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Microglia and astrocytes underlie 
neuroinflammation and synaptic 
susceptibility in autism spectrum 
disorder
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Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with 
onset in childhood. The mechanisms underlying ASD are unclear. In recent years, 
the role of microglia and astrocytes in ASD has received increasing attention. 
Microglia prune the synapses or respond to injury by sequestrating the injury 
site and expressing inflammatory cytokines. Astrocytes maintain homeostasis in 
the brain microenvironment through the uptake of ions and neurotransmitters. 
However, the molecular link between ASD and microglia and, or astrocytes 
remains unknown. Previous research has shown the significant role of microglia 
and astrocytes in ASD, with reports of increased numbers of reactive microglia 
and astrocytes in postmortem tissues and animal models of ASD. Therefore, 
an enhanced understanding of the roles of microglia and astrocytes in ASD is 
essential for developing effective therapies. This review aimed to summarize the 
functions of microglia and astrocytes and their contributions to ASD.
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1. Introduction

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder, characterized 
by impaired social interaction, communication deficits, repetitive behavior, and narrow and 
intense interests (Kim et al., 2017). Autistic symptoms emerge in childhood and persist throughout 
life (Christensen et al., 2016). Although the precise etiologies of ASD are complex, recent evidence 
points to a contribution of glial cells in the pathophysiology of ASD. “Neuroglia” or “glia” include 
neuro-epithelial cells [oligodendrocytes (OLGs), astrocytes, oligodendrocyte progenitors, and 
ependymal cells], neural crest cells (peripheral glia), and myeloid cells (microglia) (Escartin et al., 
2021). A recent study suggested that the activation of glial cells may contribute to the cognitive and 
behavioral impairments of ASD (Petrelli et al., 2016). Glial cells not only have neuronal “gluing” 
roles but are also involved in neurogenesis, synaptogenesis, inflammation, proper glutamate 
handling, and many other processes (Gzielo and Nikiforuk, 2021).

Microglia, as the resident macrophages in the central nervous system (CNS), act as the first 
main form of active immune defense in the brain and spinal cord (Kern et al., 2016; Umpierre 
and Wu, 2021). As the most abundant glial cells in the CNS, astrocytes play important brain 
functions in early development and adulthood, such as neurogenesis, synaptic development, 
synaptic transmission and plasticity, and regulate behavior under physiological and pathological 
conditions (Wang et  al., 2021). Some transcriptions support an essential role in glial cell 
pathophysiology in the autistic brains. Gliosis and increased glial cell proliferation have been 
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found in human postmortem brain samples (Petrelli et al., 2016). 
Moreover, glial abnormalities were found using animal models of 
ASD, such as Rett syndrome (RTT), Fragile X syndrome, and a mouse 
model of tuberous sclerosis.

This review discussed how microglia and astrocytes regulate the 
pathogenesis of ASD. In addition, the interaction between microglia 
and astrocytes in ASD was discussed. Finally, we describe the possible 
involvement of the mitochondria and methylation in regulating ASD 
by microglia.

2. Microglia contribute to 
neuroinflammation in ASD by 
releasing cytokines to prune synapses

As resident immune cells in the CNS, microglia, which express 
Iba1, Cx3cr1, CD11b, and F4/80, are the primary mediators of neuro-
inflammation (Cowan and Petri, 2018; Hickman et al., 2018). They 
appear on embryonic day eight and mature 2–3 weeks after birth. 
Their morphology could change from immature amoebae to mature 
ramify, maintain tissue homeostasis, and exert innate immune 
functions through their multiple unique phenotypes and ability to 
transfer functions (Gzielo and Nikiforuk, 2021). Reactive microglia 
have neuroinflammatory and neuroprotective properties (Voet et al., 
2019). Mediators derived from mast cells could activate microglia, 
causing localized inflammation and leading to symptoms of ASD 
(Zhang et  al., 2012; Skaper et  al., 2017; Kempuraj et  al., 2019). 
Microglia could be  divided into two activation states: M1 type 
(classical activation) and M2 type (alternative activation) (Orihuela 
et al., 2016; Liao et al., 2020). The M1 phenotype microglia produce 
inflammatory cytokines and reactive oxygen species (ROS), and the 
M2 phenotype microglia produce anti-inflammatory cytokines and 
neurotrophins. Microglia rely on CSF1 and transcription factors, such 
as interleukin (IL)-34 and IRF8 for survival and maintenance 
(Hickman et  al., 2018). They also induce the expression of target 
inflammatory genes through different signaling pathways, such as 
JNK, JAK/STAT, ERK1/2, NF-kB, and p38 (Zhang et al., 2012; Skaper 
et al., 2017; Kempuraj et al., 2019; Voet et al., 2019).

