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The Cortical 3-Hinges Folding Pattern (i.e., 3-Hinges) is one of the brain’s

hallmarks, and it is of great reference for predicting human intelligence, diagnosing

eurological diseases and understanding the brain functional structure di�erences

among gender. Given the significant morphological variability among individuals,

it is challenging to identify 3-Hinges, but current 3-Hinges researches are mainly

based on the computationally expensive Gyral-net method. To address this

challenge, this paper aims to develop a deep network model to realize the fast

identification of 3-Hinges based on cortical morphological and structural features.

The main work includes: (1) The morphological and structural features of the

cerebral cortex are extracted to relieve the imbalance between the number of

3-Hinges and each brain image’s voxels; (2) The feature vector is constructed

with the K nearest neighbor algorithm from the extracted scattered features

of the morphological and structural features to alleviate over-fitting in training;

(3) The squeeze excitation module combined with the deep U-shaped network

structure is used to learn the correlation of the channels among the feature

vectors; (4) The functional structure roles that 3-Hinges plays between adolescent

males and females are discussed in this work. The experimental results on both

adolescent and adult MRI datasets show that the proposed model achieves better

performance in terms of time consumption. Moreover, this paper reveals that

cortical sulcus information plays a critical role in the procedure of identification,

and the cortical thickness, cortical surface area, and volume characteristics can

supplement valuable information for 3-Hinges identification to some extent.

Furthermore, there are significant structural di�erences on 3-Hinges among

adolescent gender.

KEYWORDS

cortical 3-Hinges folding pattern, cortical morphology and structure, gender di�erences,

deep learning, SE-Unet

1. Introduction

Cortical folding patterns quantify the human cerebral cortex, which is highly curled and

folded into convex gyri and concave sulci during brain development. From these patterns,

we can infer critical clues about cytoarchitecture (Van Essen, 1997; Fischl et al., 2008),

neurodevelopment (Dubois et al., 2008), brain function and cognition (Thompson et al.,

2004; Jiang et al., 2021). However, because the shapes of the gyri and the sulci are complex
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and variable across subjects, it is challenging to quantitatively

analyze the cortical folding patterns, estimate precise cross-subject

correspondences for them, and establish a mapping from them to

brain function and cognition (Fischl et al., 2008). In particular,

the location identification of the cortical folding has important

clinical reference value for the prediction of human intelligence, the

understanding of the brain functional structure (Jiang et al., 2018;

Zhang et al., 2018a), and the diagnosis of neurological diseases

(Huang et al., 2019).

Despite such difficulty, promising results have been achieved

in solving these challenging problems. For example, learning from

geological rock folding patterns analysis methods (Lisle, 1997; Li

et al., 2010) defined the conjunction region of three gyral crests as

a gyral hinge (denoted as 3-Hinges). Troubled by the formation

mechanisms of 3-Hinges, Razavi et al. (2021) constructed a

computational model of a growing brain and speculated that

axonal wiring may be one of the most important contributors

to 3-Hinges formation. The number, location, and shape of gyral

hinges were used to quantitatively analyze the folding patterns of

cerebral cortex (Nie et al., 2012; Ge et al., 2019; Huang et al., 2019).

Gyral hinges receive an increasing attention not only because of

their morphology, but also due to their importance in anatomy,

axonal wiring diagram and brain functions: (1) they have thicker

cortices (Li et al., 2010) and stronger axonal fiber connections

(Ge et al., 2018); (2) they serve as the hubs of the cortico-

cortical axonal fiber connective network (Zhang et al., 2020); and

(3) they are more involved in global functional networks than

other gyri (Zhang et al., 2020). According to recent studies, gyral

hinges were suggested to serve as the anatomical landmarks, since

corresponding gyral hinges across subjects were demonstrated to

have unique and consistent structural connection patterns and

brain function patterns (Zhang et al., 2020, 2022). In addition,

some studies found that cortical folding pattern has significant

differences among gender (Awate et al., 2010; Li et al., 2014). And

these differences from the morphological structure of the cerebral

cortex, especially the gyrus, may lead males and females to respond

differently to the same cognitive activity (Charest et al., 2013; Hirjak

et al., 2017).

