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Background: Alzheimer’s disease (AD), a neurodegenerative disorder with 
progressive symptoms, seriously endangers human health worldwide. AD 
diagnosis and treatment are challenging, but molecular biomarkers show 
diagnostic potential. This study aimed to investigate AD biomarkers in the 
peripheral blood.

Method: Utilizing three microarray datasets, we  systematically analyzed the 
differences in expression and predictive value of mitophagy-related hub genes 
(MRHGs) in the peripheral blood mononuclear cells of patients with AD to identify 
potential diagnostic biomarkers. Subsequently, a protein–protein interaction 
network was constructed to identify hub genes, and functional enrichment 
analyses were performed. Using consistent clustering analysis, AD subtypes with 
significant differences were determined. Finally, infiltration patterns of immune 
cells in AD subtypes and the relationship between MRHGs and immune cells 
were investigated by two algorithms, CIBERSORT and single-sample gene set 
enrichment analysis (ssGSEA).

Results: Our study identified 53 AD- and mitophagy-related differentially expressed 
genes and six MRHGs, which may be  potential biomarkers for diagnosing AD. 
Functional analysis revealed that six MRHGs significantly affected biologically 
relevant functions and signaling pathways such as IL-4 Signaling Pathway, RUNX3 
Regulates Notch Signaling Pathway, IL-1 and Megakaryocytes in Obesity Pathway, 
and Overview of Leukocyteintrinsic Hippo Pathway. Furthermore, CIBERSORT 
and ssGSEA algorithms were used for all AD samples to analyze the abundance 
of infiltrating immune cells in the two disease subtypes. The results showed that 
these subtypes were significantly related to immune cell types such as activated 
mast cells, regulatory T cells, M0 macrophages, and neutrophils. Moreover, 
specific MRHGs were significantly correlated with immune cell levels.

Conclusion: Our findings suggest that MRHGs may contribute to the development 
and prognosis of AD. The six identified MRHGs could be  used as valuable 
diagnostic biomarkers for further research on AD. This study may provide new 
promising diagnostic and therapeutic targets in the peripheral blood of patients 
with AD.
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1. Introduction

Alzheimer’s disease (AD) is a common, progressive, and complex 
neurodegenerative disorder that causes cognitive decline, memory 
loss, and difficulty performing daily tasks (Heckmann et al., 2020). 
Globally, AD poses a huge threat to people’s health and a significant 
economic burden to society (Dumitrescu et al., 2020). Thus far, the 
pathogenesis of AD remains unknown, and there is no definitive 
treatment. Some molecules correlate with AD progression and 
cognitive decline; the identification of molecular changes and 
biological processes connected to AD can increase our understanding 
of AD pathogenesis and provide biomarkers for AD.

Pathological hallmarks of AD are aggregated amyloid-β (Aβ) 
protein in senile plaques and aggregated tau protein in neurofibrillary 
tangles (Liang et  al., 2016). However, the molecular mechanisms 
regulating AD development via Aβ, tau, or other factors are poorly 
understood. Over the past few decades, an increasing number of 
therapies and immunotherapies, such as vaccines and drugs targeting 
Aβ protein, tau protein, or AD-related genes, have been developed. 
The effectiveness of these targeted therapies has been demonstrated in 
some patient populations and animal models of AD (Town et al., 2008; 
Sevigny et al., 2016; Congdon and Sigurdsson, 2018; Xiong et al., 2021; 
Jung et al., 2022); however, it is always challenging to translate these 
results into humans safely and effectively (Town et al., 2008; Lemere, 
2013; Xiong et  al., 2021). Thus, it is crucial to identify novel 
immunological diagnostic and therapeutic AD markers.

Healthy and active mitochondria are essential for neuronal 
function (Chakravorty et al., 2019; Pradeepkiran and Reddy, 2020). The 
accumulation of damaged mitochondria and mitochondrial 
dysfunction are early marker events and core participants in the process 
of AD (Chakravorty et  al., 2019; Fang, 2019). In AD neurons, 
mitochondrial dysfunction is related to mitochondrial dynamics, 
biogenesis, and mitophagy (Grimm and Eckert, 2017; Kerr et al., 2017). 
Mitophagy, also called selective autophagy, is a selective degradation 
process that gradually accumulates defective mitochondria through 
autophagy. It is a key mitochondrial quality control system that helps 

neurons maintain health and function by removing unnecessary and 
damaged mitochondria. In other words, dysfunctional mitochondria 
and dysfunctional mitophagy in neurons are closely related to the 
occurrence of AD. Various proteins related to mitophagy were found 
to be changed in AD neurons (Rai et al., 2020; Mary et al., 2023). Recent 
studies (Fang et al., 2019; Morton et al., 2021; Pradeepkiran et al., 2022) 
from animal and cell models of AD and sporadic late-onset AD showed 
that impaired mitophagy triggered Aβ and tau protein accumulation 
by increasing oxidative damage and cell energy deficiency, leading to 
synaptic dysfunction and cognitive impairment. Moreover, these 
processes can compromise mitophagy (Fang et al., 2019; Morton et al., 
2021; Pradeepkiran et al., 2022). Therefore, interventions that support 
mitochondrial health or stimulate mitophagy may prevent the 
neurodegenerative process of AD (Kerr et al., 2017; Fang et al., 2019). 
Accordingly, by removing defective mitochondria in AD through 
mitophagy targeting, it might be possible to intervene therapeutically 
(Wang et al., 2021; Pradeepkiran et al., 2022; Sharma et al., 2022; Xie 
et  al., 2022). Nevertheless, the association of mitophagy with AD 
pathology and AD-related changes in immune system effectiveness is 
not fully explained and requires further investigation.

In recent decades, researchers have been interested in finding new 
biomarkers or models to early identify metabolic risk abnormalities. 
The progression and prognosis of AD can be affected by many genetic 
or epigenetic alterations (Karch and Goate, 2015; Efthymiou and 
Goate, 2017). Familial AD accounts for 5–10% of all AD cases. 
Pathogenic mutations in genes like APP, PSEN1, and PSEN2 are found 
in approximately 15–20%, 70–80, and 5% of patients with familial AD, 
respectively (Ryan and Rossor, 2010; Williams, 2011). Apolipoprotein 
E (APOE), as the most important susceptible gene known, may play an 
important role in the predisposition to sporadic AD; the APOE4 gene 
is associated with late-onset AD and contributes to the development of 
neurofibrillary tangles and Aβ senile plaques (Corder et  al., 1993; 
Poirier et al., 1993). TREM2 is also a very important gene and encodes 
the protein, triggering receptor expressed on myeloid cells 2 (TREM2); 
it is expressed by microglia, the resident immune cells of the brain, and 
strongly affects the lifelong risk of AD (Roussos et al., 2015; Ulrich 
et al., 2017). Some other genes such as CR1, SPI1, MS4As, ABCA7, 
CD33, and INPP5D (Roussos et  al., 2015) involved in different 
biological processes are expressed by microglia as well. APOE, CLU, 
and ABCA7 may be related to lipid metabolism; ABCA7, CD33, CR1, 
CLU, and EPHA1 may be associated with immune system function 
(Reitz et al., 2013; Villegas-Llerena et al., 2016); PICALM, BIN1, CD33, 
and CD2AP may be  related to cell membrane function including 
endocytosis (Villegas-Llerena et al., 2016). In addition, polymorphisms 
of CLU, SORL1, and MS4A4A genes also affect AD-related biomarkers 
(mainly Aβ, tau, and phosphorylated tau proteins) within the 
cerebrospinal fluid (Elias-Sonnenschein et al., 2013). However, research 
on AD is complex, and more experiments are needed to break through 
the treatment bottleneck of AD. The advances in bioinformatics enable 
independent studies to identify biomarkers. Numerous genes and loci 
can be analyzed using bioinformatics to uncover potential biological 
pathways in AD (Suh et al., 2019).