Microglia are indispensable regulators of inflammatory responses 
in the CNS (Kwon and Koh, 2020). Under physiological circumstances, 
microglia exert highly efficient surveillance mechanisms to clear 
invading pathogens and promote tissue repair. Under pathological 
conditions, the developing brain is very sensitive to environmental 
stimuli, and it produces a robust inflammatory response that leads to 
neuroinflammation, in which microglia react (gliosis), proliferates, 
and recruits peripheral blood white blood cells, thereby amplifying the 
initial tissue damage, meanwhile, reactive gliosis may exacerbate the 
inflammatory state caused by immune activation involved in the 
pathogenesis of ASD (Petrelli et al., 2016). In the present study, the 
association between reactive microglia and neuroinflammatory 
responses in ASD was discussed.

2.1. Cytokines and chemokines released by 
microglia regulate neuroinflammation

Microglia are activated in multiple brain regions of young adults 
with ASD by functional positron emission tomography (PET) 

imaging (Petrelli et al., 2016). Increased pro-inflammatory cytokines 
in blood and cerebrospinal fluid (CSF) and increased microglia 
number and activation in the postmortem dorsolateral prefrontal 
cortex (DLPFC) provide strong evidence of neuroinflammation in 
ASD (Zantomio et al., 2015). In addition, changes were observed in 
the expression levels of pro-inflammatory (CD68 and IL-1β) and 
anti-inflammatory genes (IGF1 and IGF1R) in gray- and white-
matter tissues of ACC in males with ASD (Sciara et al., 2020). Current 
studies have shown that the gene expression of anti-inflammatory 
cytokine IL-37 and pro-inflammatory cytokines IL-18 and TNF 
increases in the amygdala and dorsolateral prefrontal cortex of 
children with ASD (Tsilioni et  al., 2019). In addition, IL-38 is 
decreased in the amygdala of children with ASD (Tsilioni et al., 2020).

Chemokines, as a subset of cytokines that guide cell migration, are 
mainly divided into two categories: CXC chemokines and CC 
chemokines (including CCL2 (MCP-1), CCL3 (MIP-1α), CCL4 (MIP-
1β), CCL5 (RANTES), CCL11 (Eotaxin)). CCL2 is conformably 
elevated in the brain and blood of individuals with autism and has 
been extensively studied. CCL2 is produced by microglia and 
astrocytes in the CNS, and in turn, CCL2 regulates the reactivity, 
migration, and proliferation of microglia (Matta et al., 2019; Ye et al., 
2021). In the offspring of maternal exposure to CAF (cafeteria diet) 
diet or Poly (I: C) inoculation, CCL2 signaling disrupts social behavior 
by microglia morphology (Maldonado-Ruiz et al., 2022). Flavonoid 
methoxy luteolin, a peptide neurotensin (NT) inhibitor, reduced the 
gene expression and release of proinflammatory cytokines IL-1β, 
CCL2, and CCL5 in human microglia (Patel et al., 2016). All data 
support cytokines and chemokines as essential mediators in 
neuroinflammation and autism-like behaviors (Table 1).

2.2. Microglia prune synapses by 
phagocytosis and elimination

Microglia are involved in the development of excitatory circuits 
through engulfing and eliminating of synapses, called “pruning” 
(Lewis, 2021). ASD is often accompanied by abnormalities in 
synapses. Evidence showed increased density of dendritic spines and 
abnormal synaptic structure in the brains of ASD model mice (Kim 

TABLE 1 Variations of cytokine and chemokines in ASD.

Factor CSF
Whole blood 
serum

Cytokine

TNF-α Increased Increased

IL-6 Increased Increased

IL-17 Increased Increased

IL-1β Increased Increased

Chemokines

CCL2 Increased Not reported

CCL3 Not reported Not reported

CCL4 Not reported Not reported

CCL5 Not reported Not reported

CCL11 Not reported Not reported

CSF, cerebrospinal fluid.
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et al., 2017). Microglia shape synaptic function and plasticity through 
dynamic morphological and functional properties (Ben Achour and 
Pascual, 2010). Synaptic phagocytosis by microglia is one of the most 
intensively studied methods to regulate synaptic plasticity. Presynaptic 
and postsynaptic components within microglial lysosomes have been 
identified by electron microscopy and high-resolution in vivo imaging 
(Paolicelli et al., 2011; Sancho et al., 2021). The complement cascade 
is one of the classical phagocytosis pathways mediated by microglia, 
in which complement component 1q (C1q) initiates C3 on neurons to 
bind complement receptor 3 (CR3) on microglia to target phagocytic 
synapses (Sancho et al., 2021). In addition, microglia could remove 
synapses by phagocytosis via the CX3C chemokine receptor 1 
(CX3CR1) and CR3 pathways (Li et al., 2020). However, microglia 
could shape neuronal connectivity though non-phagocytic 
mechanisms. Postsynaptic calcium elevation increases the likelihood 
of dendritic spine formation due to microglial contact with dendrites. 
Conversely, microglial contact with dendritic spines could also 
increase the possibility of spine retraction by modifying the local 
extracellular matrix and reducing synaptic stability. Dendritic spine 
dynamics and synaptic AMPAR transport could be  influenced by 
BDNF and TNFα, respectively, secreted by microglia, which perform 
their function of partially encapsulating synapses rather than 
engulfing them (Blagburn-Blanco et al., 2022).