Given the importance of gyral hinges, a more precise

identification method is needed. In previous research, Yu et al.

(2013) identified the gyral hinges by manual label. Chen et al.

(2014) proposed a method based on energy minimization to

identify the centroids of the gyral hinges with diffusion tensor

imaging (DTI) derived fiber connectivity. Li et al. (2017) proposed

an effective method for predicting the centroids of 3-Hinges

based on DTI data using structural connection patterns and

spatial distribution patterns. These methods significantly advanced

the identification of 3-Hinges. However, they could not be

easily generalized to the identification of 3-Hinges on large-

scale cortical folding data since intensive manual intervention

was involved. Subsequently, Chen et al. (2017) proposed a new

representation of the cortical gyri pattern, named Gyral-net, which

was automatically constructed as a gyral network. On this network,

the nodes were automatically identified as gyral hinges, which

are connected by gyral crests as edges (Chen et al., 2017; Zhang

et al., 2018b). Despite the success of this automatic method, it

takes a long time to only process the left or right brain of a

single target at a time as the watershed algorithm and the tree

marching algorithm are used such that it is hard to complete the

identification task of gyral hinges on the dataset with a large amount

of data.

Inspired by deep learning methods in many applications, Ge

et al. (2019) applied convolutional neural network (CNN) to

the cortical folding pattern recognition from functional magnetic

resonance images (fMRI) to distinguish gyral hinges from other

folding patterns. Although deep learning technique is promising

in gyral hinge identification task due to its strength in latent

feature exploration and utilization, the method in Ge et al.

(2019) needs a precise cross-modality mapping to transfer the

volumetric space of the fMRI data to the vertices on the

cortical surface in T1-weighted MRI space, so did the method

reported in Liu et al. (2022). Benefiting from the rich information

of fMRI data, their work was influential on recognition of

cortical folding pattern. However, instead of using the entire

cortical fMRI data, they manually removed some data, according

to cortical structure features. Furthermore, due to the huge

variability of fMRI signals between individuals, both carried out

their work at the individual level. In other words, a single

model was trained for each subject, which consumed a lot of

computing resources.

Therefore, this paper aims at developing a framework based

on deep network models to realize the fast identification

of cortical 3-Hinges simply from anatomic T1-weighted MRI

and exploring whether there are structural differences on 3-

Hinges among gender. The framework includes three major

steps: Firstly, the morphological and structural features of the

cerebral cortex are extracted from the reconstructed surface

of the cerebral cortex. These features are then clustered into

one feature vector per vertex using the K nearest neighbor

algorithm. Secondly, based on this feature vector, cortical 3-

Hinges folding regions are identified using a U-shaped neural

network. Thirdly, the mean shift clustering algorithm is used to

find the centroids of identified cortical 3-Hinges folding regions.

Then, structural gender differences on 3-Hinges are discussed.

The experimental results show that the proposed method can

precisely recognize the locations of 3-Hinges and reveal the most

contributive features to 3-Hinges identification, and there are

significant differences in 3-Hinges morphological structure among

adolescent gender.

2. Materials and methods

2.1. Overview

We propose a 3-Hinges locations identification algorithm

based on a deep network trained on the morphological and

structural features of the cerebral cortex. As shown in Figure 1,

the algorithm framework includes three main steps: data

preprocessing, identification of 3-Hinges regions (n is the

number of vertices, k is the result of the K nearest neighbor

algorithm, and m is the number of fusion data) and identification

of 3-Hinges centroids. These steps will be detailed in the

following subsections.
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FIGURE 1

Overview of 3-Hinges locations identification framework. (A) Data preprocessing. (B) Identification of 3-Hinges regions. (C) Identification of 3-Hinges

centroids.

FIGURE 2

The illustration of feature preprocessing. (A) Cerebral cortex surface. (B) Zoom in view. (C) The feature vector [a,b1,b2,...,b15] of the vertex a is

aggregated by the K nearest neighbor algorithm.

