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Alzheimer’s disease (AD) is a degenerative disease of the central nervous system,

the most common type of dementia in old age, which causes progressive loss of

cognitive functions such as thoughts, memory, reasoning, behavioral abilities and

social skills, affecting the daily life of patients. The dentate gyrus of the hippocampus

is a key area for learning and memory functions, and an important site of adult

hippocampal neurogenesis (AHN) in normal mammals. AHN mainly consists of the

proliferation, differentiation, survival and maturation of newborn neurons and occurs

throughout adulthood, but the level of AHN decreases with age. In AD, the AHN

will be affected to different degrees at different times, and its exact molecular

mechanisms are increasingly elucidated. In this review, we summarize the changes of

AHN in AD and its alteration mechanism, which will help lay the foundation for further

research on the pathogenesis and diagnostic and therapeutic approaches of AD.

KEYWORDS
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1. Introduction

Alzheimer’s disease (AD), also known as senile dementia, is a degenerative disease of the
central nervous system with age-related cognitive and functional decline that can eventually
lead to death, with an insidious onset and a chronic progressive course, and is the most
common type of dementia in old age (Alzheimer’s Association, 2019). The main pathological
manifestations of AD are amyloid β-protein (Aβ) deposition, neurogenic fiber tangles due to Tau
protein hyperphosphorylation, and neuronal loss (Lei et al., 2021). The clinical manifestations
of AD patients are characterized by comprehensive dementia, such as memory impairment,
aphasia, loss of use, loss of recognition, impairment of visuospatial skills, executive dysfunction,
and personality and behavioral changes. Mild cognitive impairment is the precursor stage of
dementia, characterized by subjective cognitive deficits and objective memory impairment in
daily life (Xie et al., 2021). Patients have difficulties in reasoning, abstract concepts, and even
language difficulties. And, patients may also experience increased manifestations of depression,
sleep difficulties and anxiety. According to the Alzheimer’s Disease International assessment,
75% of people with dementia worldwide are undiagnosed, and it can be as high as 90% in
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some low- and middle-income countries. Based on the latest data
from the World Health Organization, the number of people suffering
from dementia is estimated to be 55 million in 2019 and expected to
increase to 139 million in 2050 (Gauthier et al., 2022). Therefore, it
is crucial to study the pathogenesis of AD to find diagnostic methods
and the treatment strategies.

In-depth studies of postmortem AD patient brains or transgenic
AD mouse models have shown that the neuropathology of AD
brain is mainly characterized by neuronal cell death, aggregation of
neurogenic fiber tangles and formation of neural plaques (Kou et al.,
2020; Rahman et al., 2020). Of these, the aggregation of plaques
and fiber tangles in the hippocampus are closely associated with
cognitive decline. Unlike other brain regions, the adult mammalian
hippocampus contains Neural Stem Cells (NSCs), which can generate
new neurons, a process known as Adult Hippocampal Neurogenesis
(AHN) (Babcock et al., 2021).

For decades, it was widely believed that the death and loss
of neurons was permanent and irrecoverable. However, thanks to
continuous efforts in the field of neuroscience, it is now generally
accepted that certain areas of adult human brain do undergo
neurogenesis during a long lifetime (Kumar et al., 2019), which
can produce new functional neurons. The Subgranular Zone (SGZ)
in the dentate gyrus (DG) portion of the hippocampus is one of
the sites where neurogenesis exists in adult human brain, a process
known as AHN. Most NSCs in the adult brain are quiescent and
are not active in proliferating, whereas NSCs in the SGZ and the
Subependymal Ventricular Zone (SVZ) have the ability to self-renew,
divide and differentiate into mature granule neurons (Imayoshi et al.,
2008).

AHN is a complex process with multiple steps (Figure 1),
including (1) Neural Precursor Cells (NPCs) in the SGZ, origin
of neurons, divide to be new NSCs or neural progenitor cells;
(2) Both NSCs and neural progenitor cells have the ability
to proliferate and differentiate into new neurons; (3) Newborn
neurons go into the granule cell layer to grow axons and
dendrites, eventually connecting with the internal olfactory cortex
and hippocampus and integrating into the hippocampal network
(Kempermann et al., 2003, 2015; Babcock et al., 2021; Gillotin et al.,
2021).

Long-term studies in rodents show that the proportion of NSCs
dividing actively in DG region becomes less with age, indicating
that neural regeneration declines significantly with age. Like rodents,
hippocampal neurogenesis in humans persists with age, but the
amount of neurons decreases significantly (Boldrini et al., 2018).

Sustained hippocampal neurogenesis in adults is important for
neuronal plasticity, learning and memoring, and emotion regulation,
and therefore the importance and relevance of AHN in AD cannot
be overstated (Kempermann et al., 2018). In this review, we will
summarize the changes of AHN in AD and its alteration mechanisms,
laying the groundwork for further investigation into the pathogenesis
and diagnostic approaches of AD.

2. Altered adult hippocampal
neurogenesis in Alzheimer’s disease

Although AHN still exists, its regeneration will decrease with age
(Boldrini et al., 2018). As for AD patients, “what is the status of the
AHN?” During a long period of research, different voices appeared.