In particular, microglia clustered around neurons in the 
dorsolateral PFC of patients with ASD due to alterations in the spatial 
structure of microglia (Varghese et  al., 2017). On the one hand, 
microglia constantly palpate the neuronal surface (Bal-Price and 
Brown, 2001). In a mouse model of PTEN localization in the 
cytoplasm (Ptenm3m4/m3m4), evidence of cross-communication 
between neurons and microglia was found, with Ptenm3m4/m3m4 
neurons inducing enhanced pruning from naturally activated 
microglia (Sarn et al., 2021). In primary cultures of rat microglia and 
neurons, carbon monoxide exerts antineuroinflammatory and 
neurotrophic effects by regulating microglia–neuron communication 
(Soares et al., 2022). On the other hand, microglia could cause the 
death of phagocytosed cells by engulfing live neurons and neuronal 
progenitors. Changes in the activation state of microglia affect brain 
development, possibly through the uptake of neural precursor cells by 
phagocytosis (Brown and Neher, 2014). The phenomenon is mainly 
divided into “eat-me” and “do not-eat-me.” When microglia detect 
exposed “eat-me” signals, they rapidly recognize and phagocytose 
neurons or parts of neurons exposed to the signal. In performing 
phagocytosis, the “do not-eat-me” signal occurs when inhibitory 
neuron cell surface signals are absent or removed. Phospholipid 
phosphatic glycerine is a key “eat-me” signal for microglia to 
phagocytize dead and surviving neurons. Plasminogen activator 
inhibitor type 1 (PAI1) acts as a “do not-eat-me” signal on neutrophils, 
inducing microglial migration but also inhibiting VNR-mediated 
microglial phagocytosis (Brown and Neher, 2014). In vitro, microglial 
inflammation is activated by TNF-α, Toll-like receptor ligand (TLR), 
or amyloid-β. Upon activation, microglia release sublethal amounts of 
reactive nitrogen (RNS) and ROS, leading to reversible 
phosphatidylserine orientation on neurons and thus triggering 
microglial phagocytosis of them. When agents are not enough to kill 
neurons directly, they may induce exposure and, or release molecules 
(UDP, phosphatidylserine, and calreticulin) by exerting sufficient 
stress on neurons, triggering microglia phagocytosis in stressed but 
surviving neurons and eventually leading to cell death by phagocytosis 
(Fricker et al., 2018).

Microglia play a role in ASD by participating in synaptic pruning. 
Some animal studies provide strong proof. For example, germline 
mutations in the tumor suppressor gene PTEN are one of the 
monogenic risk cases for ASD. By generating a nuclear-predominant 
PtenY68H/+ mouse model, prominent reactive microglia were found, 
accompanied by enhanced phagocytosis (Sarn et  al., 2021). 
Furthermore, deletion of atg7 was shown to cause autism-like 
behavior in a myeloid cell-specific lysozyme M-Cre mouse model. 
Then, co-culture with AtG7-deficient microglia impaired synaptosome 
degradation and increased immature dendritic filopodia (Kim 
et al., 2017).

TREM2 is involved in the phagocytosis of excess synapses in the 
CA1 region of the mouse hippocampus during development (Sancho 
et  al., 2021). TREM2−/− mouse models typically displayed altered 
sociability and repetitive behavior. TREM2 protein levels were often 
negatively correlated with the severity of symptoms in patients with 
ASD (Filipello et  al., 2018). Neuronal defects caused by Hoxb8-
microglial defects and mutations in synaptic components could cause 
mice to exhibit autism-like behavior (Nagarajan et al., 2018). A mouse 
model lacking CX3CR1 showed a transient decrease in microglia and 
a consequent defect in synaptic pruning during the early postnatal 
period. In a mouse model of microglial Tmem59 deletion, deletion of 
microglial Tmem59 impaired synaptic phagocytosis, leading to 
autism-like behavior (Meng et al., 2022). In autism models, a transient 
decrease in microglia is followed by a synaptic pruning defect, strongly 
associated with autistic behaviors such as social deficits. These findings 
further confirmed that disrupted synaptic pruning mediated by 
microglia might contribute to ASD (Zhan et al., 2014). Microglia play 
a unique role in establishing and maintaining the delicate balance of 
excitatory and inhibitory synapses. Dysfunctional social and cognitive 
behavior was demonstrated to be  associated with alterations in 
excitatory and inhibitory synaptic connections in the mPFC in 
ASD. In addition, reductions in mPFC spine density have been 
described in mouse models of ASD. More importantly, inhibitory 
neuronal function and synapses are modulated by specific ASD risk 
genes. For example, most of the behavioral features of RTT were 
reproducible when the risk MECP2 gene was deleted from all 
GABAergic interneurons (Blagburn-Blanco et al., 2022).