2.2. Data preprocessing

2.2.1. Feature extraction and preprocessing
Considering the high ratio between the number of 3-Hinges

centroids and the rest, we first use FreeSurfer (Fischl, 2012) for

extracting features from the MRI reconstructed cortex to reduce

the quantity ratio of non-3-Hinges to 3-Hinges. In this paper, we

extract the morphological and structural features such as cortical

thickness (thick), cortical surface area (area), cortical volume (vol),

average curvature (curv) and sulcus (sulc) value to avoid using

all the voxels in one brain as the input of the network model. In

addition, because there are correlations among adjacent vertices

on the cortex surface, we establish the spatial relationship between

the scattered features with the K nearest neighbor algorithm

(Cover and Hart, 1967; Pedregosa et al., 2011), and aggregate

the morphological and structural features into a feature vector.

For example, as shown in Figure 2, in our experiments, to each

vertex a on the cortex surface, 15 vertices (b1,b2,...,b15) in the
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FIGURE 3

Labeling 3-Hinges regions. (A) Extracting 2-Hinges and 3-Hinges vertices by Gyral-net algorithm. (B) Zoom in 3-Hinges. (C) Expanding 2-Hinges and

3-Hinges regions.

neighborhood of the vertex a are selected as the single input feature

experimentally.

2.2.2. 3-Hinges regions label
In order to further alleviate over-fitting in the training because

of the imbalance between the number of 3-Hinges centroids and

all the vertices of the cerebral cortex, three steps are involved in

labeling 3-Hinges vertices.

(a) Extracting 2-Hinges and 3-Hinges vertices by the Gyral-net

algorithm (the blue and the pink vertices are 2-Hinges and

3-Hinges vertices, respectively, as shown in Figure 3A. The

readers can refer to Li et al. (2017) and Chen et al. (2017) about

the detailed algorithm.

(b) Expanding 2-Hinges and 3-Hinges vertices into 3-Hinges

region. As shown in Figure 3, we expand the vertices around

the vertices generated by step (a). More specifically, two

kinds of vertices are included in 3-Hinges region as shown

in Figure 3C: i) cortex surface vertices in the spherical

neighborhood within radius R1 (empirically set to 6 mm) of

3-Hinges vertices; ii) the cortex surface vertices in the spherical

neighborhood within radius R2 (empirically set to 2 mm) of

2-Hinges vertices.

(c) Labeling 3-Hinges regions. We define the expanded

region as 3-Hinges region shown as the blue region in

Figure 3C. Each blue vertex is labeled as 1, and the rest is

labeled as 0.

2.3. 3-Hinges regional identification

2.3.1. Single feature SE-Unet network framework
In this paper, we combine the U-shaped network structure

(Ronneberger et al., 2015) and SE (Squeeze and Excitation) module

(Hu et al., 2020) to design a SE-Unet network framework for the

morphological and structural features, which are used to identify 3-

Hinges regions automatically. As shown in Figure 4, the network

framework is a symmetrical U-shaped network with two paths,

encoding (left side) and decoding (right side), and a total of 5

layers. The encoding paths consists of the repeated application

of two 3 × 3 convolutions (purple block), a SE module (yellow

block, the architecture is shown in Figure 5), and a 2 × 2 max

pooling operation with stride 2 for down sampling (green down-

arrow). At each down sampling step, we double the number of

feature channels. The decoding paths consists of an up sampling

of the feature map followed by a 2 × 2 convolution that halves

the number of feature channels (green up-arrow), skip connections

(gray right-arrow) concatenation with the corresponding feature

map from the encoding path, two 3 × 3 convolutions and a SE

module. Specifically, each convolution is followed by a layer of

batch normalization (BN) and a layer of ReLu activation function.