2.1. The increase of AHN

More than a decade ago, studies on the effects of AHN in AD
mostly based on the brains of deceased AD patients and AD mice
model. These findings showed an increase of AHN in the older
AD patients, based mainly on the upregulation of the expression of
the neuronal markers DCX, neurogenic differentiation factor TUC4
and PSA-NCAM (Jin et al., 2004b). Scientists believe that such an
increase of AHN is a compensatory mechanism overcoming neuronal
damage due to neurodegeneration (Boekhoorn et al., 2006). To study
the occurrence and development of AD, hundreds of AD animal
models are available for scientific research. Studies have shown
that an increase of AHN in APPSw,Ind AD model mice (Jin et al.,
2004a). In addition, increased neurogenesis has been observed in
PS-1 overexpressing and APP/PS1 double transgenic AD mice with
disease progression (Zeng et al., 2016).

2.2. The decrease of AHN

However, with our deep understanding of the pathogenesis of
AD disease and brain networks, different research results have been
presented. Comparison between NSCs in brain tissue of AD deaths
and that of the control group found that the AD group’s cell
survived less, or failed prematurely (Lovell et al., 2006). Even at early
stages of Braak staging, when the levels of Aβ and neurogenic fiber
tangles accumulation were low, the expression of DCX, SOX2, and
MAP2A in the hippocampus were decreased dramatically in AD
patients compared with the control group, indicating downregulation
of hippocampal neurogenesis (Li et al., 2008; Crews et al., 2010).
Mushashi is an evolutionarily conserved RNA-binding protein and
stem cell marker that regulates neurogenesis by altering the balance
of self-renewal and differentiation (Velasco et al., 2019). When
Mushashi and Ki-67 were used as markers in the AD patients, it
is found that the number and viability of neural progenitor cells in
SVZ were reduced significantly (Ziabreva et al., 2006; Velasco et al.,
2019). And a cross-sectional study of several AD patients aged 52–
97 found that a relative decline in the number of immature neurons
at all stages, compared to healthy older adults. In particular, although
DCX-positive cells decreased with age, the decline in AD patients was
more severe (Moreno-Jiménez et al., 2019; Tobin et al., 2019). In the
study of AD animal models, the SGZ and SVZ regions of 3xTg mice
showed significantly impaired neurogenesis, with a 63% decrease in
hippocampal neural stem cell proliferation at the age of 4 months and
almost no new neurons at the age of 12 months (Rodríguez et al.,
2008, 2009; Hamilton et al., 2015). For 5xFAD mice, DCX positive
expression in the hippocampal region began to decline at the age
of 2 months, and was almost undetectable by the age of 7 months,
indicating reduced hippocampal neurogenesis in the mice (Moon
et al., 2014).

The differences in findings for AD patients may be due to
limitations in sample size or individualized differences that may be
accompanied by other diseases. The contradiction between different
genotypes of mice may also be the result of the way in which
the model mice are induced leading to their different effects on
AHN. However, some studies show that for the early stages of
AD pathological development, the immune system in the brain
still plays a role in improving the microenvironment of the brain
by removing cellular debris, which favors AHN. Whereas, as AD
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FIGURE 1

Graphic illustration of Adult Hippocampal Neurogenesis (AHN). In normal brain, the neural precursor cells (NPCs) located in the Subgranular Zone (SGZ)
proliferate and differentiate to form neural progenitor cells or neuroblasts, which further differentiate into new neurons. The newborn neurons continue
to migrate, proliferate, develop axons and dendrites, become mature neurons, and integrate into the hippocampal network. However, in AD brain, the
proliferation and differentiation of neurons are inhibited due to Aβ aggregation and other factors in most cases. Some of this illustration was started from
a Scidraw Template.

TABLE 1 Summary of adult hippocampal neurogenesis in AD patients and model mice.

Sample Group Changes in AD hippocampal structure Neurogenesis
marker expression

References

AD patients Control (n = 11),AD (n = 14) The number of new neurons in CA1 region increased DCX↑,PSA-NCAM↑ Jin et al., 2004b

Control (n = 10),AD (n = 9) The cross-sectional area of CA1 and CA2 zones decreased Ki67↑,GFAP↑ Boekhoorn et al., 2006

Control (n = 15),AD (n = 14) — MAP2a/b↑, Li et al., 2008

Control (n = 5),AD (n = 14) — DCX↓,SOX2↓ Crews et al., 2010

Control (n = 7),AD (n = 7) Neural progenitor cells in SVZ region were significantly reduced Musashi1↓,Nestin↑ Ziabreva et al., 2006

AD models APPTg mice n = 4 Dense amyloid deposits BrdU↓,DCX↓,SOX2↓ Crews et al., 2010