2.3. Microglia modulate the excitatory/
inhibition balance in ASD by pruning 
synapses

Evidence showed that glial cell function is related to an imbalance 
between excitatory and inhibitory synaptic function (Andoh et al., 
2019a,b). The structural and functional breakdown of the balance 
between E/I synapses is the pathogenesis of CNS diseases. After 
aberrant synaptic pruning in microglia was discussed, microglial 
synaptic pruning resulting in synaptic excitatory to inhibitory (E/I) 
imbalance was explored (Andoh et  al., 2019a,b). Neurons receive 
excitatory and inhibitory inputs and maintain a balance between the 
two, known as the E/I balance. If the E/I balance is disrupted, such as 
increased levels of excitatory input, associated with autism, it could 
affect brain function and social behavior (Pretzsch and Floris, 2020). 
To date, studies on microglia-mediated synaptic pruning have focused 
on excitatory synapses (Favuzzi et al., 2021). Microglia participate in 
glutamate signaling through the Xc system, and the Xc transporter in 
the Xc system is a chloride-dependent antiporter that could carry 
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glutamate out of the cell. Microglia produce ROS, which induces 
glutathione (GSH) deficiency and initiates the TLR4 signaling pathway, 
causing an increase in Xc expression and resulting in glutamate efflux. 
The ROS, IL-1β, and TNF-α secreted by microglia impair EAAT 
function and increase extracellular glutamate levels. In summary, 
reactive microglia actively interfere with neurotransmission through 
the impaired glutamate uptake; release of excitotoxins, such as 
glutamate, D-serine, and ATP; and alteration of glial transmitter release 
from astrocytes (Kim et al., 2020). Whether microglia also actively 
shape the developing inhibitory circuit is not known. However, during 
development, GABA-receptive microglia selectively prune inhibitory 
synapses, presenting behavioral abnormalities due to disruption of 
microglial responses, thus highlighting a critical function of microglia-
mediated inhibitory synaptic pruning (Favuzzi et al., 2021).

The autism-like phenotype could be  altered by altering the 
excitation–inhibition balance between microglia and astrocytes. 
Collectively, the present study demonstrated associations between 
changes in microglia and E/I balance in ASD.

2.4. Sex differences in microglia may 
underlie ASD susceptibility

The salience network (SN), central executive network (CEN), and 
default mode network (DMN) are central to ASD symptomatology. 
Gender differences exist in the functional connectivity of SN, CEN, 
and DMN in adolescents with ASD. Therefore, sex-specific biological 
factors should be  considered when investigating the neural 
mechanisms of ASD (Lawrence et al., 2020). ASD is well known to 
be approximately four times more common in males than in females. 
The mechanisms underlying this sex-differential risk are not fully 
understood, making it more difficult to study the mechanisms behind 
the risk of gender differences in ASD.

Microglia play an important role in the sex difference in ASDs 
(Schwarz and Bilbo, 2012; Andoh et al., 2019a,b). For example, high 
expression levels of microglia markers were observed in males 
(Werling et  al., 2016). In a model of exposure to low lead 
concentrations during pregnancy, increased glial cells proliferation in 
the cerebellum of lead-exposed male pups led to an increased 
incidence of autism-like behavior, suggesting that sex-dependent glial 
cells influence the incidence of autism-like behavior (Choi et  al., 
2022). Further evidence regarding sex-specific differences in microglia 
could be  found. For example, a genome-wide association study 
(GWAS) provided evidence of the upregulation of genes, including 
microglia markers found in the postmortem brains of male patients 
with ASD (Werling et al., 2016). In addition, one study showed that 
exaggerated translation of only microglia caused autism-like behavior 
in male mice (Xu et  al., 2020). In conclusion, sex differences in 
microglia may underlie vulnerabilities to ASD.

3. Neurotransmitter and ion channels 
expressed by astrocytes facilitate 
communication between astrocytes 
and synapses

The immune function of astrocytes is similar to that of microglia 
(Sofroniew, 2015). From postnatal day 14 to postnatal day 30, 

astrocytes develop from initial maturation to full maturation (Gzielo 
and Nikiforuk, 2021). Astrocytes become reactive astrocytes after 
injury (Kim and Son, 2021). Reactive astrocytes establish immune 
responses through morphological changes and proliferation. The 
process achieved is through extension and hypertrophy, distinct 
from the microglial contraction process. Astrocytes are divided into 
A1 neurotoxic phenotype and A2 neuroprotective phenotype 
(Escartin et al., 2021). The A1 astrocyte phenotype is generated by 
microglia stimulated by lipopolysaccharide (LPS) via TNF, IL-1α, 
and C1q (Giovannoni and Quintana, 2020). In addition, a soluble 
neurotoxin secreted by A1 astrocytes could quickly kill neurons and 
mature OLGs. By contrast, A2 astrocytes have repair functions and 
could upregulate neurotrophic or anti-inflammatory genes to 
promote neuronal survival and growth. The most generally 
commonly used specific markers for A1 and A2 astrocytes were C3, 
S100a10, and PTX3 (Li et al., 2020; Fan and Huo, 2021). Reactive 
astrocytes have not only harmful effects of aggravating neuro-
inflammation and hindering synaptic sprouting or axon growth but 
also beneficial effects of anti-inflammation, neuroprotection, and 
blood–brain barrier repair (Hickman et  al., 2018; Fan and 
Huo, 2021).