Meanwhile, a dropout layer is put between the convolutional layers

to alleviate over-fitting. The input data is converted to the range of

[0, 1] by maximum and minimum normalization before fed into

the first module composed of two layers of convolutional blocks

and the SE module. In addition, the softmax function is applied

before the output of the SE-Unet network. In order to facilitate

network training, the dimension of the network input is designed to

be 64× 64× 16 in our experiments. Besides, to reduce the number

of learning-parameters and time consumption, the 2D convolution

is utilized in the proposed network.

2.3.2. Multiple features fusion SE-Unet framework
For the extracted multiple feature vectors of the surface

morphology and structure of the cerebral cortex, we design a multi-

feature pre-fusion SE-Unet network framework to automatically

extract 3-Hinges regions, as shown in Figure 6. The difference

between this network structure and the single-feature SE-Unet

network framework is that each feature in the input part of the

network is first scaled by a convolutional block (including a 3 ×
3 convolution layer, a layer of batch normalization (BN) and a

layer of ReLu activation function), and then the scaled features are

concatenated before being fed into the SE-Unet network.
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FIGURE 4

The illustration of single feature SE-Unet architecture.

FIGURE 5

The architecture of the SE module.

2.4. 3-Hinges centroids identification

In order to identify the exact locations of 3-Hinges more

precisely, we utilize the mean shift algorithm (Fukunaga and

Hostetler, 1975; Comaniciu and Meer, 2002; Collins, 2003) to

cluster the centroids of 3-Hinges regions. Considering that the

algorithm does not need to pre-define the number of cluster centers

and that the number of 3-Hinges centroids is also unknown in

advance, the algorithm can directly determine the cluster centroids

based on the calculated offset mean vector.

Assuming that a certain 3-Hinges region X in the left/right

brain hemisphere is composed of the 3-dimensional coordinate

vector Xi(i = 1, 2, ..., n), i.e., X ∈ Rn×3, the mean shift vector

of Xi(i ∈ {1, 2, ..., n}) in the original mean shift vector can be

calculated by the formula (1):

Mh(Xm) =
1

K

∑

Xi∈Sh

(Xi − Xm), (1)

Where Sh is defined as the expression (Equation 2), h is the radius

of 3-Hinges spherical region, and K is the number of coordinate

vertices in 3-Hinges spherical region X.

Sh(Xm) = {y :(y− Xm)
T(y− Xm) ≤ h}. (2)

However, the original mean shift algorithm assigns the same

weight to each vertex in the region and regards them as the same

importance. In fact, the closer the vertex is to the cluster center, the

greater importance the vertex is to the cluster center. Therefore, the

kernel function G(·) and weighted coefficients w(·) are introduced
into the mean shift algorithm, and the formula (1) is modified as:

Mh(Xm) =
∑n

i=1 GH(Xi − Xm)w(Xi)(Xi − Xm)∑n
i=1 GH(Xi − Xm)w(Xi)

, (3)

Where w(Xi) ≥ 0 is the weight corresponding to the coordinate

vertexXi according to the distance betweenXi andXm.GH(Xi−Xm)
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FIGURE 6

The illustration of the multiple features SE-Unet architecture.

is obtained by the expression:

GH(Xi − Xm) = |H|
1
2GH(|H|

1
2 (Xi − Xm)),

with GH(x) = −(
1

√
2πs

e
− x2

2s2 )′, s ∈ constant,
(4)

andH is a d×d bandwidthmatrix, which can be the diagonalmatrix

H = diag[h21, ..., h
2
d
] or the proportional unit matrix H = h2I.

Considering that the later one only has one hyper-parameter h,

we choose H = h2I in the mean shift algorithm to facilitate the

identification of 3-Hinges. After simplification, our final mean shift

vector can be expressed as Equation (5):

Mh(Xm) =

∑n
i=1 GH(

Xi − Xm

h
)w(Xi)(Xi − Xm)

∑n
i=1 GH(

Xi−Xm
h

)w(Xi)
, (5)

then, the 3-Hinges centroid is updated as Xm = Xm +Mh(Xm).

3. Experimental results

In this section, we will introduce the data set, evaluation

metrics, and network parameters. At the same time, we analyze the

single feature and multiple combined features that are most relative

to 3-Hinges. We also verify the generalization of the method on

the adult data set. The code is available at https://github.com/

GuardianTree/code.