Tg2576 mice — — BrdU↓,DCX↓ Krezymon et al., 2013

— — BrdU↓,DCX↓,NeuN↓ Li et al., 2015

APPSw ,Ind

mice
— — BrdU↑,DCX↑ Jin et al., 2004a

PS1 mice — — BrdU↓,NeuN↓ Wang et al., 2004

— — BrdU↓,Calretinin↓ Wen et al., 2004

3xTg mice n = 3∼7 New neurons appear in the dentate gyrus HH3↓ Rodríguez et al., 2008

— — DCX↓,Ki67↓,GFAP↓ Hamilton et al., 2015

5xFAD mice — — DCX↓,HH3↓,Calretinin↓ Moon et al., 2014

Tg (n = 12),non-Tg (n = 12) — Ki67 (—),DCX↓ Zaletel et al., 2018

— — DCX↑,Ki67↑ Ziegler-Waldkirch et al.,
2018

APP/PS1 mice — — BrdU↓,DCX↓ Demars et al., 2010

— — BrdU↓,Nestin↓ Zeng et al., 2016

— — BrdU↓,DCX↓ Demars et al., 2010

DCX, doublecortin; PSA-NCAM, polysialated form of neural cell adhesion molecule; Ki67, proliferative marker; GFAP, glial fibrillary acidic protein; SOX2, SRY (sex determining region Y)-box 2;
BrdU, 5-Bromodeoxyuridine; HH3, Histone H3.
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disease progresses, the inflammatory response in the brain increases,
exacerbating neurotoxicity and decreasing AHN levels (Song et al.,
2012; Gray et al., 2020).

In summary, the AHN shows different degrees of changes
during the development of AD disease (Table 1). The underlying
mechanisms of AHN alteration have also been studied more
extensively.

3. Key mechanisms of altered AHN in
Alzheimer’s disease

Among the major pathogenesis of AD, one of the important
hypotheses is the amyloid hypothesis, which states that there is an
abnormal accumulation of Aβ in the brain tissue. These peptides are
neurotoxic and eventually lead to neuronal death and degeneration,
with the hippocampus being the “hardest hit” area (Santin et al.,
2011). The hippocampus is the main area where adults continue
to produce new neurons. This AHN is closely related to memory,
learning, and cognitive abilities in AD patients. With the increasing
number of studies on the mechanisms of hippocampal neurogenesis,
more is known about how ANH plays its role during the development
of AD disease.

3.1. Energy metabolism

3.1.1. Glycolysis
Glucose is the only source of energy in the brain. When the

utilization of glucose in the brain is impaired, the function of brain
will be affected to a large extent (Vercruysse et al., 2018). In a
healthy brain, glucose metabolism is an important source of energy
for neurons. And when glucose utilization in the brain decreases,
so does human cognitive ability (Tingley et al., 2021). In total,
30% of glucose used by the human brain is aerobic glycolysis
(Magistretti and Allaman, 2015). Astrocytes are the most abundant
cell type and major consumer of glucose in the central nervous
system (CNS). Glycolysis and lactate production are metabolic
features of astrocytes, while neurons meet their energy requirements
mainly through oxidative phosphorylation (Bélanger et al., 2011;
Magistretti and Allaman, 2015). Aerobic glycolysis of astrocytes
provides important nutritional support for CNS neurons. It has been
shown that SNX27R196W (equivalent to human R198W) attenuates
glucose uptake by astrocytes via Glucose Transporter 1 (GLUT) in
mice, and causes a decrease in lactate production and deficits in
synaptic function and learning behavior (Zhang et al., 2022).

NSCs in the SVZ and SGZ regions undergo various stages in
the process of differentiation into mature neurons. In this process,
stem cells rely on glycolytic metabolism rather than mitochondrial
oxidative phosphorylation (Folmes et al., 2011). Mitochondria
manage metabolites and the epigenetic state of NSCs, regulating the
differentiation process of NSCs during AHN (Khacho et al., 2019). In
AD, excessive aggregation of Aβin the brain induces mitochondrial
dysfunction in neural progenitor cells and inhibits the differentiation
of newborn neurons by reducing glucose utilization, leading to
AHN dysregulation (Kim et al., 2022). In addition, abnormal insulin
metabolism is another essential feature of AD, and insulin resistance
mainly affects glucose metabolism of the brain in the hippocampus
(Watson and Craft, 2003). The reduction of glucose transport and

uptake may be caused by GLUT deficiencies. The GLUTs distributed
in the brain are mainly GLUT1 and GLUT3, with GLUT1 involved
in glucose transport to brain glial cells and GLUT3 transporting
glucose to neurons. It has been demonstrated that metformin can
normalize glucose transport and uptake in the brain by inhibiting
the activity of GSK-3βand increasing the expression of GLUT1 and
GLUT3 to promote neuronal regeneration and prevent neuronal
damage (Pilipenko et al., 2020).