Sixty-five percent of the 46 most significant autism-associated 
genes are expressed in astrocytes, according to a recent GWAS analysis 
(Yu et al., 2013). Astrocytes are found to be activated in those with 
ASD diagnosis. The expression of a glial fibrillary acidic protein 
(GFAP) is upregulated when astrocytes are hypertrophic and 
proliferate, and in children diagnosed with ASD, GFAP levels were 
found to be three times higher than controls in the brain and CSF 
(Kern et al., 2016). In addition, the number of GFAP-positive cells 
changed in a VPA and poly (I: C) model (Zhao et al., 2019; Gzielo and 
Nikiforuk, 2021). In a 35-day-old VPA rat model, studies have shown 
that GFAP immunostaining levels were increased in the medial 
prefrontal cortex and hippocampus (Mony et al., 2018). In addition to 
GFAP, samples of patients with ASD showed abnormal expression of 
astrocyte markers AQP4 and CX43 (Sloan and Barres, 2014).

Astrocytes cannot only regulate inflammation but also maintain 
homeostasis within the brain by modulating synaptic function and 
plasticity (Matta et  al., 2019). In addition, A1 reactive astrocytes 
induced the formation of fewer synapses than synapses generated by 
healthy quiescent astrocytes (Liddelow et al., 2017). Microglia have 
brief periodic contact with synapses, and astrocytes are conversely 
warped around pre- and post-synapses as part of the tripartite synapse 
(Matta et al., 2019; Gzielo and Nikiforuk, 2021). A large number of 
receptors, adhesion molecules, and ion channels are distributed 
around astrocyte synapses, and they are essential for maintaining 
synaptic function (Gzielo and Nikiforuk, 2021).

3.1. Astrocytes regulate neurotransmitter 
homeostasis in ASD

E/I neurotransmission imbalance is involved in the pathogenesis 
of ASD, mainly by altering glutamatergic and GABAergic 
neurotransmission (Canitano and Palumbi, 2021). Astrocytes 
regulate neurotransmitter homeostasis in the CNS by uptaking 
synaptically released neurotransmitters, such as glutamate, glycine, 
and γ-aminobutyric acid (GABA), and releasing their precursors 
back to neurons after metabolism (Sofroniew and Vinters, 2010). 
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Glutamate is one of the most prevalent universal neurotransmitters 
released by excitatory neurons in the CNS (Doughty et al., 2020). 
Astrocytes maintain glutamate homeostasis and prevent glutamate 
excitotoxicity by controlling the balance of glutamate release and 
uptake (Mahmoud et  al., 2019). The main pathway of glutamate 
uptake is achieved by two glutamate transporters: Na+-dependent and 
-independent transporters (Anderson and Swanson, 2000; Mahmoud 
et al., 2019). Several studies have provided evidence of changes in 
astrocyte glutamate in ASD. In a VPA-induced ASD rat model, an 
increase in glutamate uptake was found at postnatal day 120 (Bristot 
Silvestrin et al., 2013). In a 1H-MRS model of children with ASD, 
abnormalities of glutamate metabolites in the anterior cingulate 
cortex (ACC) were observed through brain functional magnetic 
resonance imaging (Jiménez-Espinoza et al., 2021). Selective loss of 
astrocyte-specific Fmr1 knockout mice (i-Astro-Fmr1-cKO) and 
repair mice (i-Astro-Fmr1-cON) resulted in dysregulation of the 
glutamate transporter GLT1 and impaired extracellular glutamate 
uptake. Enhanced cortical neuronal excitability was also found in 
astrocyte-specific cKO mice (Higashimori et al., 2016). The glutamate 
transporter GLT1 is vital for regulating the E/I ratio in astrocytes. In 
an astrocyte-specific GLT1 knockout mouse model, the mice 
exhibited excessive repetitive behavior (Aida et al., 2015). However, 
in addition to the glutamate transport described above, glutamine 
synthetase (GS) also supports the amino acid neurotransmitter cycle. 
The glutamine used by neurons is dependent on the GS conversion 
of glutamate. Studies have shown that GABAergic neurons are more 
dependent on astrocyte glutamine than excitatory neurons, so the 
lack of astrocyte GS may lead to altered inhibitory neuronal function 
(Gzielo and Nikiforuk, 2021).