3.1. Training

We evaluated our method on T1-weighted MR images from

adolescent and adult data sets.

3.1.1. Data sets
The Adolescent MRI Data: In this study, the MRI from

the Adolescent Brain Cognitive Development (ABCD) NIMH

Data Archive (NDA) Study is used where all the subjects are

between 9 and 10. Compared with infant brains, the brain at this

age is considered to be relatively, with discriminative cortical

folding patterns. The ABCD data set has been processed in

accordance with the MRI preprocessing procedure mentioned

by Jenkinson et al. (2002), Pfefferbaum et al. (2018), and

Hagler et al. (2019). Limited by computational resources,

we randomly select 1,000 brain MRI data from ABCD NDA

Release 1.1. It is noted that the proposed method can be

applied to many datasets including the above-mentioned

datasets.

For the ABCD data set, there are approximately 330,000

vertices on the surface of the cerebral cortex of each sample. In

order to facilitate the use of deep learning method, we will unify

the features extracted from each sample to 331,776 (=64*64*81),

that is, we add the morphological and structural features of the

vertices that do not meet the requirements to 331,776 with a value

of 0. After sampling and shape transformation, the features of each

subject are divided into 81 blocks of size (64, 64, 16). Therefore,
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there are 72,900 blocks in the training set and 8,100 blocks in the

test set.

The Adult MRI data: In this experiment, the adult data set is the

1,200 data set released by the Human Connectome Project (HCP).

The HCP data set contains images of a total of 1,200 normal young

people aged 22–35. The detailed process of HCP data set parameters

can be found in the processing of Van Essen et al. (2013). In order to

verify the generalization of the adult data, 110 adults were selected

from the HCP data set (http://www.humanconnectomeproject.org/

data/).

For the HCP data set, there are approximately 360,000 vertices

on the surface of the cerebral cortex of each subject. After the same

processing as the ABCD data set, the extracted features are divided

into 90 blocks, and the final HCP data set has 9,900 blocks with the

size of (64, 64, 16).

3.2. Evaluation metrics

In this paper, three metrics are used to evaluate 3-

Hinges regions identification performance in the experiment,

i.e., Precision, Recall, and F1. In addition, in the process of

identifying the locations of 3-Hinges centroids, the prediction error

(PreE) calculated by the Euclidean distance between the predicted

centroids and the labels is used as the evaluation metric. Lh-

PreE, rh-PreE and mean-PreE represent the average values of the

prediction error of 3-Hinges centroids on the left, right, and whole

brain, respectively. The smaller the value of the PreE is, the closer

the predicted 3-Hinges centroids locations are to the true 3-Hinges

centroids locations.

3.3. Network parameters

In this experiment, we implement the SE Unet Network

with the Keras framework, where the RMSprop optimizer Wilson

et al. (2017) and Hinton et al. (2012) is used for optimization

training. The initial learning rate is set as 0.05, which is decayed

exponentially after each epoch. The batch size is set as 40, the epoch

is set as 150, the convolution kernel size is set as 3×3, and the

momentum parameter in the batch normalization layer is set as 0.6.

The activation function layer is the ReLu function, the drop layer

parameter is set as 0.2, the parameters in down-sampling and up-

sampling are both set as 2× 2. In order to obtain the true objective

maximization of 3-Hinges regions, the Dice loss is selected as the

training loss function.

3.4. 3-Hinges identification

3.4.1. Single feature result analysis
In the experiment, we first give the results of identifying 3-

Hinges regions using the baseline U-net, and list the results using

the proposed SE-Unet under different dimensionality reduction

coefficients (r), which is a hyper-parameter in the SE module.