3.1.2. Lactate metabolism
In addition to important substrates of energy metabolism such

as glucose and ketone bodies that provide energy to the brain,
lactate metabolism also plays a crucial role in memory. Under high
energy demand, lactate is involved in regulating neurogenesis-related
processes such as angiogenesis, neuronal excitability and plasticity.
Moreover, lactate is also involved in regulating the metabolism
and signaling pathways of non-neural cells in the neurogenic
microenvironment, such as endothelial cells, oligodendrocytes,
microglia and astrocytes (Matsui et al., 2017; Lev-Vachnish et al.,
2019). Among the large number of metabolites consumed by
oligodendrocytes, in addition to glucose, there is also important
lactate, which is used for myelin formation or myelin repair after
demyelination injury to promote axonal integrity. Furthermore,
the addition of lactate under low glucose conditions can rescue
oligodendrocyte lineage cells and promote their myelin formation.
It has been suggested that oligodendrocyte dysfunction and early
demyelination in APP/PS1 mice may accelerate the progression of
AD disease (Ichihara et al., 2017). And lactate treatment produces
more myelin compared to glucose, suggesting that oligodendrocytes
may be more dependent on lactate as a substrate for myelin
production (Rinholm et al., 2011). Some studies have shown that
when demyelinating lesions occur in mice, the expression of p-CREB
and BDNF will be significantly reduced, further affecting the
development of mature neurons in mice, and damaging AHN (Hahn
et al., 2022).

Lactate metabolism in the CNS is categorically inseparable from
the process of exploring lactate transport, and there are 1–14 isoforms
of Monocarboxylate Transporter (MCT), which are distributed in
different cells and play different roles. In the central nervous
system, MCT1, MCT2, and MCT4 facilitate lactate transport between
nerve cells (Pierre et al., 2000). Lactate transport is required for
memory formation and synaptic transmission in the hippocampus.
When MCT transport is dysfunctional, it may lead to impaired
lactate transport, which in turn hinders energy metabolism and
causes memory impairment (Nagase et al., 2014). In endothelial
cells, the PI3K/AKT pathway regulates MCT-1 expression and
subsequent lactate transport, and the transported lactate activates
HCAR1 on astrocytes to regulate vascular endothelial growth factor
(VEGF) levels, thereby enhancing angiogenesis and promoting AHN.
Thus, abnormal lactate accumulation in the hippocampus disrupts
AHN and impairs learning and memory functions (Scandella and
Knobloch, 2019). According to the astrocyte-neuron lactate shuttle
hypothesis, astrocytes promote glucose consumption or glycogen
breakdown to enhance lactate production, which is then transported
to neurons via MCT to support neuronal activity. In AD, the
astrocyte’s ability to take up glucose is diminished and lactate
production is reduced, which affects the subsequent neuronal
regeneration process (Nicola and Okun, 2021). In the course
of neuroinflammation, MCT1 dysfunction and changes in lactate
levels affect the pro-inflammatory response of microglia. Microglia
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can phagocytose and remove apoptotic cells, including neoplastic
neurons through phagocytosis to further balance the proliferation
and survival of neoplastic neurons (Kong L. et al., 2019).

A growing body of research suggests that voluntary physical
exercise can upregulate specific neurotransmitters levels in the brain,
including the brain-derived neurotrophic factors (BDNF) and VEGF,
and increase adult hippocampal neurogenesis, in which lactate plays
an important role (Vivar and van Praag, 2017). During physical
exercise, lactate concentration in the blood increases, which facilitates
neuronal differentiation and survival of newborn neurons (Lev-
Vachnish et al., 2019). But how this relationship develops in AD
requires further research.

3.1.3. Lipids metabolism
Extracellular aggregation of neuritic plaques and intracellular

aggregation of neurofibrillary tangles are histopathological hallmarks
of AD and are closely associated with synaptic defects and
neurodegeneration (Yamaguchi et al., 1991). Amyloid Precursor
Protein (APP) is sheared by β-secretase and γ-secretase to form
Aβ fragments, which form neuritic plaques in the brains of AD
patients. Both β-secretase and γ-secretase are intact lipoproteins, and
their action depends mainly on the level of lipids present in the
membrane (Campos-Peña et al., 2022). Evidence suggests that AHN
disorders caused by lipid metabolism disorders make patients more
susceptible to AD. Monoacylglycerol lipase (Mgll), a hydrolase that
breaks down endogenous fats, is now considered a potential target
for AD. It was demonstrated that in postmortem AD patients and
3xTgAD mouse models, there is an age-dependent induction of Mgll
due to diminished aPKC-CBP signaling, thereby reducing neuronal
production in the brains of AD patients and impairing their cognitive
function (Syal et al., 2020).

