the use of sedatives
can also lead to abnormal EEG signals (Young et al., 1992; Purdon
et al., 2013; Akeju et al., 2014; Hosokawa et al., 2014).

Abnormal somatosensory evoked potentials (SEP) may also be
beneficial electrophysiological markers of SAE (Zauner et al., 2002;
Rosengarten et al., 2012; Hosokawa et al., 2014). Studies by Zauner
et al. (2002) revealed that subcortical and cortical SEP pathways
were impaired in 84 and 34% of all patients, respectively. In
addition, subclinical cerebral focal signs were present in 24% of the
subcortical SEP pathways and 6% of the cortical SEP pathways, but
the results were not significantly different (Zauner et al., 2002). The
advantage of SEP over EEG is that it is not affected by continuous
sedation; however, the assessment of SEP is too cumbersome and
may not be used routinely in the ICU (Zauner et al., 2002).

Despite more than 20 years of research, the role of
electrophysiological examination in the diagnosis of SAE
remains unclear, and most studies have significant limitations
(Hosokawa et al., 2014).

7. Neuroimaging

Sharshar et al. (2007) showed that an “MRI of SAE included
multiple ischemic strokes and white matter lesions at the level
of the centrum semiovale, mainly surrounding Virchow–Robin
spaces, ranging from small multiple areas to diffuse lesions, and
characterized by hyperintensity on FLAIR images. The major
lesions were also characterized by reduced signal on diffusion
isotropic images and increased apparent diffusion coefficient”
(Sharshar et al., 2007). Some patients with SAE exhibit vasogenic
edema, which may suggest an increased BBB permeability or
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decreased brain autoregulation (Sharshar et al., 2007; Piazza et al.,
2009; Polito et al., 2013).

A transcranial doppler ultrasound (TCD) has been used to
measure cerebral blood flow velocity in SAE, where the impairment
of cerebrovascular autoregulation can be founded, especially in the
preclinical phase of SAE. During the first 2 days, most patients with
severe sepsis have impaired cerebrovascular autoregulation (AR),
and impaired AR is associated with SAE. In some cases, however,
TCD did not find differences in cerebral perfusion (Schramm et al.,
2012; Pierrakos et al., 2014).

Although neuroimaging in patients with SAE has a few defining
characteristics and can be beneficial for diagnosis, its benefits
have not been confirmed by multi-center clinical studies; therefore
it is mostly used to rule out abscesses, tumors, trauma, and
cerebrovascular diseases. Neuroimaging should be as perfect as
possible in the case of focal neurological symptoms and changes
in mental status.

8. Biomarkers

NT-proCNP, S100B, NSE, and NF are biomarkers of endothelial
dysfunction, microglial activation, and brain injury with
concomitant axonal damage. Although their enhancements
help diagnose SAE (Yao et al., 2014; Ehler et al., 2017; Ehler et al.,
2019a,b; Khan et al., 2020), their sensitivity and specificity are not
enough. Moreover they have not been clinically validated by multi
centers, which limits their clinical use (Table 1).

9. Diagnostic value of microRNAs in
SAE

MicroRNAs non-coding RNAs that are about 22-nt long;
they induce mRNA degradation or repress protein translation
by binding to target messenger RNAs (mRNAs), thus playing a
role in gene silencing (Bartel, 2009; Jonas and Izaurralde, 2015;
O’Brien et al., 2018). microRNAs play significant roles in various
neurobiological processes, such as differentiation, cell proliferation,
metabolism, cell cycle regulation, and apoptosis (Nowakowski et al.,
2018).

The high degree of conservation of microRNAs determines
that a single miRNA can target multiple genes and regulate
different biological pathways (Valinezhad Orang et al., 2014).
Under pathological conditions, such as neurodegenerative diseases,
network-based patterns of gene regulation converge on distinct
biological pathways to drive disease phenotypes (Salta et al., 2016;
Wilk and Braun, 2018; Juźwik et al., 2019).

In addition, microRNAs have other advantages as biomarkers.
For example, they are present in various bodily fluids, including
blood, urine, and saliva, thus allowing relatively non-invasive
sample collection (Ciesla et al., 2011). In addition to accessibility,
microRNAs are highly stable in various body fluids and different
biological specimens and can be efficiently detected and amplified
by means of molecular biology tools such as real-time PCR or small
RNA sequencing (Mitchell et al., 2008; Ciesla et al., 2011; Enuka
et al., 2016; Beltrán-García et al., 2020). Moreover, current evidence

suggests that the BBB does not prevent the passage of microRNAs
between CSF and blood (Stoicea et al., 2016). microRNAs can enter
the blood from brain tissue through the BBB under pathological
conditions, making them potential biomarkers for central nervous
system diseases (Dalkara and Alarcon-Martinez, 2015).