Then, based on the recognition of 3-Hinges regions, the mean

shift clustering algorithm is used to identify the centroids of 3-

Hinges regions. As shown in Table 1, when the hyper-parameter

r is set to 24, the F1 score reaches 60.78, and the mean-pre

of the predicted 3-Hinges centroids on the entire brain of all

test set individuals is 5.56. Meanwhile, in the same experimental

environment, the time consumption of our algorithm is about 4

min, which is far less than the Gyral-net method, indicating that

our algorithm can identify the locations of 3-Hinges centroidsmore

quickly.

Besides, we report the precision, recall and F1 under the other

morphological and structural features of the cerebral cortex, such

as cortical thickness, surface area, volume, average curvature and

sulcus value, as shown in Table 2. We can see that under the

same conditions, the sulc recognition results outperform those of

other features. In addition, in the same experimental environment,

compared with the Gyral-net method, the time required for our

method is about 4min, which are far less thanGyral-netmethod. As

shown in Figure 7, we can observe that 3-Hinges regions identified

by the sulcus value feature contains more 3-Hinges vertices which

are close to the real 3-Hinges centroids. In some subjects, our

predicted results are even more accurate than the labels annotated

by Gyral-net such as those in (d-1) and (d-4) of Figure 7B.

3.4.2. Multiple features result analysis
Based on the experiment results of the single feature above, we

try to improve 3-Hinges locations identification by fusing different

features. In this section, we choose to use feature fusion in the early

stage to explore the impact of fusion features on 3-Hinges locations

identification, as shown in Table 3.

The result under the fusion of sulc+thick in 3-Hinges regions

reaches 62.54, and the mean-PreE is only 5.23 mm.With sulc+curv

the results are worse than that of a single sulc feature, which shows

that the curv feature inhibits the sulc feature from identifying

3-Hinges locations. Similar conclusions are obtained from other

feature combinations. We also get the optimal results with 3–5

features where it can be seen that more features do not improve

the recognition results significantly, although the combination

of sulc+thick+vol+area achieves better results at the cost of

more time consumption. Some visualized results predicted by

fusion of sulc feature and other structural features are shown in

Supplementary Figures S1–S4. In general, our proposed method

can predict some 3-Hinges points that are not labeled, such as a

larger version of the left brain of individual a and d, and the right

brain of individual b. Moreover, there are less 3-Hinges points,

which are more likely to be representative in the same 3-Hinges

region by using mean shift.

3.4.3. Correlation analysis with gender
We performed a correlation analysis between 3-Hinges cortical

structural features classification accuracy and the subjects’ gender,

as shown in Table 4. In 100 test subjects, there are 51 females and

49 males. In single cortical structural feature tasks, there is not a

significant correlation between 3-Hinges classification accuracy of

one cortical structural feature and gender. But compared with the

others, the result of cortical structural feature of the sulc have a
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TABLE 1 The identification results of di�erent methods.

Data Methods
3-Hinges regions (%) 3-Hinges centroids (mm) Time

(min)
Precision Recall F1

lh-

PreE

rh-

PreE

mean-

PreE

MRI Gyral-net - - - - - - 82.30

sulc
Unet+

mean shift

56.23 65.71 60.56 5.58 5.63 5.60 4.06

sulc SE_Unet+

mean shift

r = 8 55.32 67.28 60.67 5.55 5.63 5.59 4.05

r = 16 55.47 67.12 60.70 5.56 5.61 5.58 4.07

r = 24 55.74 66.93 60.78 5.52 5.60 5.56 4.06

r = 32 56.49 64.35 60.12 5.54 5.59 5.56 4.05

TABLE 2 The identification results on di�erent single features.

Data Methods
3-Hinges regions (%) 3-Hinges centroids (mm) Time

(min)
Precision Recall F1

lh-

PreE

rh-

PreE

mean-

PreE

MRI Gyral-net - - - - - - 82.30

sulc SE-Unet+

mean shift

55.74 66.93 60.78 5.52 5.60 5.56 4.06

curv 46.36 55.38 50.42 7.68 7.65 7.66 4.06

vol 47.84 55.21 51.23 6.92 6.86 6.89 4.09

area 44.60 43.49 44.01 8.46 8.46 8.45 4.07

thick 46.72 54.98 50.48 7.40 7.48 7.44 4.01

FIGURE 7

3-Hinges regions (A)/centroids (B) visualized results using di�erent features. Letters (a–d) represent di�erent individuals. Numbers (1–6) indicate

label, area, curv, sulc, thickness, and volume, respectively.
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TABLE 3 The identification results of multi-features fusion.