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; AUROC, area 

under the receiver operating characteristics curve; Aβ, amyloid-β; BP, biological 

process; CC, cellular component; CDs, combined datasets; DEG, differentially 

expressed gene; DLAT, dihydrolipoamide S-acetyltransferase; GEO, Gene 

Expression Omnibus; GO, Gene Ontology; GSEA, gene set enrichment analysis; 

ITGAX, integrin subunit alpha X; KEGG, Kyoto Encyclopedia of Genes and Genomes; 

LASSO, least absolute shrinkage and selection operator; MDSC, myeloid-derived 

suppressor cell; MF, molecular function; MRDEG, mitophagy-related differentially 

expressed gene; MRG, mitophagy-related gene; MRHG, mitophagy-related hub 

gene; PCA, principal component analysis; PPARG (PPAR γ), peroxisome proliferator-

activated receptor gamma; PPI, protein–protein interaction; ROC, receiver 

operating characteristic; ssGSEA, single-sample gene set enrichment analysis; 

SUCLA2, succinate-CoA ligase ADP-forming subunit β; TF, transcription factors; 

TREM2, triggering receptor expressed on myeloid cells 2.
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Our study utilized the Gene Expression Omnibus (GEO) database 
of the National Center for Biotechnology Information to analyze 
mitophagy-related differential expressed genes (MRDEGs), do 
functional enrichment analyses, construct a diagnostic model, 
determine those that play key roles in AD, and identify possible 
biomarkers in the peripheral blood and their associated immune cell 
infiltration. Furthermore, we compared the mitophagy-related hub 
genes (MRHGs) and immune patterns of patients with AD with those 
of controls. However, the purpose of this research was to investigate 
AD biomarkers related to mitophagy and their immune cell infiltration 
correlation in the peripheral blood.

2. Materials and methods

2.1. Data retrieval

The AD-related datasets GSE110226 (Kant et al., 2018; Stopa et al., 
2018), GSE1297 (Blalock et al., 2004), and GSE63060 (Sood et al., 
2015) were downloaded from the GEO database through the R 
package GEOquery (Davis and Meltzer, 2007). The control samples of 
all three datasets were obtained from healthy individuals. In this study, 

we included 7 AD and 6 control samples from GSE110226, 22 AD and 
9 control samples from GSE1297 (Supplementary Table S1), and 
145 AD and 104 control samples from GSE63060. The batch effects of 
the datasets GSE110226 and GSE1297 were removed using the R 
package sva (Leek et al., 2012) to obtain an integrated GEO dataset, 
i.e., combined datasets (CDs) including 29 AD and 15 control samples. 
Finally, the CDs and GSE63060 were standardized using the R package 
limma, and the annotation probes were standardized and normalized.

Mitophagy-related genes (MRGs) were collected using the 
GeneCards database (Stelzer et  al., 2016), which provides 
comprehensive information about human genes. In addition, MRGs 
in the published literature (Zhuo et al., 2022) were obtained on the 
PubMed website using the term “mitophagy-related genes.” A total of 
2,414 MRGs were obtained after combining the results and removing 
duplicates. A flow diagram of the database search is shown in Figure 1.

2.2. Differentially expressed genes related 
to AD

According to the sample grouping of the CDs, samples were 
divided into the AD and control groups. Differential analysis of genes 

FIGURE 1

Flow chart for the comprehensive analysis of MRDEGs. MRDEG, mitophagy-related differentially expressed gene.
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in different groups was performed using the R package differential 
gene expression analysis based on the negative binomial distribution 
(DESeq2) (Love et al., 2014). DEGs with logFC>0.5 and p < 0.05 were 
considered statistically significant. Among these, genes with 
logFC>0.5 and p < 0.05 were considered upregulated, and genes with 
logFC<0.5 and p < 0.05 were considered downregulated.

To obtain MRDEGs associated with AD, all DEGs with logFC>0.5 
and p < 0.05 obtained by differential analysis in the CDs and MRGs 
were intersected and plotted to obtain MRDEGs. The results of the 
differential analysis were plotted using the R package ggplot2, the 
heatmap was drawn using the R package pheatmap, and chromosome 
mapping was performed using the R package RCircos (Zhang 
et al., 2013).

2.3. Receiver operating characteristic curve

The ROC curve (Park et  al., 2004) is a comprehensive index 
reflecting continuous variables of sensitivity and specificity. The 
relationship between sensitivity and specificity is reflected by the 
composition method. The area under the ROC curve (AUROC) is 
generally between 0.5 and 1. The closer the AUROC value is to 1, the 
better the diagnostic effect. The AUC values were considered low, 
medium, or high accuracy for ranges 0.5–0.7, 0.7–0.9, and > 0.9, 
respectively. The R package survivalROC was used to plot the ROC 
curves of MRDEGs, as well as the survival times and statuses of 
patients with AD.

2.4. Construction of the diagnostic model 
of MRDEGs

In order to obtain a diagnostic model of MRDEGs in the AD 
datasets, the R package glmnet (Engebretsen and Bohlin, 2019) with 
set.seed(2) and family = “binary” as parameters was used to perform 
least absolute shrinkage and selection operator (LASSO) regression 
analysis based on MRDEGs. To avoid overfitting, the operating cycle 
is 1,000. LASSO regression is often used to construct a prognostic 
model, which is based on linear regression and by adding a penalty 
term (lambda × absolute value of the slope) reduces the overfitting of 
the model and improves the generalization ability of the model. The 
results of LASSO regression analysis were visualized utilizing the 
diagnostic model and variable trajectory diagrams and the molecular 
expression of each gene in the MRDEG diagnostic model was 
displayed in a forest plot.

Thereafter, MRDEGs were screened by LASSO regression 
analysis, and univariate and multivariate Cox regression analyses 
were performed to construct a multivariate Cox regression model. 
Nomogram (Wu et al., 2020) is a graph that uses a cluster of disjoint 
line segments to represent the functional relationship between 
multiple independent variables in the plane rectangular coordinate 
system. Based on these results, nomograms were drawn using the R 
package rms. Next, a calibration analysis was performed, and a 
calibration curve was generated to evaluate the accuracy and 
resolution of the nomograms. Decision curve analysis (Van Calster 
et  al., 2018) is a simple method to evaluate clinical prediction 
models, diagnostic tests, and molecular markers. Finally, the 
accuracy and resolution of the multivariate Cox regression model 

were evaluated using the R package ggDCA to draw the decision 
curve analysis map.

2.5. Protein–protein interaction network

Protein protein interaction (PPI) network is composed of proteins 
and proteins through the interaction between them. The STRING 
database (Szklarczyk et  al., 2019) was used to construct the PPI 
network related to the MRDEGs with a minimum required interaction 
score of medium confidence (0.400) as the standard, and the 
Cytoscape software (Shannon et al., 2003) was used to visualize the 
PPI network model.