GABA, as a highly representative inhibitory neurotransmitter, 
regulates the overall functions controlled by the brain, such as the 
regulation of learning and memory functions. Impaired GABA 
transmission may be  one of the pathological evidence of E/I 
imbalance. Astrocytes express GABA receptors (GABAR), mainly 
ionic GABAA and metabolic GABAB receptors, and GABA 
transporters (GATs), including GAT-1 and GAT-3. Previous studies 
have reported reductions in GABAergic interneurons and 
transmission in mouse models of ASD (Kim et  al., 2020). 
Furthermore, in a model of maternal lead exposure, astrogliosis was 
able to prevent behavioral changes by ensuring high GABA levels 
(Choi et al., 2022). Meanwhile, inhibition of abnormally elevated 
GABAergic synaptic transmission in the hippocampal CA1 region 
has been shown to restore E/I balance and rescue autism-like 
behavior (Chen et al., 2022). Furthermore, attention was improved, 
and behavioral hyperactivity was alleviated in mice due to the 
inhibition of the astrocyte GABAB-Gi pathway in the striatum (Nagai 
et al., 2021).

3.2. Astrocytes regulate ion channels in 
ASD

Astrocytes are activated by ion (calcium, sodium, and 
potassium) transport and are not electrically excited (Gzielo and 
Nikiforuk, 2021). One of the critical functions of astrocytes is ion 
homeostasis. Fluctuations in intracellular ion concentration could 
mediate astrocyte excitability (Kirischuk et al., 2012). Glutamate 

release from astrocytes is achieved by the elevation of [Ca2+]i in 
astrocytes (Parpura et al., 1994; Bezzi et al., 1998). Ca2+ signaling is 
thought to underlie essential physiological functions of astrocytes in 
various species, such as worms, flies, zebrafish, mice, and possibly 
humans (Yu et al., 2020). Elevations in astrocytes’ Ca2+ could cause 
the release of gliotransmitters, glutamate, GABA, adenosine 
triphosphate (ATP), and D-serine, which could all modulate 
postsynaptic neuronal activity and act on presynaptic receptors. Ca2+ 
waves could propagate vasoactive messengers to the soma and its 
vascular endfeet through astrocytes (Bazargani and Attwell, 2016). 
In inflammation, the disruption of astrocyte calcium signaling is 
important (Allen et al., 2022). However, whether astrocytes play a 
mechanistic role in ASD through Ca2+ signaling remains unclear. In 
astrocyte-specific inositol 1,4,5-triphosphate six receptor type 2 
(IP3R2) knockout mice and IP3R2-null mutant mice, IP3R2 led to 
astrocyte activation through the release of intracellular Ca2+ stores. 
The results suggested that astrocyte dysfunction by Ca2+ ions is 
associated with ASD-like phenotypes (Wang et  al., 2021). In 
addition, astrocytes from individuals with ASD alter behavior and 
disrupt neuronal activity through abnormal Ca2+ signaling (Allen 
et al., 2022). All the evidence provides that Ca2+ signaling has critical 
physiological functions in ASD. Therefore, calcium signaling-
induced changes in astrocytes could be  an essential target for 
intervention in ASD.

Recent studies have shown that perisynaptic astrocyte cytosolic 
Na+ concentration ([Na+]i) could be triggered by neuronal activity, 
resulting in a transient increase. Na+-permeable channels and Na+-
dependent transporters control [Na+]i transients, and astrocyte 
homeostasis responses are dynamically counter-regulated by [Na+]
i. For example, [Na+]i transients dynamically regulate the 
transmembrane transport of neurotransmitters, the metabolism/
signal utilization of lactate and glutamate, and K+ buffering 
(Kirischuk et al., 2012). Neurotransmitters, ion transport, amino 
acids, and many other molecules across the plasma membrane and 
inner membrane provide energy through an inwardly directed large 
sodium (+) gradient that puts sodium homeostasis at a central stage 
in astrocyte physiology. Na(+)/K(+)-ATPase (NKA), as the primary 
energy consumer of the brain, mediates Na(+) efflux from 
astrocytes, thereby maintaining Na(+) homeostasis (Rose and 
Verkhratsky, 2016). Available sodium channels and astrocyte 
expression have been confirmed by patch-clamp recordings. 
Importantly, Voltage-dependent sodium currents have been 
detected in astrocytes within the spinal cord and hippocampal slices 
(Pappalardo et al., 2016). Astrocytes buffer K+ by inward rectifying 
potassium channels (Kir) and aquaporin 4 (Aqp4) and regulating 
the flow of water and K+ between the extracellular space and 
neuronal cells, resulting in an imbalance between neuronal 
excitation and inhibition (Iliff et al., 2012; Gzielo and Nikiforuk, 
2021). For example, impaired astrocyte K+ buffering, which results 
in increased neuronal excitation, is due to a loss of water channels, 
such as Aqp4, which underlies much of autism (Gzielo and 
Nikiforuk, 2021). In addition, riluzole, a sodium channel blocker, 
could effectively increase the inhibition index and normalize PFC 
functional connectivity in ASD (Sohal and Rubenstein, 2019). All 
the evidence shows the essential physiological functions of 
Na(+)/K(+) in ASD. Therefore, Na(+)/K(+) signaling-induced 
changes in astrocytes could be an essential target for intervention 
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in ASD. In conclusion, astrocytes maintain the balance of cellular 
E/I ratio, thus promoting homeostasis in the CNS in ASD.