Previous studies have shown that microRNAs, principal gene
regulators in different biological pathways, are closely related
to disease progression and play crucial roles in the initiation
and progression of neurodegenerative diseases as well as in
neuronal differentiation and synaptic plasticity (Lehmann et al.,
2012; Pasquinelli, 2012; Sohel, 2016; Nowakowski et al., 2018).
microRNAs, have been widely studied and can be used in the
diagnosis of Alzheimer’s Disease, Parkinson’s Disease, multiple
sclerosis, Huntington’s Disease, epilepsy, and other diseases (Junker
et al., 2011; Henshall et al., 2016; Miniarikova et al., 2018; Sadlon
et al., 2019; Doxakis, 2020; Singh and Yadav, 2020; Bazrgar et al.,
2021). Therefore, we infer that microRNAs have the potential to be
SAE biomarkers (Table 2).

Research shows that miR-370-3p levels increase in the brain and
plasma in SAE, but not in uremic encephalopathy. Overexpression
of miR-370-3p enhances sensitivity to apoptosis upon activation
by cytokines or LPS. TNF-α induces apoptosis of PC-12 neurons
by activating the expression of miR-370-3p in PC-12 neurons
(Visitchanakun et al., 2020). miR-130a-3p is upregulated in SAE.
YY1 can promote microglial M2 polarization by inhibiting miR-
130a-3p promoter activity, thereby improving SAE (Peng et al.,
2022). miR-25-3p is expressed at low levels in the cerebral cortex of
SAE mice, while microglia are overactivated. In vitro experiments
demonstrated that increasing miR-25-3p expression can attenuate
microglial activation in SAE by directly targeting TLR4 (toll-like
receptor 4) to inhibit the NLRP3/IL-1β/IL-18 axis, suggesting that
miR-25-3p plays a protective role against SAE (Luo et al., 2022).
Sepsis induced high expression of serous exosome-derived NEAT1,
which might exacerbate SAE by regulating the miR-9-5p/TFRC
and GOT1 axis to promote siderosis (Wei et al., 2022). Although
there are few microRNAs studied in SAE, it is expected that
some microRNAs in sepsis may be related to SAE, especially some
microRNAs related to inflammation.

In severe sepsis with thrombocytopenia, miR-130a is
downregulated. The mechanism is that the downregulation of
miR-130a leads to upregulation of the expression of IL-18t, which
aggravates thrombocytopenia in severe sepsis (Cui et al., 2016).
Notably, this is contrary to what Peng et al. (2022) observed in
SAE, arguably both SAE and severe sepsis with thrombocytopenia
are a more severe subtype of sepsis, and the expression of miR-130a
should be consistent, which deserves further study by future
researchers. In the study by Yao et al. (2015) miR-25 was the most
significantly altered RNA in sepsis, and the decrease of miR-25
levels correlated with the severity of sepsis, SOFA score, CRP,
and PCT levels, which is similar to the results observed by Luo
et al. (2022), Antonakos et al. (2022). Dysregulation of circulating
miR-25 has also been described in other inflammatory settings
such as periodontitis and vascular endothelial cell inflammation,
further highlighting the potential of miR-25 as a biomarker.

Microglia are generally considered as macrophages in the
central nervous system. After activation, microglia can cause
neuronal damage and even apoptosis by releasing inflammatory
mediators, reactive oxygen species, neurotransmitters, and other
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TABLE 2 Systematic table of all miRNAs and their expression levels, their correlations with SAE progression, and the mechanisms
underlying their action.

miRNAs Expression
level

Correlation Mechanism involved

miR-370-3p Middle to high Positive SUMOylation pathways: Post-translational modification processes of several cellular mechanisms
including apoptosis. Overexpression of miR-370-3p enhanced sensitivity to apoptosis upon activation
by cytokines or LPS (Visitchanakun et al., 2020).

miR-130a-3p High
Low

Positive
Negative

Overexpression of miR-130a-3p abolished the role of YY1 in promoting microglial M2 polarization
(Peng et al., 2022).
Downregulation of miR-130a leads to the upregulation of the expression of IL-18, which aggravates
thrombocytopenia in severe sepsis (Cui et al., 2016).

miR-25-3p Low Negative miR-25-3p inhibits the NLRP3/IL-1β/IL-18 axis by directly targeting TLR4, thereby attenuating
microglia activation in SAE (Yao et al., 2015; Antonakos et al., 2022; Luo et al., 2022).