In addition, five algorithms in the CytoHubba (Chin et al., 2014) 
plug-in were applied: maximum neighborhood component, degree, 
maximal clique centrality, closeness, and edge percolated component 
(Yang et al., 2019; Liu et al., 2022). In the PPI network, the scores of 
the MRDEGs were initially calculated, and then the MRDEGs were 
arranged in the order of their scores. Finally, the genes of the five 
algorithms were collected and analyzed by drawing the Venn diagram. 
The intersecting genes of the algorithms were considered hub genes 
related to mitophagy.

2.6. Construction of transcription 
factor-mRNA and mRNA-miRNA regulatory 
networks

Transcription factors (TFs) control gene expression through 
interaction with a target gene (mRNA) in the post-transcriptional 
stage. By retrieving TFs from the ChIPBase database (Zhou et al., 
2017), the regulatory effects of TFs on MRHGs were analyzed, and the 
TF-mRNA regulatory network was visualized using the 
Cytoscape software.

miRNAs play an important regulatory role in the process of 
biological development and evolution. They are able to regulate 
multiple target genes; the same target gene can be  regulated by 
multiple miRNAs. To analyze the relationship between MRHGs and 
miRNAs, miRNAs related to MRHGs were obtained from the StarBase 
database (Li et  al., 2014). Finally, the mRNA-miRNA regulatory 
network was visualized using the Cytoscape software.

2.7. Gene function enrichment analysis, 
pathway enrichment analysis, and gene set 
enrichment analysis

Gene Ontology (GO) analysis (Mi et  al., 2019) is a common 
method for large-scale functional enrichment studies, including 
biological processes (BPs), molecular functions (MFs) and cell 
components (CCs). Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (Kanehisa and Goto, 2000) is a widely used database that 
stores information about genomes, biological pathways, diseases and 
drugs. GO and KEGG pathway annotation of MRHGs was analyzed 
using the R package clusterProfiler (Yu et  al., 2012). The entry 
screening criteria were p < 0.05 and a false detection rate (q)-value of 
<0.05, which were considered statistically significant. The value of p 
was corrected using the Benjamini–Hochberg procedure.
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Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) 
was used to evaluate the distribution trend of genes in a predefined 
gene set in the gene table sorted by the degree of correlation with 
phenotype, so as to judge their contribution to phenotype. In this 
study, genes in the CDs were first divided into two groups with high 
and low phenotypic correlations according to the phenotypic 
correlation ranking. Thereafter, all DEGs in the two groups with high 
and low phenotypic correlations were enriched using the R package 
clusterProfiler. The genes were analyzed by GSEA. We retrieved the 
c2.cp.v7.2.symbols.gmt gene set from the Molecular Signatures 
database (Liberzon et al., 2011); the screening criteria for significant 
enrichment were p < 0.05 and q-values of <0.05.

2.8. Molecular subtype construction of 
MRHGs

Consistency clustering (Lock and Dunson, 2013) refers to multiple 
iterations of subsamples of a dataset. It provides the index of clustering 
stability and parameter decision by using subsamples to induce 
sampling variability. The consensus clustering method using the R 
package ConsensusClusterPlus (Wilkerson and Hayes, 2010) was 
employed to identify different disease subtypes of AD based on MRHGs.

2.9. Analysis of immune cell infiltration

Using CIBERSORT algorithms (Newman et al., 2015) and the 
LM22 characteristics gene matrix, the samples with output p-values of 
<0.05 were filtered to obtain the immune cell infiltration matrix. The 
data were then filtered for immune cell enrichment scores greater than 
zero. Finally, the specific results of the immune cell infiltration matrix 
were obtained. A histogram was drawn using ggplot2 to show the 
distribution of 22 types of immune cell infiltrates in different subtypes 
of AD samples; the correlation heatmap was drawn using pheatmap 
to illustrate the correlation analysis results of the 22 immune cell types 
with MRHGs in different AD subtypes.

The relative abundance of each infiltrating immune cell type was 
quantified using single-sample GSEA (ssGSEA) algorithms (Coscia et al., 
2018). First, the types of infiltrating immune cells were labeled, such as 
activated CD8+ T cells, activated dendritic cells, γδ T cells, natural killer 
cells, regulatory T cells, and other human immune cell subtypes. Second, 
the enrichment score calculated by ssGSEA was used to express the 
relative abundance of each immune cell type in each sample. Finally, 
ggplot2 was used to display the distributions of infiltrating immune cells 
in different disease subtypes of AD samples; pheatmap was used to draw 
a correlation heatmap that shows the results of the correlation analysis 
between immune cells and MRHGs in different AD subtypes.

2.10. Statistical analysis

All data processing and analysis in this article are based on R 
software version 4.1.2. Continuous variables are presented as 
mean ± standard deviation. The Wilcoxon rank sum test was used for 
comparison between two groups; the Kruskal–Wallis test was used for 
comparisons of three groups or more. The chi-square test or Fisher’s 
exact test was used to compare and analyze statistical significance 

between two groups of categorical variables. Unless otherwise 
specified, correlation coefficients between different molecules were 
calculated using Spearman’s correlation analysis, and statistical 
significance was set at p < 0.05.

3. Results

3.1. Analysis of AD-related DEGs

First, the R package sva was used to remove batch effects from the 
AD datasets GSE110226 and GSE1297 and obtain CDs. The datasets 
before and after batch effect removal were compared using a 
distribution box diagram and principal component analysis (PCA) 
(Figures 2A–D). These results showed that the batch effect of the 
samples in the AD dataset was basically eliminated by this procedure.

Then, the data from the CDs were divided into the control and AD 
groups. To analyze the intergroup differences in gene expression 
values in the AD dataset, the R package DESeq2 was used to perform 
a differential analysis on the CDs of the two data groups. The CDs 
contained 436 DEGs that met the threshold of logFC>0.5 and p < 0.05. 
Of these, 212 genes were upregulated (logFC>0.5, p < 0.05) and 224 
downregulated (logFC<0.5, p < 0.05), and a volcano map was drawn 
accordingly (Figure  3A). To identify MRDEGs, all DEGs with 
logFC>0.5 and p < 0.05 were intersected with MRGs 
(Supplementary Table S2). A total of 53 MRDEGs were obtained, 
which are illustrated in the Venn diagram in Figure 3B. Specific gene 
information is presented in Supplementary Table S3. According to the 
intersection results, differences in MRDEG expression between 
different CD sample groups were analyzed and displayed in a heatmap 
(Figure 3C) by using the R package pheatmap. Finally, the positions of 
the identified 53 MRDEGs on human chromosomes were analyzed 
using the R package RCircos, and their chromosome mappings were 
displayed (Figure 3D; Supplementary Table S4).