It is well known that cholesterol is the main protein required
to maintain the dynamic homeostasis of cell membranes, and the
brain is the organ with the highest cholesterol content. It has been
demonstrated that cholesterol homeostasis affects the production of
amyloid protein. In addition, there are many lipids present in the
cell membrane, such as sphingomyelin and cardiolipin, which may
alter the function of a variety of transmembrane proteins (Fabiani
and Antollini, 2019). In the adult brain, 70–80% of cholesterol is
found mainly in the myelin sheath, with the rest in the plasma
membrane of astrocytes and neurons, protecting their morphologies
and synaptic transmission processes (Dietschy and Turley, 2004;
Zhang and Liu, 2015). High levels of cholesterol in the cell membrane
also cause significant changes in the dynamic homeostasis of neurons,
which affects the proteolytic activity of γ-secretase (a transmembrane
protein), including promoting amyloidogenesis, increasing APP
processing, producing amyloid, and affecting the microenvironment
of AHN (Kao et al., 2020). ApoE is a glycoprotein mainly secreted
by astrocytes, which is involved in regulating lipid transport,
synaptogenesis and amyloid clearance, and also plays an important
role in hippocampal neurogenesis. There are three common isoforms
of ApoE in humans, including ApoE2, ApoE3, and ApoE4. The study
indicated that overexpression of ApoE4 decreased adult neurogenesis
in mice comparing with wild-type controls, while ApoE3 and
ApoE2 expression promoted the proliferation and genesis of neural
progenitor cells in the DG region (Koutseff et al., 2014). Moreover,
ApoE4 can negatively affect adult hippocampal neurogenesis by
modulating γ-aminobutyric acid interneurons and decreasing levels
of neurosteroids (e.g., allopregnanolone). In contrast, ApoE3 can
counteract chemokine-induced neuroinflammation and improve

AHN (Suidan and Ramaswamy, 2019). Therefore, ApoE is expected
to be a therapeutic target for AD (Chen et al., 2021).

In addition, by studying the “senile plaques” in the brain of
AD patients, it was found that in addition to Aβ aggregation, there
are many kinds of lipids in the senile plaques, such as ganglioside.
Specific accumulation of monosialic acid gangliosides was found
in the hippocampal subgranular region of a 12-month-old 5xFAD-
AD mouse model, suggesting a potential relationship between the
accumulation of plaque-associated gangliosides and damaged neural
regeneration (Kaya et al., 2020).

3.2. Epigenetics

As technology improves, more and more studies show that
epigenetic mechanisms, such as DNA methylation, histone
post-translational modifications and microRNA-mediated post-
transcriptional gene regulation, are involved in the pathogenesis of
AD and thus influence the onset and progression of AD (Hernaiz
et al., 2022; van Zundert and Montecino, 2022).

3.2.1. DNA methylation
DNA methylation is an epigenetic mechanism that occurs by

the covalent transfer of a methyl group to the C-5 position of the
nuclear base cytosine to form 5-methylcytosine, which is involved
in the regulation of gene expression (Moore et al., 2013). In order
to investigate whether epigenetic alterations lead to late-onset AD,
some researches focused on the DNA methylation status of the risk
genes. The results showed that there is a decrease in CpG methylation
at the APP gene promoter in neurons and glial cells, accompanied
by an increase in APP gene expression, which in turn leads to an
overproduction of Aβ (Tohgi et al., 1999). In addition, changes in
DNA methylation also occur in other related genes, such as MCF2L,
MAP2, ANK1, HOX3A, etc. (Gasparoni et al., 2018).

Among the pathological features of AD, impairments in
epigenetic mechanisms also lead to the generation of damaged
neurons by neural stem cells, which will aggravate the loss of neurons
and the defects of learning and memory (Li et al., 2016). DNA
methylation of promoters can result in transcriptional repression
through DNA methyltransferases (DNMTs) in neurodevelopment,
while the deletion of DNMT1 in neural progenitors impairs the
maturation and survival state of neurons, causing precocious
astrocyte differentiation (Hutnick et al., 2009). And it was shown
that the IL-6/JAK2/STAT3 pathway can regulate neurogenesis by
improving DNMT1 in NSCs, promote DNA demethylation to
regulate NSCs status at the epigenetic level, and further regulate
AHN (Kong X. et al., 2019; Figure 2). The development of neural
progenitor cells is an important node in the process of AHN,
and mitochondria in neural progenitor cells play a crucial role in
AHN (Gage, 2019). Whether in AD model mice or in Aβ-induced
in vitro cell lines, the aggregation of Aβ can induce mitochondrial
damage in neural progenitor cells and lead to the defect of AHN
and cognitive function. In-depth mechanistic studies revealed that
damage to mitochondria causes degradation of lysine demethylase
5A (KDM5A) in neural progenitor cells, which in turn result in
AHN deficits. It may be because the genetic reduction of KDM5A
expression reduces the transcription of BDNF in the brain, inhibits
neural differentiation and leads to memory deficits (Bath et al.,
2012; Kim et al., 2022). Additionally, the human neural progenitor
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FIGURE 2

Regulation of IL-6/JAK2/STAT3 pathway on AHN. IL-6 can alter the expression of TET3 and DNMT1 in NSCs through JAK2/STAT3 signaling pathway, thus
enhancing the expression of NeuroD1 (Neurogenic differentiation 1) gene through active or passive DNA demethylation, and regulating NSCs
neurogenesis at the epigenetic level. Some of this illustration was started from a Scidraw Template.

cells induced from pluripotent stem cells were used to establish a
simple in vitro adult neurogenesis model to study DNA methylation
in the context of AD disease. And it found that the methylation
levels of NXN genes were elevated and differential DNA methylation
were observed in immature neurons by quantifying genes related to
neurogenesis in the hippocampal region in the context of simulated
AD (Blanco-Luquin et al., 2022).