miR-9-5p Low Negative miR-9-5p alleviates sepsis-induced ferroptosis by inhibiting the expression of TFRC and GOT1 in vivo
(Wei et al., 2022).

miR-155 High* Positive* miR-155 reduces the expression of SOCS1 in microglia, and SOCS1 is a key inhibitor of inflammatory
response (Guo et al., 2019).

miR-27a Low* Negative* miRNA-27a negatively modulates the inflammatory response in lipopolysaccharide-stimulated
microglia by targeting TLR4 and IRAK4 (Lv et al., 2017).

miR-210 High* Positive* miR-210 induces microglial M1 activation by targeting SIRT1, thereby reducing deacetylation of NF-κB
subunit p65 and increasing NF-κB signaling activity (Li et al., 2020).

*What we expected.

substances. Therefore, some microRNAs that play a central role in
microglia are also expected to affect the progression of SAE. miR-
155, miR-27a, and miR-210 are widely recognized as biomarkers in
sepsis, and recent studies have shown that they also play a central
role in microglial function (Huang et al., 2014; Szilágyi et al., 2019;
Osca-Verdegal et al., 2021).

miR-155 mediates LPS-induced neuroinflammation by
modulating microglia, and inhibition of miR-155 contributes
to the establishment of endotoxin tolerance. The mechanism is
that inhibition of miR-155 enhances the expression of SOCS1 in
microglia, and SOCS1 is a key inhibitor of inflammatory response
(Guo et al., 2019). Therefore, it is expected that high levels of
miR-155 will be found in SAE.

miR-27a levels rapidly decrease in microglia after LPS
stimulation, and overexpression of miR-27a significantly reduces
the production of inflammatory cytokines, such as IL-6, IL-1β,
TNF-α, and NO. miR-27a directly inhibits the expression of TLR4
and IRAK4—key adapter kinases in the TLR4/MyD88 signaling
pathway (Lv et al., 2017).

miR-210 inhibitor can effectively suppress microglia-mediated
neuroinflammation and significantly reduce HIE-induced brain
damage. miR-210 induces microglial M1 activation by targeting
SIRT1, thereby reducing deacetylation of NF-κB subunit p65 and
increasing NF-κB signaling activity (Li et al., 2020). Low levels
of miR-210 exhibit neuroprotective effects in mice with hypoxic-
ischemic encephalopathy (Ma et al., 2016; Li et al., 2020); its effect
in SAE, however, is yet to be studies.

Although, in theory, microRNAs are excellent biomarkers, they
have their disadvantages. A prominent issue is how microRNAs
recognize partially complementary sequences. Smaller microRNAs
provide a limited amount of sequence information for specificity.
Furthermore, since partial pairing between microRNAs and target
sites is usually sufficient, the range of genes that can be regulated
is relatively broad. This implies that a single miRNA can regulate

multiple mRNAs, and predicting these targets is not easy (Bartel,
2009). However, given the challenges of matching microRNAs to
specific target sequences, several methods have been developed to
identify miRNA targets, ranging from small-scale genetic studies
to biochemical approaches such as algorithmic prediction and
high-throughput sequencing to isolate target mRNAs or sequences
(Thomson et al., 2011).

10. Conclusion

In conclusion, sepsis-related encephalopathy is a complex
central nervous system injury causing long-term sequelae in
patients, resulting in a poor prognosis and lower quality of life. SAE
is still diagnosed by exclusion. Some biomarkers have been used
to assess brain dysfunction caused by sepsis, but the evidence is
insufficient, resulting in invalid clinical measurements.

As chief gene regulators, microRNAs are closely related to
disease progression. Because of their stable structure, presence in
various body fluids, and ability to pass through the BBB, they
are theoretically excellent biomarkers for diagnosis and prognosis
of central nervous system diseases. However, they have some
disadvantages. Due to the wide range of downstream targets
of microRNAs, a single miRNA can interfere with the immune
response in multiple ways and simultaneously manifest the multi-
organ damage of sepsis; therefore, some differential microRNAs
may not be attributed to SAE. If they are used for diagnosis, they
will lead to misdiagnosis, and any treatment guided by them will
bring immeasurable harm to patients. The complexity of miRNA
interactions underscores the challenge of having to take a holistic
view of the impact of miRNAs on the immune response. Thus,
we must be rigorous and cautious when identifying biomarkers,
especially with potential molecules with a wide range of targets.
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Additionally, the combined use of multiple miRNAs and/or other
biomarkers associated with sepsis may be an effective method
for diagnosing SAE because the miRNA expression profile is
not SAE-specific. Undoubtedly, the postulation of microRNAs as
biomarkers of SAE requires more research in the future, but it
will be worthwhile.
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