3.2. Correlation analysis of MRDEGs

To further explore the differences in MRDEG expression in the 
AD dataset, a histogram based on grouping and comparison was 
generated (Figure 4A). It shows the differential expression of the 53 
MRDEGs in the AD and control groups in the CDs. The expression 
levels of 49 MRDEGs were significantly different 
(Supplementary Table S4). Of these MRDEGs, APOO, PFN2, DHX57, 
PCCB, MTX2, KIFC3, and dihydrolipoamide S-acetyltransferase 
(DLAT) were significantly different between the AD and control 
groups (p < 0.001); ITGA5, NDUFS4, SLC12A7, CHST3, GDAP1, 
SLC35E1, NNT, C1QBP, KCNAB1, INF2, ITGB4, EPHA2, MON1B, 
TMEM14A, SLC1A5, RCN2, ACTR10, NETO2, VPS33A, TFEB, 
PDE12, and MRPS28 were highly significantly different (p < 0.01); 
and CD44, FOXO4, MDH1, ZNF787, succinate-CoA ligase 
ADP-forming subunit β (SUCLA2), NUP93, NUPR1, FGF13, GLRX5, 
MSTN, UQCRC1, MYC, NDE1, RAB23, PSMA3, DAP3, DNAJC3, 
integrin subunit alpha X CD11c (ITGAX), CPA3, and NOS3 were 
significantly different between the studied groups (p < 0.05). The 
expression levels of the remaining genes, including PNOC, PPARG, 
HILPDA, and MRPS15, were not significantly different 
(Supplementary Table S4).
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Next, the ROC curves of the abovementioned 49 MRDEGs 
were drawn (Figures  4B–M). The ROC curves of 45 MRDEGs 
revealed a medium correlation with different groups 
(0.7 < AUC < 0.9; Supplementary Table S4), whereas those of the 
other four MRDEGs, namely MYC, PSMA3, ITGAX, and CPA3, 
showed a low correlation with different groups (0.5 < AUC < 0.7; 
Supplementary Table S4).

3.3. Construction of the diagnostic model 
of the MRDEGs

To determine the diagnostic value of the 53 identified MRDEGs 
in the AD dataset, a diagnostic model of the MRDEGs was constructed 
by LASSO regression analysis (Figure 5A) and visualized through a 
LASSO variable trajectory diagram (Figure 5B). The LASSO diagnostic 
model comprised 17 MRDEGs (Supplementary Table S4), and the 
expression levels of these genes in the different groups of the LASSO 
diagnostic model are illustrated by a forest plot (Figure 5C).

In addition, the expression levels of these 17 MRDEGs were used for 
uni- and multivariate Cox regression analyses, and a Cox regression 
model was constructed. The prognostic ability of the Cox regression 
model was evaluated based on a generated nomogram (Figure 5D). The 
calibration curve was drawn, and the predictive power of the model for 

the actual results was evaluated based on the fitting of the actual 
probability. The probability predicted by the model under different 
conditions is presented in Figure 5E. Finally, the clinical utility of the Cox 
regression model was evaluated by decision curve analysis (Figure 5F). 
The range was determined in which the line of the model remained 
stable and higher than “All positive” and “All negative”; the larger this 
range, the higher the net benefit, and the better the model effect.

3.4. Construction of the PPI network and 
screening of the hub genes

Initially, a PPI analysis was carried out, and the PPI network of the 
53 MRDEGs was constructed using the STRING database. Interactions 
were visualized using the Cytoscape software 
(Supplementary Figure S1A). Among the 53 MRDEGs, 36 were related 
(Supplementary Table S4), and the scores provided by the STRING 
database were calculated by applying five algorithms of the CytoHubba 
plug-in. Then, the MRDEGs were arranged according to their scores. 
The five algorithms were maximum neighborhood component 
(Supplementary Figure S1B), degree (Supplementary Figure S1C), 
maximal clique centrality (Supplementary Figure S1D), closeness 
(Supplementary Figure S1E), and edge percolated component 
(Supplementary Figure S1F). The genes identified by the five 

A B

DC

FIGURE 2

Batch effects removal of GSE110226 and GSE1297. (A) Distribution boxplot of datasets before batch processing. (B) Distribution boxplot of CDs after 
batch processing. (C) PCA diagram of datasets before batch processing. (D) PCA diagram of CDs after batch processing. DEG, differentially expressed 
gene; MRDEG, mitophagy-related differentially expressed gene; CDs, combined datasets; PCA, principal component analysis.
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algorithms were retrieved, and the Venn diagram was drawn to obtain 
the MRHGs (Supplementary Figure S1G). The six hub genes were 
CD44, SUCLA2, DLAT, ITGAX, PPARG, and MYC.

3.5. Construction of TF-mRNA and 
mRNA-miRNA regulatory networks

TFs associated with the MRHGs were obtained from the ChIPBase 
database, and the mRNA-TF regulatory network was constructed and 
visualized using the Cytoscape software (Supplementary Figure S2A). 
This network contained 6 MRHGs and 59 TFs. Likewise, the miRNAs 

related to the MRHGs were retrieved from the StarBase database, and 
the mRNA-miRNA regulatory network was constructed and 
visualized using Cytoscape (Supplementary Figure S2B). This network 
contained 6 MRHGs and 61 miRNAs.

3.6. Function enrichment (GO) analysis, 
pathway enrichment (KEGG) analysis of 
MRHGs, and GSEA of the AD dataset

Based on GO and KEGG enrichment analyses, the relationships 
among BPs, MFs, CCs, and biological pathways of the six MRDEGs 

A B

C D

FIGURE 3

Differential gene expression analysis of AD. (A) Volcanic map of differential gene analysis between AD and control groups in CDs. (B) Venn diagram of 
DEGs and MRDEGs in CDs. (C) Correlation heat map of MRDEGs in CDs. (D) Chromosome mapping of MRDEGs. AD, Alzheimer’s disease; DEG, 
differentially expressed gene; MRDEG, mitophagy-related differentially expressed gene; CDs, combined datasets.
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discussed in section 3.5 and AD were further explored. The six 
MRHGs were applied to GO and KEGG gene function enrichment 
analysis (Tables 1, 2). The six MRHGs were mainly enriched in the 
regulation of BPs such as cysteine-type endopeptidase activity 
involved in apoptosis and negative regulation of fibroblast 
proliferation, CCs such as secretory granule membrane, tricarboxylic 
acid cycle enzyme complex, and lamellipodium membrane, and MFs 
such as E-box binding, repressing TF binding, and activating TF 
binding. Simultaneously, the MRHGs were also enriched in 
the  tricarboxylic acid cycle, thyroid cancer, and carbon 
metabolism  pathways, among others. The results of these 
analyses were visualized as a histogram (Supplementary Figure S3A), 
and GO (Supplementary Figures S3B–D) and KEGG 

(Supplementary Figure S3E) network maps were drawn. A connecting 
line indicates a molecule and the annotation of the corresponding 
entry. The larger the node, the more molecules the entry contains. 
Finally, GO and KEGG enrichment analyses of the combined logFC 
were performed for the six MRDEGs (Supplementary Figures S3F,G). 
Based on the enrichment analysis, the z-score corresponding to each 
entry was calculated using the molecular logFC. The results of the GO 
analysis visualized by a circle diagram (Supplementary Figure S3F) 
and those of the KEGG analysis visualized by a chord diagram 
(Supplementary Figure S3G) showed that cysteine-type endopeptidase 
activity involved in apoptosis may be the most important positive 
regulatory pathway, whereas the tricarboxylic acid cycle enzyme 
complex pathway may be  the most influential negative regulatory 
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FIGURE 4

MRDEGs correlation and ROC curve analysis. (A) Comparison histogram of the results of differential expression analysis of MRDEGs in CDs. (B–M) ROC 
curves of 49 MRDEGs in CDs. ns, p value ≥ 0.05, *p value < 0.05, **p value < 0.01, ***p value < 0.001. AUC at 0.5–0.7 has a low accuracy, while AUC at 
0.7–0.9 has a certain accuracy. MRDEG, mitophagy-related differentially expressed gene; ROC, receiver operating characteristic; CDs, combined 
datasets.
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pathway. The connecting line between the left and right parts shows 
the molecules included in the KEGG pathway entry.