3.2.2. Histone modification
The appearance of neurofibrillary tangles and the aggregation of

neural plaques in AD patients are some markers of abnormal histone
post-translational modifications during the development of AD, and
these abnormal modifications are closely related to the cognitive
impairment of AD patients in the later stage. Histones are structural
proteins that form DNA nucleosomes. Their N-terminal sequences
protrude beyond the boundaries of nucleosomes and provide a
surface for the recognition and subsequent interaction of proteins
that regulate transcription. They usually participate in the expression
and repression of target genes through chromatin modification. At
present, histone modifications that have been studied extensively
include acetylation, methylation and phosphorylation (Voigt and
Reinberg, 2013; Audia and Campbell, 2016). Phosphorylation is
one of the most common modifications in proteome biology, and
approximately 30% of proteins undergo this modification by adding
phosphate groups to serine, tyrosine and threonine residues. There
is also growing evidence that phosphorylation modifications in
many diseases alter the basic function of proteins and drive cell
death signals (Humphrey et al., 2015). Tau protein, a microtubule-
associated protein, has been proved to promote the formation of
neurogenic fiber tangles by hyperphosphorylation in the brains of AD
patients. The phosphorylated Tau protein accumulates excessively in
GABAergic interneurons in the DG region of AD patients and mice,

which impair the AHN by suppressing GABAergic transmission
(Zheng et al., 2020). And this hyperphosphorylated Tau protein
accumulation occurs mainly in the early and middle stages of AD.
In the late stage of AD, the phosphorylated Tau protein gradually
disappears from the nuclei of the granule cell of the DG region (Gil
et al., 2022). Heme oxygenase was found to be neuroprotective in
AD mice by modulating the levels of p–Ser9-GSKβ and p–Tyr216-
GSKβ to improve the survival and proliferation capacity of NSCs
and promote AHN in AD disease model (Si et al., 2020). In a
mouse model of fragile X-chromosome syndrome, scientists found
that neurogenesis could be improved by improving the level of
histone acetylation modification to rescue cognitive deficits in mice
(Li et al., 2018). In addition, H3K9me3, the ninth lysine on histone
H3 is methylated and is a common inhibitory histone modification.
Scientists have demonstrated that the expression and distribution
of H3K9me3 changes dynamically in dentate gyrus of adult mouse
and cultured adult hippocampal neurons, exhibiting high levels of
expression early in neurogenesis. And silencing of H3K9 transferase
mediated by retrovirus significantly impairs neural progenitor cell
differentiation (Guerra et al., 2021). To understand the specific role
of histone modifications in AD, more future studies are needed to be
carried out.

3.2.3. miRNAs
MiRNAs are a class of single stranded non-coding RNAs with

about 19–23 nucleotides, which are important epigenetic and post-
transcriptional regulators of mRNA complexity. Due to their small
molecular weight, amphiphilic and high solubility, they have strong
mobility and are ubiquitous in the central nervous system. They
are the minimum information of nucleic acid signal molecules in
eukaryotes described so far (Zhao et al., 2020). In recent years,
a growing number of studies have shown that miRNAs play a
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key role in the development of many neurodegenerative diseases,
and their role in the pathogenesis of AD involves the regulation
of amyloid precursor protein (APP), BACE1, neuronal apoptosis
and other factors (Deng et al., 2014). With the development of
scientific technology, miRNA dysregulation has also been found to
be associated with the development of AD (Rahman et al., 2020).
The network analysis of brain miRNAs in AD patients at Braak stage
III revealed that a large number of miRNAs were related with the
immune system, cell cycle, gene expression, cellular stress response,
nerve growth factor signal, Wnt signal and cellular senescence, such
as miR-107, 26b, 30e, 34a, 485, 200c, 210, 146a, 34c, 125a. Among
them, miR-200c, 146a, 34c, 125 expression is increased in the brains
of AD patients, while miR-210, 485, 107 expression is decreased, and
the remaining ones are dynamically changed with disease progression
(Swarbrick et al., 2019).

As increasing studies have observed the dysregulation of
microRNA expressions in AD, more researches have been conducted
on their effect on AHN. MiR-9 is one of the most abundant
microRNAs in mammalian central nervous system. It can promote
neural differentiation of NSCs by targeting related genes to induce
neurogenesis (Landgraf et al., 2007; Yoo et al., 2009). And it can
inhibit Notch signal pathway (participating in the regulation of
nervous system development and stem cell biological activity) in AD
and promote NSCs to differentiate into neurons, thus promoting
AHN (Li et al., 2017). The expression levels of miR-206 were
increased in Tg2576 AD mice and AD patients. Inhibition of miR-
206 expression in AD mice could improve Aβ deposition as well
as BDNF expression levels, enhance hippocampal synaptic density
and neurogenesis, and further improve memory function (Lee et al.,
2012). MiR-351-5p is a pathogenic factor of hippocampal neural
progenitor cells, which is widely expressed in AD patients. Inhibition
of its downstream gene Miro 2 can induce a large number of
mitochondrial divisions and lead to bad mitosis, which result in
the loss of a large number of normal mitochondria and the death
of hippocampal neural progenitor cells (Woo et al., 2020). MiR-
132 is one of the consistently downregulated microRNAs in the
development of AD. And it is an effective regulator of AHN. When
miR-132 levels were restored in the hippocampus, the hippocampal
AHN and associated memory deficits can be improved in AD mice
(Walgrave et al., 2021). MiR-188-5p expression is also reduced
in AD samples, while increasing its expression levels in primary
hippocampal neurons and 5xFAD mouse neurons was found to
further improve cognitive deficits by improving neuronal survival
(Lee et al., 2016).