Data Methods
3-Hinges regions (%) 3-Hinges centroids (mm) Time

(min)
Precision Recall F1

lh-

PreE

rh-

PreE

mean-

PreE

MRI Gyral-net - - - - - - 82.30

sulc+vol SE-Unet

+mean

shift

55.91 70.33 62.21 5.26 5.25 5.25 4.08

sulc+thick 56.43 70.29 62.54 5.22 5.24 5.23 4.09

sulc+curv 50.25 74.87 59.84 5.94 5.93 5.94 4.07

sulc+area 56.13 69.30 61.91 5.52 5.51 5.51 4.09

vol+thick 49.21 56.80 52.68 6.82 6.84 6.83 4.11

vol+curv 43.97 42.70 41.80 7.37 7.33 7.35 4.15

vol+area 47.10 61.65 53.29 6.89 6.90 6.90 4.08

thick+curv 39.38 54.72 44.48 8.13 8.10 8.11 4.10

thick+area 47.71 55.78 51.30 7.49 7.47 7.48 4.13

curv+area 15.94 49.25 24.00 9.25 9.25 9.25 4.11

sulc+thick+vol 56.91 69.72 62.58 5.16 5.20 5.18 4.12

sulc+thick+area 56.59 69.23 62.15 5.21 5.22 5.21 4.11

sulc+vol+area 56.45 69.72 62.29 5.16 5.21 5.18 4.13

sulc+thick+vol+area 57.02 69.53 62.54 5.15 5.16 5.15 4.17

sulc+thick+vol+area+curv 51.70 74.02 60.35 5.55 5.65 5.60 4.32

TABLE 4 The correlation analysis between 3-Hinges regions identification accuracy and the gender in adolescents.

Data r p-value Data r p-value

sulc 0.18 0.07 sulc+curv+vol 0.20 0.05*

curv 0.10 0.33 sulc+vol+area 0.24 0.02*

vol 0.11 0.27 sulc+thick+area 0.21 0.03*

area 0.16 0.10 sulc+thick+curv 0.21 0.04*

thick 0.15 0.14 sulc+thick+vol 0.19 0.06

sulc+area 0.19 0.06 sulc+vol+area+curv 0.21 0.04*

sulc+curv 0.21 0.03* sulc+thick+area+curv 0.22 0.03*

sulc+vol 0.22 0.03* sulc+thick+vol+area 0.18 0.08

sulc+thick 0.22 0.03* sulc+thick+vol+curv 0.21 0.03*

sulc+area+curv 0.22 0.03* sulc+thick+vol+area+curv 0.25 0.01**

The females and the males are labeled as 0 and 1, respectively. ∗represents p-value < 0.05, which means general significant correlation; ∗∗represents p-value < 0.01, which means extremely

significant correlation.

closer association with gender (r = 0.18, p = 0.07). In two cortical

structural features tasks, there is a significant correlation between

3-Hinges classification accuracy and gender (r = 0.21, p= 0.03 and

r= 0.22, p= 0.03 for curv_sulc and sulc_thickness, respectively). In

both three and four cortical structural features tasks, there are also

significant correlations between 3-Hinges classification accuracies

and gender (r = 0.24, p = 0.02 and r = 0.22, p = 0.03 for

area_sulc_volume and area_curv_sulc_thickness, respectively). It

is worth noting that in five cortical structural features tasks, there

is the most significant correlation between 3-Hinges classification

accuracy and gender (r = 0.25, p = 0.01). With the increasement

of multiple cortical structural features, the correlation between 3-

Hinges classification accuracy and gender becomes more and more

significant, either the Pearson correlation coefficient or the p-value.