GSEA was used to determine the effects of the DEG expression levels 
in the AD datasets, specifically the relationships between DEG expression 

in the CDs and the BPs involved, the CCs affected, and the MFs exerted. 
As shown in Table 3, DEGs in the CDs significantly affected biologically 
related functions and signaling pathways (Figures 6A–E) such as IL-4 
Signaling Pathway (Figure  6B), RUNX3 Regulates Notch Signaling 

A B

C D

E F

FIGURE 5

LASSO and cox regression analysis for CDs. (A) Diagnostic model of MRDEGs in AD datasets. (B) Variable trajectories of MRDEGs in the LASSO 
diagnostic model of AD. (C) Forest map of MRDEGs in the LASSO diagnostic model of AD. (D) Nomogram diagram of MRDEGs in Cox regression 
model. (E) Calibration curves of MRDEGs in Cox regression model. (F) DCA diagram of MRDEGs in Cox regression model. The ordinate is the net 
income, and the abscissa is the probability threshold or threshold probability. LASSO, least absolute shrinkage and selection operator; CDs, combined 
datasets; MRDEG, mitophagy-related differentially expressed gene; AD, Alzheimer’s disease; DCA, decision curve analysis.
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(Figure 6C), IL-1 and Megakaryocytes in Obesity Pathway (Figure 6D), 
and Overview of Leukocyteintrinsic Hippo Pathway (Figure 6E).

3.7. Construction of AD subtypes

To explore the differences in MRG expression in the AD subgroup 
of the CDs, the R package ConsensusClusterPlus was used for 
consistent clustering analyses to identify different AD subtypes based 
on the six MRHGs. Two AD subtypes were finally identified: Cluster 
1 containing 14 samples represented subtype A, whereas Cluster 2 
containing 15 samples represented subtype B (Figures 7A,B). The PCA 
showed significant differences between these two subtypes 
(Figure 7C). A heatmap was drawn using the pheatmap package to 
visualize the differences in MRHG expression between the two AD 
subtypes (Figure 7D).

To further verify the expression differences of the six MRHGs in 
the AD datasets, the correlation between the expression levels of the 
six MRHGs in the CDs and the two AD subtypes and the results of the 
difference analysis were shown in a group comparison histogram 

(Figure 7E). The differential analysis results of the CDs showed that 
the two MRHGs were statistically significant (p < 0.05): the expression 
of MYC was statistically significant among different subtypes of AD 
(p < 0.001); the expression of CD44 was highly statistically significant 
between different subtypes of AD (p  < 0.01). In addition, the 
expression levels of DLAT, ITGAX, PPARG and SUCLA2 were not 
statistically significant between AD subtypes (p ≥ 0.05).

3.8. Analysis of immune cell infiltration 
between the two AD subtypes

To explore the differences in immune cell infiltration between the 
identified AD subtypes, CIBERSORT and ssGSEA algorithms were 
used to analyze for all samples the abundance of infiltrating immune 
cells in the two AD subtypes.

Based on the results of the CIBERSORT analysis, a histogram of 
the proportion of immune cells in the AD samples was drawn 
(Supplementary Figure S4A). Next, the correlations of immune cell 
infiltration abundance in leukocyte gene signature matrix (LM22) in 

TABLE 1 Results of GO enrichment analysis in AD.

Ontology ID Description
Gene 
ratio

Bg ratio p value p. adjust q value

BP GO:0043281
Regulation of cysteine-type endopeptidase activity 

involved in apoptotic process
3/6 215/18670 2.94e-05 0.004 0.002

BP GO:0048147 Negative regulation of fibroblast proliferation 2/6 30/18670 3.73e-05 0.004 0.002

BP GO:2000116 Regulation of cysteine-type endopeptidase activity 3/6 239/18670 4.03e-05 0.004 0.002

BP GO:0006099 Tricarboxylic acid cycle 2/6 34/18670 4.81e-05 0.004 0.002

BP GO:0006101 Citrate metabolic process 2/6 35/18670 5.10e-05 0.004 0.002

CC GO:0030667 Secretory granule membrane 2/6 298/19717 0.003 0.050 0.031

CC GO:0045239 Tricarboxylic acid cycle enzyme complex 1/6 14/19717 0.004 0.050 0.031

CC GO:0031258 Lamellipodium membrane 1/6 22/19717 0.007 0.050 0.031

CC GO:0005759 Mitochondrial matrix 2/6 469/19717 0.008 0.050 0.031

CC GO:0008305 Integrin complex 1/6 31/19717 0.009 0.050 0.031

MF GO:0070888 E-box binding 2/6 50/17697 1.17e-04 0.006 0.002

MF GO:0070491 Repressing transcription factor binding 2/6 71/17697 2.36e-04 0.006 0.002

MF GO:0033613 Activating transcription factor binding 2/6 85/17697 3.38e-04 0.006 0.002

MF GO:0031406 Carboxylic acid binding 2/6 193/17697 0.002 0.020 0.005

MF GO:0043177 Organic acid binding 2/6 205/17697 0.002 0.020 0.005

GO, Gene Ontology; BP, Biological Process; CC, Cellular Component; MF, Molecular Function, AD, Alzheimer’s Disease.

TABLE 2 Results of KEGG enrichment analysis in AD.

Ontology ID Description Gene ratio Bg ratio p value p. adjust q value

KEGG hsa00020 Citrate cycle (TCA cycle) 2/6 30/8076 1.98e-04 0.007 0.006

KEGG hsa05216 Thyroid cancer 2/6 37/8076 3.03e-04 0.007 0.006

KEGG hsa01200 Carbon metabolism 2/6 118/8076 0.003 0.050 0.039

KEGG hsa05202 Transcriptional misregulation in cancer 2/6 192/8076 0.008 0.073 0.057

KEGG hsa05169 Epstein–Barr virus infection 2/6 202/8076 0.009 0.073 0.057

KEGG hsa05205 Proteoglycans in cancer 2/6 205/8076 0.009 0.073 0.057

KEGG, Kyoto Encyclopedia of Genes and Genomes; AD, Alzheimer’s Disease.
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TABLE 3 Results of combined datasets GSEA in AD.