3.3. Neuroinflammation

In the brain of AD patients, neuroinflammation is one of the
key pathological features. Microglia are the major inflammatory
cells of the central nervous system, and under normal physiological
conditions, their main functions are to support the integrity and
survival of neuronal networks and to maintain brain homeostasis,
development, etc. More and more studies have found that many AD-
associated risk locus are unique or highly expressed in microglia,
which suggests that microglia play an important role in the
development of disease under the pathological conditions of AD
(Pintado et al., 2017; Eshraghi et al., 2021; Lopes et al., 2022). The
activation time of microglia is earlier than that of Aβ and Tau
protein pathology in both brains of AD patients and AD mouse

models (Tarkowski et al., 2003; Wright et al., 2013). And previous
study also proved that Aβ can induce lysosomal damage and activate
inflammatory corpuscles in microglia to mediate inflammatory
reaction in central nervous system (Halle et al., 2008).

For AHN, only a small number of newborn cells in SGZ of DG
are able to survive after phagocytosis by microglia and eventually
integrate into local circuits, suggesting that microglia are critical for
the homeostatic formation of the regenerative microenvironment
within the brain for hippocampal neuroregeneration. More and more
researches revealed that alterations in microglia status are critical
for AHN. Interleukin-6 (IL-6), a pro-inflammatory cytokine known
to regulate neurogenesis, has been reported to inhibit neurogenesis
in neural stem cells via the JAK2/STAT3 signaling pathway (Kong
X. et al., 2019). It was also demonstrated that photobiomodulation
therapy can upregulate IFN-γand IL-10 expression levels in the brain
of APP/PS1 and 3xTg AD model through JAK2-mediated signaling
and STAT4/STAT5 signaling pathways, and induce improved
microenvironmental conditions in the brain, which promotes AHN
and reverse cognitive deficits (Wu et al., 2022). These findings are
critical for potential therapeutic approaches in AD. In the early
stage of AD, microglia can inhibit the progression of inflammation
and assist in the clearance of Aβ to improve the intracerebral
microenvironment, which is beneficial to AHN. However, with
the development of AD disease, microglia will be affected by
inflammatory factors that exacerbate the inflammatory reaction,
and the interaction with astrocytes will further aggravate the
neurotoxicity (Song et al., 2012; Gray et al., 2020). As a part of the
innate immune system, the complement system plays an important
role in the clearance of pathogens and cellular debris. In the
healthy brain, complement affects neurodevelopment, neurogenesis,
synapse formation and phagocyte recruitment, and protects the
body from pathogens (Schartz and Tenner, 2020). However, in
the process of AD disease, excessive activation of downstream
complement will lead to the production of C5a, which can bind
with the receptor and cause a series of negative reactions such
as inflammation, injury and neuronal death (Ager et al., 2010).
It has been shown that in AD, the C5a-C5aR1 signaling pathway
can accelerate disease progression by enhancing the activation of
microglia and exacerbating neuroinflammation (Carvalho et al.,
2022). In the process of finding an effective treatment for AD, people
found that sigma1 receptors (S1Rs) may regulate AHN, prevent Aβ-
induced neurotoxicity and modulate the pathophysiology of AD,
and have great potential as new targets for treatment (Penke et al.,
2018; Ma et al., 2021). In an early AD model induced by Aβ 1–
42, it was found that the use of two agonists of S1Rs–DMT and
PRE084 not only significantly reduce the proliferation of highly
reactive astrocytes, but also affect neurogenesis and the survival of
mature neurons. Furthermore, as a presynaptic self-receptor, the
histamine H3 receptor is highly expressed not only in neurons but
also in microglia, and regulates the inflammatory response together
with microglia (Naddafi and Mirshafiey, 2013). Inhibition of H3R
decreases the activity of microglia, promotes a phenotypic shift
from pro-inflammatory M1 to anti-inflammatory M2, and attenuates
neuroinflammation. In addition, hippocampal neurogenesis was
improved by enhancing histamine release, which in turn improved
cognitive dysfunction (Wang et al., 2022).
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FIGURE 3

Exercise promoting the adult hippocampal neurogenesis (AHN) and improving the cognitive function of AD mice. On one hand, exercise intervention
can promote the cleavage of amyloid precursor protein (APP) by affecting the levels of key secretory enzymes (such as β-secretase, γ-secretase, etc.)
and reduce the aggregation of Aβ in brain. On the other hand, exercise can regulate the levels of neurotrophic factors (such as BDNF, VEGF, etc.), create
a microenvironment conducive to AHN, and promote the survival and differentiation of new neurons. Some of this illustration was started from a Scidraw
Template.