3.3. Astrocytes pruning synapses by 
expressing neurotransmitter receptors and 
transporters

Many neurotransmitter receptors and transporters expressed by 
astrocytes facilitate communication between astrocytes and synapses. 
For example, astrocytes could modulate synaptic transmission by 
inhibiting glutamate release from presynaptic neurons and altering 
receptor expression on postsynaptic neurons. They also trigger the 
phagocytic pathway through the expressing multiple epidermal 
growth factor-like domain protein 10 (MEGF10) and MER tyrosine-
protein kinase (MERTK), thereby promoting synapse elimination. In 
addition, astrocytes indirectly trigger synapse elimination by secreting 
TGF-β, which induces C1q expression in retinal neurons to initiate 
microglia-mediated phagocytosis.

These findings suggested that astrocyte function may be relevant 
to the pathophysiology of ASD, such as its ability to influence neuronal 
circuits that are highly dynamic and plastic in the adult brain (Matta 
et al., 2019). Recent studies have found that astrocyte complement 
component 4 (C4) was significantly expressed in the anterior part of 
the human brain, the sub-ependymal zone (SVZ), and the surrounding 
area. Alternatively, the C4 protein was localized to neuronal cell 
bodies and synapses, suggesting that astrocytes may exert synaptic 
elimination effects through the C4 pathway (Mou et al., 2022).

Some evidence indicated reciprocal communication between 
astrocytes and neurons in -vitro and -vivo experiments. In a mutant 
RTT mouse model, the typical morphology of wild-type or mutant 
hippocampal neurons was disrupted by a vitro co-culture system of 
astrocytes (Ballas et al., 2009). Using pluripotent stem cells derived 
from non-syndromic ASD individuals, ASD-derived astrocytes were 
found to interfere with normal neuronal development through 
co-culture experiments (Russo et al., 2018). These findings further 
suggested that neuronal function may be affected by the inflammation 
of astrocytes (Lee et al., 2020).

4. The co-ordination of microglia and 
astrocyte modulates inflammation by 
the inflammatory mediator and 
secretion of multiple cytokines

Bidirectional communication exists between microglia and 
astrocytes, and it modulates CNS inflammation through the 
inflammatory mediator and secretion of multiple cytokines. In 
conclusion, the basis of neuronal function and dysfunction is 
microglia–astrocyte crosstalk (Jha et  al., 2019). LPS-activated 
microglia induce reactive astrocytes (Liu et al., 2020), and, in turn, 
microglia are further activated by ATP released from reactive 
astrocytes (Traetta et al., 2021). LPS-activated microglia also induce 
a neurotoxic phenotype in reactive astrocytes. For example, recent 
studies have found that micro1glial cells secreting interleukins and 
chemokines, macrophage colony-stimulating factor (M-CSF), 
monocyte chemoattractant protein-1 (MCP-1), macrophage 
inflammatory protein-1α/β (MIP-α/β), TNF-α, and C1q could induce 

a transcriptional response in astrocytes, activating a neurotoxic factor 
that reduces the expression of neurotrophic factors (Zhang et al., 
2010; Linnerbauer et al., 2020). In addition, microglia and astrocytes 
could be polarized into M2-type microglia and A2-type astrocytes, 
respectively, by in-vitro crosstalk (Kim and Son, 2021).

ORM2, a member of the lipocalin family expressed by astrocytes, 
regulates microglial activation in response to inflammatory stimuli. 
Astrocytic ORM2 could bind to the microglial C-C chemokine 
receptor type 5 (CCR5) and affect microglial activation by blocking 
the chemokine C-X-C motif ligand (CXCL)-4-CCR5 interaction, 
indicating the role of ORM2 in astrocyte–microglia interaction (Jo 
et al., 2017). In microglia–astrocyte co-cultures from VPA animals, 
microglia exhibited reactivity and exacerbated astrocyte reactivity 
(Traetta et al., 2021). Thus, the present study highlighted microglia–
astrocyte communication as a novel mechanism of neuro-
inflammation in ASD. Therefore, this crosstalk could be considered a 
potential target for intervention in ASD.