Furthermore, all of the correlations are positive. It indicates that 3-

Hinges structure of adolescentmales is significantly different to that

of females. Compared with other cortical folding regions, 3-Hinges

regions are more prominent in males. This reslut is consistent with

the previous study on gender differences in cerebral cortical folding

patterns, in which the fraction of the cortical surface that was
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TABLE 5 The identification results of HCP data set.

Data Methods
3-Hinges regions (%) 3-Hinges centroids (mm) Time

(min)
Precision Recall F1

lh-

PreE

rh-

PreE

mean-

PreE

MRI Gyral-net - - - - - - 82.30

sulc SE-Unet

+mean

shift

50.98 56.94 53.67 6.54 6.50 6.52 4.14

curv 46.16 59.01 51.65 8.13 8.25 8.19 4.18

vol 41.19 54.63 46.91 7.86 7.77 7.81 4.17

area 42.02 45.82 43.79 9.17 9.19 9.18 4.16

thick 42.16 49.50 45.48 8.09 8.22 8.16 4.13

sulc+thick 50.23 46.90 48.26 6.19 6.18 6.18 4.18

sulc+thick+vol 51.19 45.02 47.55 6.09 6.11 6.10 4.24

sulc+thick+vol+area 52.49 40.26 45.14 6.05 6.06 6.05 4.27

sulc+thick+vol+area+curv 47.76 56.18 50.73 6.52 6.47 6.49 4.32

FIGURE 8

3-Hinges regions (A)/centroids (B) visualized results using di�erent features on HCP. Letters (a–d) represent di�erent individuals. Numbers (1–6)

indicate label, area, curv, sulc, thickness, and volume, respectively.

convex (predominantly gyri including 3-Hinges) was significantly

higher in males (Awate et al., 2009). In other words, structural roles

that 3-Hinges within adolescent males and females plays do change

remarkably.

3.5. Generalization

In this section, we test the adult data directly using the model

trained on the ABCD data set. The results are shown in Table 5.

It shows that we can get the consistent conclusions as the ABCD

data set, although the accuracy is less than that of the ABCD data

set. By analyzing and comparing the identified 3-Hinges regions

and centroids, we find that on one hand, the adult brain is more

mature than the adolescent brain, and its cerebral cortex folding

is more complicated, which increases the difficulty of 3-Hinges’

identification. On the other hand, the number of the vertices

contained in the identified 3-Hinges regions is reduced, which

results in less 3-Hinges centroids. However, as shown in Figure 8,

the proposed method can still identify 3-Hinges points in some

cases that are not correctly labeled by Gyral-net.

4. Discussion and conclusion

In this article, we propose a SE-Unet algorithm to identify

3-Hinges regions based on the extracted brain morphological
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features. The algorithm first extracts the morphological and

structural features of the brain, then utilizes the K nearest neighbor

algorithm to establish the spatial index relationship between the

scattered features and aggregates the extracted neighborhood

features into a feature vector to improve the performance of

the algorithm. At the same time, the deep U-shaped network

structure and the squeeze excitation module are merged to learn

the correlation of the channels in the feature vector, resulting in

the automatic weight assignment of useful cortical structure feature

channels. The cortical 3-Hinges regions can therefore be quickly

identified. In addition, The mean shift algorithm is used to identify

the centroids of the cortical 3-Hinges, considering that the cortical

3-Hinges is similar or identical in shape, which results in the

inaccurate reflection of the cortical folding patterns. Through the

comparative analysis of the experimental results of using a single

feature and multiple features, we can conclude that the single sulc

feature is sufficient to identify 3-Hinges. Meanwhile, the fusion

of sulc, thickness, volume and area features can well identify 3-

Hinges at the price of more time consumption. In consideration

of the performance difference of identifying 3-Hinges between

adolescent males and females, it is obvious that there are significant

structural differences between males and females. In addition, we

also carried out generalization verification on the adult dataset.

Although our method improves the current Gyral-net to some

extent, there are still room for improvement. We will aim for high

accuracy prediction of the cortical 3-Hinges from both structural

MRI and functional MRI.
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