ID Set size
Enrichment 

score
NES p value p. adjust q values

REACTOME_INTERLEUKIN_10_SIGNALING 41 0.6888 2.5057 0.0021 0.0724 0.0621

PID_FRA_PATHWAY 34 0.6655 2.3017 0.0021 0.0724 0.0621

WP_TYROBP_CAUSAL_NETWORK 50 0.5603 2.1308 0.0021 0.0724 0.0621

PID_AMB2_NEUTROPHILS_PATHWAY 38 0.5922 2.1238 0.0021 0.0724 0.0621

WP_COMPLEMENT_AND_COAGULATION_CASCADES 54 0.5358 2.0661 0.0021 0.0724 0.0621

WP_IL4_SIGNALING_PATHWAY 53 0.5266 2.0246 0.0021 0.0724 0.0621

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 221 0.4197 2.0204 0.0021 0.0724 0.0621

PID_P73PATHWAY 74 0.4962 2.0181 0.0021 0.0724 0.0621

REACTOME_RUNX3_ MEDIATED_NOTCH_SIGNALING 12 0.7595 1.9835 0.0040 0.0905 0.0776

KEGG_HEMATOPOIETIC_CELL_LINEAGE 77 0.4812 1.9740 0.0021 0.0724 0.0621

REACTOME_INITIAL_TRIGGERING_OF_COMPLEMENT 20 0.6463 1.9598 0.0041 0.0905 0.0776

REACTOME_TRAF6_MEDIATED_IRF7_ACTIVATION 25 0.6132 1.9565 0.0041 0.0905 0.0776

WP_INTERACTIONS_BETWEEN_IMMUNE_CELLS_AND_MICRORNAS_IN_TUMOR_MICROENVIRONMENT 26 0.6009 1.9514 0.0020 0.0724 0.0621

REACTOME_INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING 103 0.4556 1.9487 0.0021 0.0724 0.0621

REACTOME_SYNTHESIS_OF_LEUKOTRIENES_LT_AND_EOXINS_EX_ 16 0.6814 1.9459 0.0041 0.0905 0.0776

REACTOME_YAP1_AND_WWTR1_TAZ_STIMULATED_GENE_EXPRESSION 13 0.7304 1.9355 0.0062 0.1102 0.0945

REACTOME_NOTCH4_INTRACELLULAR_DOMAIN_REGULATES_TRANSCRIPTION 17 0.6647 1.9314 0.0042 0.0905 0.0776

WP_IL1_AND_MEGAKARYOCYTES_IN_OBESITY 24 0.6094 1.9314 0.0040 0.0905 0.0776

REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_LATE_STAGE_BRANCHING_MORPHOGENESIS_

PANCREATIC_BUD_PRECURSOR_CELLS 13 0.7237 1.9179 0.0062 0.1102 0.0945

WP_OVERVIEW_OF_LEUKOCYTEINTRINSIC_HIPPO_PATHWAY_FUNCTIONS 27 0.5898 1.9178 0.0020 0.0724 0.0621

GSEA, Gene Set Enrichment Analysis; AD, Alzheimer’s Disease; NES, Normalized Enrichment score.
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AD subtype A (Supplementary Figure S4B) and subtype B 
(Supplementary Figure S4C) were demonstrated by plotting 
correlation heatmaps. The results showed that the correlation between 
activated mast cells and regulatory T cells was the highest in subtype 
A (cor value = 0.90). By contrast, the correlation between M0 
macrophages and neutrophils was the highest in subtype B (cor 
value = 0.84). In addition, the correlation between the abundance of 
LM22 immune cell infiltration and the expression of the six identified 
MRHGs in the samples of patients was analyzed by plotting the 
correlation heatmap of the two subtypes (Supplementary Figures S4D,E). 
The results showed that in subtype A, PPARG expression was 
significantly positively correlated with follicular helper T cell levels, 
and DLAT expression was significantly negatively correlated with the 
abundance of activated dendritic cells. In subtype B, DLAT expression 
was significantly negatively correlated with γδ T cell levels.

Similarly, immune cell infiltration was analyzed using ssGSEA. The 
correlation between the abundance of the 28 types of infiltrating 
immune cells in subtype A (Supplementary Figure S5A) and subtype B 
(Supplementary Figure S5B) of AD was demonstrated by plotting the 
correlation heatmap. The results showed that myeloid-derived 
suppressor cells (MDSCs) had the highest correlation with neutrophils, 
mast cells, and central memory CD8+ T cells (cor value = 0.89, 0.77, and 
0.82, respectively) in subtype A. In subtype B, the correlation between 
MDSCs and activated dendritic cells was the highest (cor value = 0.78). 
Moreover, the correlation between the abundance of these 28 immune 
cell types and the expression of the six MRHGs in the samples of 

patients was analyzed by plotting the correlation heatmaps for the two 
AD subtypes (Supplementary Figures S5C,D). The results showed that 
in subtype A, SUCLA2 expression was significantly positively correlated 
with the levels of effector memory CD4+ T cells and immature dendritic 
cells, whereas DLAT expression was significantly negatively correlated 
with the level of activated B cells. In subtype B, SUCLA2 expression was 
significantly negatively correlated with activated B cell levels.

3.9. Dataset validation and ROC analysis

To further verify differences in MRHG expression in the AD 
dataset, the results of the differential expression analysis comparing 
the levels of the six identified MRHGs between the AD and control 
groups of the GSE63060 dataset were displayed in a group comparison 
histogram. The differential expression analysis results (Figure 8A) 
showed that three MRHGs significantly differed between the two 
groups. Among them, the expression of ITGAX and SUCLA2 in the 
AD and control groups of the GSE63060 dataset was markedly 
significantly different (p < 0.001), and the expression of DLAT was 
significantly different (p < 0.05). The expression levels of the other 
MRHGs (CD44, MYC, and PPARG) were not significantly different 
between groups. The ROC curves suggested a low accuracy for DLAT 
(AUC = 0.596, Figure  8B), ITGAX (AUC = 0.678, Figure  8C), and 
SUCLA2 (AUC = 0.655, Figure 8D) to distinguish AD from control 
samples in the dataset GSE63060.

A B

C ED

FIGURE 6

GSEA for CDs. (A) Mountain map of four biological functions in GSEA for CDs. (B–E) AD significantly affecting IL4 Signaling Pathway (B), RUNX3 
Regulations Notch Signaling (C), IL1 and Megakaryocells in Obesity (D) and Overview of Leukocytric Hippo Pathway Functions (E) showed by GSEA. 
GSEA, gene set enrichment analysis; CDs, combined datasets; AD, Alzheimer’s disease.
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4. Discussion

AD is one of the main causes of dementia and death in the 
elderly, seriously endangering human health, and its course is 
usually 6–10 years. With the intensification of the global aging 
society, its incidence rate and prevalence rate are increasing. In 
March 2019, the Alzheimer’s Association of the United  States 
released the impact of AD on public health in the United States. It is 
expected that by the middle of this century, the number of Americans 
aged 65 and over suffering from AD may increase to 13.8 million. 
However, up to now, there is a lack of ideal diagnostic indicators and 
effective prevention and treatment measures for AD. Therefore, it is 
of great social significance to strengthen the research on the 
pathogenesis of AD. Hence, it is crucial for this study to broaden its 
horizons to search for key molecules that may play a role in the 
pathogenesis of AD.

Mitophagy as a selective degradation process, is critical to keeping 
mitochondria healthy, producing ATP, and maintaining neuronal 
activity and survival by removing impaired mitochondria. MRGs have 
been previously reported as prognostic or diagnostic markers for 
various tumors, including pancreatic cancer (Zhuo et al., 2022), breast 
cancer (Zhao et al., 2022), and liver cancer (Chen et al., 2021; Xu et al., 
2022), whereas only a limited number of studies have examined the 
usefulness of them as AD biomarkers. Pakpian et al. (2020) recently 
reported that alterations in mitochondrial dynamic-related genes in 
the peripheral blood may be  useful for diagnosing AD. However, 

MRGs have not yet been evaluated for their diagnostic performance 
in AD and their role is worth further exploring.