5. Mitochondria and methylation may 
be involved in the regulation of ASD 
by microglia

Mitochondria are dynamic organelles that undergo rapid 
changes in their structure and intracellular localization in the face 
of the needs of different cells (Ho and Theiss, 2022). One of the most 
common metabolic disorders in patients with ASD is abnormal 
mitochondrial function. In the latest study, PM2.5 exposure 
mediated through the mitochondria during gestation and early life 
could increase the risk of developing ASD (Frye et al., 2021a,b). 
Clinical epidemiological studies have demonstrated mitochondrial 
dysfunction in neurodevelopmental disorders (Thangaraj et  al., 
2018). Evidence suggests that mitochondrial DNA (mtDNA) is a 
major activator of inflammation when it leaks from stressed 
mitochondria (Zhong et  al., 2019). Moreover, mtDNA escaping 
stressed mitochondria provokes inflammation via cGAS-STING 
pathway activation, and when oxidized (Ox-mtDNA), it binds to 
cytosolic NLRP3, thereby triggering inflammasome activation (Xian 
et  al., 2022). In patients with myalgic encephalomyelitis/chronic 
fatigue syndrome (ME/CFS), who manifests with fatigue, malaise, 
sleep disorders, and cognitive problems, the exosome-associated 
mtDNA could stimulate human microglia to release IL-1β (Tsilioni 
et  al., 2022). Moreover, mtDNA is significantly increased in the 
serum of children with ASD (Theoharides et al., 2013). In addition, 
FOXP1 syndrome, caused by haploinsufficiency of the forkhead box 
P1 (FOXP1) gene, is a neurodevelopmental disorder that manifests 
as motor dysfunction, intellectual disability, language impairment, 
and autism. Emerging evidence of mitochondrial dysfunction in 
FOXP1+/− mice suggested that inadequate energy supply and 
excessive oxidative stress underlie cognitive and motor impairments 
caused by FOXP1 deficiency (Wang et al., 2022). In addition, odor 
identification impairment in ASD may be  associated with 
mitochondrial dysfunction (Yang et al., 2022). The mitochondria are 
involved in astrocyte maturation and synapse formation. The 
microglia from embryonic ischemic cortical rats could proliferate by 
transplanting hamster mitochondria (Gyllenhammer et al., 2022). 
Therefore, mitochondrial dysfunction may play an important role in 
inducing glial abnormalities in autism.
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DNA methylation has become an area of particular interest in 
ASD (Williams and LaSalle, 2022). Children with autism exhibit 
impaired methylation (Deth et al., 2008). Impaired methylation and 
epigenetic disruption contribute to the immune dysfunction 
commonly seen in autism (Deth et al., 2008). A study found that 
differentially methylated regions were enriched for transcription 
factor binding sites related to regulating microglial inflammation and 
microglial development (Vogel Ciernia et al., 2018). In brain cells, 
Methyl CpG binding protein-2 (MeCP2) isoforms (E1 and E2) are an 
important epigenetic regulator. MeCP2 loss- or gain-of-function 
mutation causes neurodevelopmental disorders, including ASD, 
MECP2 duplication syndrome, and RTT (Lioy et al., 2011; Liyanage 
et al., 2019). Studies from animal models of RTT and MECP2 could 
explain the malfunction of epigenetic mechanisms in microglia. 
MeCP2 participates in the regulation of gene transcription by binding 
to methylated CG sites. A major study showed an RTT-like phenotype 
in microglia-specific MECP2 knockout mice that could be reversed 
by supplementation with wild-type microglia. In addition, the deletion 
of MECP2 in microglia was demonstrated to cause abnormalities in 
extracellular glutamate levels and neuronal dendrites. These studies 
suggested that MeCP2 influences mouse behavior by regulating the 
epigenetic machinery in microglia. Subsequently, other genes 
associated with ASD, OXTR, MAGEL2, SNRPN, RELN, and GAD1, 

were found to have hypermethylated transcription start sites in ASD 
brains, resulting in reduced expression of gene products (Tremblay 
and Jiang, 2019). While the exact role of microglia is not completely 
defined, much evidence could suggest that the epigenetic regulation 
of microglia plays a vital part in the etiology of ASD (Nardone and 
Elliott, 2016).

6. Conclusion

The roles of microglia and astrocytes in ASD were reviewed 
(Figure 1). Until recently, the role of glial cells was not appreciated in 
ASD pathogenesis, so neuro-pharmacological strategies to treat 
symptoms were almost exclusively targeted at neuronal activity and 
synaptic transmission. First, this review proposes that glial cells could 
regulate inflammation, synaptic function, and plasticity. In addition, 
altered neurotransmitters create an abnormal imbalance caused by 
changes in receptor and transporter expression levels, modification of 
released glial transmitters, and dysfunction of uptake. Then, the data 
suggest that glial cell interactions are at least partially involved in the 
pathogenesis of ASD and that future pharmacological studies should 
consider improving glial cell functions. In the end, the epigenetics of 
glial cells should also be  considered in the pathogenesis of ASD, 

FIGURE 1

A working model of Microglia and Astrocytes underlie neuroinflammation and synaptic susceptibility in Autism Spectrum Disorder. In ASD, astrocytes 
enhance synaptic pruning through ion channels and neurotransmitters, while microglia trim synapses through intracellular methylation and 
mitochondrial alterations. In addition, both microglia and astrocytes can cause neuroinflammation and synaptic changes by releasing inflammatory 
cytokines and chemokines. Figures were created by Figdraw (www.figdraw.com).

https://doi.org/10.3389/fnins.2023.1125428
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.figdraw.com


Xiong et al. 10.3389/fnins.2023.1125428

Frontiers in Neuroscience 08 frontiersin.org

suggesting that the study of glial cells may help develop new 
therapeutic targets for ASD.
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