4. Therapeutic potential of AHN in AD

As more and more researches demonstrate that AHN declines in
AD patients, promoting nerve regeneration has emerged as a new
target for AD treatment. It has been found that nerve regeneration
can be promoted by reducing neuroinflammation. For example,
the use of the anti-inflammatory drug minocycline can reduce
neuroinflammation in the hippocampus by inhibiting microglia
activation, which further promotes AHN (Lue et al., 2001). In
addition, many studies support Chinese Herbal Medicine can be used
for the routine treatment of AD (Cui et al., 2008; Mao et al., 2015;
Chen et al., 2016; Yang et al., 2017). Stem cell transplantation can also
reduce the effect of nerve inflammation on nerve regeneration and
promote the emergence of new neurons, which is a promising method
to change the pathology of diseases. However, due to some “side
effects,” this type of treatment has not been widely used (Levenstein
et al., 2006). Today, stem cell therapy using mesenchymal stem cells
(MSCs) has emerged as a promising strategy for regulating the adult
hippocampal niche. MSCs can migrate across the blood-brain barrier
with the help of stimulants, generate and differentiate new neurons,
and enhance memory function by secreting cytokines and trophic
factors important for promoting and anti-inflammatory regulation
(Noureddini and Bagheri-Mohammadi, 2021). Other studies have
shown that enhancing neural progenitor cell differentiation can
improve AHN. For example, fluoxetine can increase the proliferation
of progenitor cells, while phosphodiesterase inhibitors can promote
the differentiation of cells. Both of them can improve AHN to rescue
cognitive dysfunction in mice with AD (Bartolome et al., 2018;

Ou et al., 2018). Furthermore, lentivirus-mediated gene therapy for
Wnt3 (upstream activator of the β-catenin pathway) overexpression
can also promote AHN in the brains of AD patients (Lie et al.,
2005). While NeuroD1 was shown to be an important target for
repairing neuronal differentiation defects in the brains of AD
patients, its overexpression promotes the transcription of genes
related to neuronal differentiation, facilitating neuronal maturation
and effectively improving spatial memory deficits in AD mice
(Richetin et al., 2015; Pataskar et al., 2016). In recent years, studies
at the molecular level have become increasingly advanced, and it has
been found that miR-132 level changes are closely related to NSCs
proliferation and differentiation besides Aβ pathology in AD mice.
The overexpression of miR-132 can effectively regulate AHN, but
whether it can be effectively applied to clinical needs more relevant
researches (Walgrave et al., 2021).

In addition to drugs, a growing body of research suggests
that physical exercise may be an effective method for prevention
or rehabilitation, which can improve the AHN and cognitive
dysfunction in AD animal models through upregulating synaptic
signaling pathways, downregulating inflammation-related genes and
promoting neurogenesis (Maliszewska-Cyna et al., 2016; Santiago
et al., 2022). To investigate the potential mechanisms between
physical exercise and AHN, the scientists assessed the effects of
treadmill exercise on the cognitive ability of AD mouse model. They
found that exercise could modulate various neurotrophic factors
(e.g., BDNF) and secretory enzymes (e.g., γ-secretase) that cleave
APP through the non-β-amyloid pathway to reduce Aβ aggregation
and improve the hippocampal microenvironment, which further
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promotes the survival, proliferation and differentiation of newborn
neuron to enhance AHN and improve cognitive function of AD
mouse (Vaynman et al., 2004; Inoue et al., 2015; Yu et al., 2021;
Figure 3).

In a word, lots of studies have demonstrated the effectiveness
of enhancing AHN to improve learning and memory cognitive
performance in AD mice. However, more research is needed to
improve the clinical use of this treatment.

5. Summary

In conclusion, the impairment of AHN during the development
of AD is closely associated with learning memory and cognitive
dysfunction in AD patients or animal models, which is widely
confirmed. However, there are still some unknown factors that affect
the consistency of the findings, which will require more research
to verify its characteristic manifestations at different stages of AD
development. In addition, as the pathogenesis of AD is increasingly
elucidated and the mechanisms of AHN become clearer and clearer,
the exact mechanisms of altered AHN in AD are gradually gaining
more attention. Impaired energy metabolism, epigenetic mechanisms
and neuroinflammation are important pathological features in the
development of AD. And a growing number of studies have
demonstrated that these pathological alterations have potential
important link with the impairment of AHN. Overall, these findings
provide strong evidence for our understanding of the interaction
between the development of AD and AHN, which will help us
to further identify targets that regulate neurogenesis as a potential
approach to treat AD-related deficits. Although many studies have
shown that promoting AHN can effectively improve cognitive deficits
in AD, animal models, it is still challenging to put it into the clinical
practice. Therefore, we need to improve our research to make it

more applicable to AD patients, and provide new and effective
therapeutic approaches.
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