In our study, we investigated the role of MRGs in the diagnosis of 
AD. Not only did we identify six MRHGs (CD44, SUCLA2, DLAT, 
ITGAX, PPARG, and MYC) as AD biomarkers, but we also used these 
MRHGs to create a diagnostic model. Moreover, a validation analysis 
conducted both internally and externally revealed that this model is 
effective in discriminating patients with AD from controls. 
Furthermore, we analyzed the relationships between MRHGs and 
immune cell infiltration in AD utilizing CIBERSORT and 
ssGSEA algorithms.

Some diagnostic biomarker signatures have been reported in 
previous studies. For example, Shigemizu et al. (2020) analyzed the 
blood samples of cognitively normal adults and patients with AD by 
RNA sequencing and detected DEGs. A model constructed by the 
proportion of neutrophils and the most important central genes (EEF2 
and RPL7) achieved an AUC of 0.878 in the validation cohort. Based 
on the results of its application to a prospective cohort, the model 
achieved an accuracy of 0.727, identifying blood-based biomarkers as 
early indicators of AD. Using the GEO database, researchers have 
identified in recent years numerous hub genes that are differentially 
expressed in AD and control brain samples and have further 
determined many possible diagnostic biomarkers of AD using the 
ROC prediction model. Tian et al. (2022) identified three hub genes 
(MAFF, ADCYAP1, and ZFP36L1; AUC = 0.850) and verified their 
expression in the AD brain (AUC = 0.935). Wu et al. (2021) found 10 
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FIGURE 7

Consensus clustering analysis for hub genes. (A) Consistency clustering results of AD. (B) Delta diagram of different classifications by consistency 
clustering analysis. (C) PCA diagram of two AD subtypes. (D) Complex numerical heat map of MRHGs in two AD subtypes. (E) Histogram of grouping 
comparison of MRHGs in two AD subtypes. Orange is Cluster 1, and green is Cluster 2. **p value < 0.01, ***p value < 0.001. AD, Alzheimer’s disease; PCA, 
principal component analysis; MRHG, mitophagy-related hub gene.
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hub genes, namely SERPINE1, ZBTB16, CD44, BCL6, HMOX1, 
SLC11A1, CEACAM8, ITGA5, SOCS3, and IL4R, all of which have 
good diagnostic value (AUC > 0.75). Liu et al. (2021) identified seven 
genes, including ABCA2, CREBRF, CD72, CETN2, KCNG1, NDUFA2, 
and RPL36AL (AUCs were 0.845 and 0.839 in the test and validation 
sets, respectively), as hub genes and confirmed them by reverse 
transcription polymerase chain reaction. Our team (Zhao et al., 2022) 
found that AGAP3 is an important hub gene (AUCs in the three 
studied datasets were 0.878, 0.727, and 0.635), which may be  a 
diagnostic biomarker related to immunity in AD. Among the six 
MRHGs identified in the current study, the expression levels of CD44, 
SUCLA2, DLAT, and PPARG in the CDs showed a medium 
correlation with the study groups, whereas ITGAX and MYC showed 
a low correlation. Our findings suggest that a combination of a few 
biomarkers performs fairly well as a diagnostic tool.

Of the six identified MRGs, CD44, ITGAX, and PPARG are clearly 
correlated with AD according to previous reports (Butovsky et al., 
2006; Moreno-Rodriguez et al., 2020; Bottero et al., 2021). The CD44 
protein encoded by the CD44 gene is a cell surface glycoprotein and a 
receptor for hyaluronic acid. CD44 is involved in cell–cell interaction, 
as well as cell adhesion and migration (Wang et al., 2018; Moreno-
Rodriguez et al., 2020). It is described as a multifaceted molecule 
involved in several biological and pathological processes. Western blot 
analyses revealed that CD44 levels of the frontal cortex were increased 
in sporadic AD and associated with disease progression 

(Moreno-Rodriguez et al., 2020). This is consistent with our prediction 
results to some extent. The gene ITGAX encodes an integrin α X-chain 
protein. Integrins are heterodimers composed of α and β chains to 
integrate membrane proteins, forming αXβ2 integrins (Golinski et al., 
2020). ITGAX is considered the main driving factor of atherosclerosis 
(Williams et al., 2020). Using single-cell transcriptome analysis of the 
brain of AD mice, a recent study on the transcriptional characteristics 
of plaque-associated microglia found a two-step transition from 
homeostasis to pathologically related phenotypes, with Trem2, to 
which Itgax is related, as the main phenotypic regulator (Mancuso 
et al., 2019). Ramesha et al. (2021) reported that the inoculation of T 
cell-based Gramer acetate vaccine against AD-induced dendritic 
microglia to express Itgax and found that the plaque formation and 
cognitive ability of APP/PS1 mice were reduced (Ramesha et  al., 
2021). These discoveries are consistent with our predicted changes in 
the expression of ITGAX in AD. The PPAR γ protein encoded by the 
gene PPARG, a member of the peroxisome proliferator-activated 
receptor subfamily, is a regulator of lipid metabolism and 
inflammatory response mediators; it may regulate AD switch genes as 
a TF. It is involved in the pathology of many disorders, such as obesity, 
atherosclerosis, and AD (Bottero et al., 2021). Activation of platelets 
and phospholipase D are regarded as its key signal components 
(Bottero et al., 2021). Like APOE, PPARG is an important risk gene. 
CG or GG, which are participant genotypes of rs1805192 in PPARG, 
confer the highest risk for AD (Wang et al., 2017). These research data 
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FIGURE 8

GSE63060 datasets validation and ROC analysis. (A) Comparison histogram of the results of differential expression analysis of MRHGs in the dataset 
GSE63060. (B–D) ROC curve of the MRHGs DLAT (B), ITGAX (C) and SUCLA2 (D) in dataset GSE63060. ns, p value ≥ 0.05, *p value < 0.05,  
***p value < 0.001. AUC at 0.5–0.7 has low accuracy. ROC, receiver operating characteristic; MRHG, mitophagy-related hub gene.
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above support our prediction results. Overall, these findings may 
account for the distinct role of these genes in AD.

It has been suggested that the three genes CD44, ITGAX, and 
PPARG participate in AD pathogenesis mainly through 
neuroinflammation and immune pathways, making them promising 
therapeutic targets. Previous studies have shown that CD44 may 
be highly involved in biological processes and pathways related to 
immune inflammatory response, apoptosis, and mitogen-activated 
protein kinase pathways in AD (Shim et al., 2022; Xu et al., 2022). A 
systematic review found that CD44 is related to the complexity of 
reactive astrocytosis in AD (Viejo et al., 2022). As a microglia-related 
gene, ITGAX was found to be  differentially expressed in AD and 
possibly involved in neuroinflammation, oxidative stress, and Aβ 
autophagy and transport (Li and de Muynck, 2021; Wu et al., 2021). 
The PPARG gene may increase the incidence of AD in patients with 
psoriasis by activating a positive feedback loop leading to excessive 
inflammation and metabolic disorder (Liu et al., 2022).

However, the relationship of SUCLA2, DLAT, and MYC expression 
with AD has not been previously reported. The SUCLA2 gene encodes 
ATP-specific Succinyl-CoA synthetase (SCS) β subunits, which 
dimerize with SCS α subunits to form SCS-A, a heterodimeric 
mitochondrial matrix enzyme, which is an important component of 
the tricarboxylic acid cycle. By hydrolyzing ATP, SCS-A forms succinic 
acid and succinyl-CoA. Mutations of SUCLA2 are one of the causes of 
myopathic mitochondrial DNA deletion syndrome (Viscomi and 
Zeviani, 2017). This is somewhat different from our predicted results, 
and further prospective studies are needed to determine the diagnostic 
accuracy of SUCLA2 for AD. The gene DLAT encodes the E2 
component of the multi-enzyme pyruvate dehydrogenase complex, 
which is a lipoylated core protein (Carrico et al., 2018). The protein, 
which is also an antigen of anti-mitochondrial antibody, accepts the 
acetyl group formed by oxidative decarboxylation of pyruvate and 
transfers it to coenzyme A. It has been reported that DLAT is the key 
mediator of cell survival in chronic myeloid leukemia after tyrosine 
kinase inhibitor-mediated BCR-ABL1 inhibition (Bencomo-Alvarez 
et  al., 2019). It has also been found that SIRT4 can hydrolyze the 
lipoamide cofactors derived from DLAT, leading to a decrease in 
pyruvate dehydrogenase activity (Xie et al., 2020). These’re not the 
same as our prediction, and the correlation between DLAT expression 
and AD needs to be thoroughly studied. The proto-oncogene MYC 
encodes a nuclear phosphoprotein that is crucial for the progression of 
the cell cycle, apoptosis, and transformation of cells (Casey et al., 2018). 
Its amplification is often observed in human tumors, and many drugs 
targeting the MYC pathway can be used for the treatment of tumors; 
the therapeutic effect might be  related to the ability to restore the 
immune response (Casey et al., 2018). In addition, MYC expression is 
temporarily upregulated in spinal microglia as a TF after nerve injury 
to mediate early-phase proliferation of microglia, which is recognized 
as a hallmark of AD (Tan et al., 2022). The above indirectly reveals the 
possibility that MYC may participate in AD, but the diagnostic value 
of MYC in our research results needs to be further verified.

In this study, the differential expression analysis results of the CDs 
showed that the expression of CD44 was highly statistically significant 
and that of MYC was statistically significant between different AD 
subtypes. In the validation dataset GSE63060, ITGAX and SUCLA2 
expression was markedly significantly different between the AD and 
control groups, whereas DLAT expression was significantly different 
between these two groups. The ROC curves of these three genes in the 
dataset GSE63060 showed that the expression levels of DLAT, ITGAX, 

and SUCLA2 suggested a low correlation with study group. Thus, 
we will further explore the biological role of these genes in AD in 
the future.

In the last few decades, increasingly compelling evidence has 
emerged showing that AD is associated with immune system 
imbalance (Heneka et al., 2015; Lewcock et al., 2020). For example, 
compared with healthy controls, patients with AD have higher 
numbers of neutrophils, CD4+ T cells, and monocytes in the whole 
blood (Ferretti et al., 2016; Sommer et al., 2017; Unger et al., 2020). 
However, there remains a lack of clarity regarding the activation 
pattern of immune cells in AD. In the current study, an in-depth 
evaluation of AD immune cell infiltration was conducted using 
CIBERSORT and ssGSEA to further understand the role of immune 
responses in AD subtypes. The results of the CIBERSORT analysis 
showed that the correlation between activated mast cells and 
regulatory T cells was the highest in subtype A, whereas the correlation 
between M0 macrophages and neutrophils was the highest in subtype 
B. Similarly, the results of the ssGSEA showed that MDSCs had the 
highest correlation with neutrophils, mast cells, and central memory 
CD8+ T cells in subtype A, whereas the correlation between MDSCs 
and activated dendritic cells was the highest in subtype B.

In addition, our data mining results further confirmed that 
mitophagy and immunity may play key roles in the pathogenesis of 
AD. According to recent research, the cellular components of the 
immune system that may be modulated by mitophagy include natural 
killer cells, macrophages, dendritic cells, and T and B lymphocytes 
(Fang et al., 2019; Xu and Jia, 2021; Xie et al., 2022). Thus, we also 
analyzed the correlation between the six identified MRHGs (CD44, 
SUCLA2, DLAT, ITGAX, PPARG, and MYC) and infiltrating immune 
cells. Our results showed that DLAT, PPARG, and SUCLA2 may 
be significantly correlated with distinct immune cell subsets indicative 
of different immune responses of AD subtypes. The correlation 
heatmap of the CIBERSORT analysis showed that PPARG expression 
was significantly positively correlated with follicular helper T cell 
levels in subtype A, whereas DLAT expression was significantly 
negatively correlated with the levels of activated dendritic cells in 
subtype A and with those of γδ T cells in subtype B. The correlation 
heatmap of the ssGSEA showed that SUCLA2 expression was 
significantly positively correlated with the levels of effector memory 
CD4+ T cells and immature dendritic cells and significantly negatively 
correlated with the levels of activated B cells in subtype A, whereas 
DLAT expression was significantly negatively correlated with activated 
B cell levels in subtype B.

According to these findings, significant correlations exist between 
most MRGs and immune cells, which may indicate that mitophagy 
and immune responses interact in AD. This may further the 
understanding of the MRG-dependent immune status and 
microenvironment in AD. However, these assumptions require further 
studies to clarify the molecular mechanisms of the complex interaction 
between these genes and immune cells.

Clinically, AD can be divided into familial AD and sporadic AD 
according to genetic history and into early-onset AD and late-onset 
AD according to the age of onset. In this study, subtypes were only 
based on bioinformatics clusters according to the gene expression 
matrix. No other specific characteristics were taken into consideration, 
but correlations with clinical AD classifications may exist. In the 
future, we  will aim to specify the degree of correlations and 
connections. Moreover, we will collect samples from AD patients in 
our hospital, record their clinical types, and determine whether 
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clinical classifications are related to subtypes established by 
bioinformatics approaches.

The biomarkers identified in this study have several advantages. 
First, it is the first study to comprehensively explain the relationship 
between biomarkers and AD from the perspective of mitophagy 
compared with classic genetic biomarkers such as APP and PSEN1. 
Second, by combining three datasets, the sample number was sufficient, 
and the interbatch differences in the datasets were eliminated, avoiding 
data bias (see Figure 2). Finally, the validation using an external dataset 
has further consolidated the conclusions of this study.

Our research has some limitations. First, our research was 
conducted using secondary mining and analysis of previously 
published datasets. Second, the external validation was only 
performed on one dataset, which was relatively small, although the 
development set had sufficient whole-blood samples from patients 
with AD and healthy controls. Third, although the AUC of the model 
showed acceptable discrimination, the performance of the model 
requires improvement. Therefore, it is vital to guarantee a large 
sample size for independent research to verify and improve the 
clinical practicability. Finally, the mechanisms and relationships of 
MRGs are included in gene signatures, which needs further study.

5. Conclusion

We identified six MRHGs that may represent peripheral blood-
derived diagnostic biomarkers and may participate in the pathological 
mechanisms of AD. Furthermore, a diagnostic model of AD based 
on MRGs was constructed utilizing LASSO and logistic regression, 
and it exhibited good diagnostic performance in internal and external 
validation. Moreover, CIBERSORT and ssGSEA were used to analyze 
the immune cell infiltration in patients with AD, and the correlation 
analysis showed that mitophagy might modulate the immune 
response of patients with AD. These findings expand our 
understanding of the role of MRGs in AD. Our gene signatures may, 
therefore, provide an accurate and reliable prediction method for the 
diagnosis of patients with AD.
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