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Introduction: Brain-computer interfaces (BCIs) have the potential in providing

neurofeedback for stroke patients to improve motor rehabilitation. However,

current BCIs often only detect general motor intentions and lack the precise

information needed for complex movement execution, mainly due to insu�cient

movement execution features in EEG signals.

Methods: This paper presents a sequential learning model incorporating a Graph

Isomorphic Network (GIN) that processes a sequence of graph-structured data

derived from EEG and EMG signals. Movement data are divided into sub-actions

and predicted separately by the model, generating a sequential motor encoding

that reflects the sequential features of the movements. Through time-based

ensemble learning, the proposed method achieves more accurate prediction

results and execution quality scores for each movement.

Results: A classification accuracy of 88.89% is achieved on an EEG-EMG

synchronized dataset for push and pull movements, significantly outperforming

the benchmark method’s performance of 73.23%.

Discussion: This approach can be used to develop a hybrid EEG-EMG brain-

computer interface to provide patients with more accurate neural feedback to aid

their recovery.

KEYWORDS

brain-computer interfaces, neurofeedback, graph neural network, stroke rehabilitation,

corticomuscular coherence, sequential learning

1. Introduction

1.1. Sequential motor rehabilitation

Motor imagery (MI) is the mental process of imagining movement in the absence of

physical movement (Aggarwal and Chugh, 2019). Brain-computer interfaces (BCIs) based

on motor imagery are widely used in rehabilitation training for stroke patients (McAvinue

and Robertson, 2008). By using MI, patients can be trained to gain control over their

brain signals, allowing them to activate devices that assist with movement. This training

approach is believed to enhance sensory inputs, leading to brain plasticity that improves

motor function (Hwang et al., 2009). The feasibility of this rehabilitation strategy has been

demonstrated by using electroencephalography (EEG) analysis to capture a patient’s motor

intention and enable them to control an external device. Compared to traditional motor

rehabilitation, EEG-based MI approaches allow for active training motivated by the subject’s

autonomous intention and have been shown to produce better rehabilitation outcomes for

patients after the recovery plateau of stroke (Young et al., 2014).
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Movements are composed of multiple sub-actions or action

units, and the ability to capture the brain’s sequential motor

intention can provide patients with more refined feedback for

better recovery (Xue et al., 2021). However, due to impaired

motor function, stroke patients may perform movements in a

compensatory manner, resulting in movement patterns that differ

from those of a healthy individual (Alankus and Kelleher, 2012).

Therefore, a method is needed to assess movements at a finer

level of intensity to determine whether they are being performed

correctly at each stage.

Currently, it is difficult to identify complex motor intentions

from EEG signals (Jerbi et al., 2011). As a result, many BCI

systems currently only support a few fixed and simple movements.

Electromyography (EMG) is the most direct signal for assessing

and perceiving motor execution and has been used in motor

rehabilitation training and assessment (Balasubramanian et al.,

2018). Deep neural networks based on EMG signals can be used

for some more complex tasks such as gait recognition with a high

recognition rate (Yao et al., 2021). Recently, it has been proposed

that a hybrid BCI can be created by introducing EMG signals into

an EEG-based BCI. By combining EEG and EMG analysis, both

the motor intention of the brain and the actual execution can be

obtained. The high spatio-temporal resolution of EMG also allows

different stages of motor intention to be analyzed separately.

1.2. EEG-EMG-based Hybrid BCIs

Current brain-computer interfaces (BCIs) based on

electroencephalography (EEG) and electromyography (EMG)

are relatively simple. Many studies use EEG to detect motor

intention and then use EMG to analyze the actual execution

of the movements (Sarasola-Sanz et al., 2017; Ruhunage et al.,

2019). Some studies have integrated EEG and EMG models at

the model level to improve classification accuracy (Zhang et al.,

2019). Others use EMG to remove motion artifacts from EEG to

improve signal quality for better classification (Hooda et al., 2020).

For motor execution classification of healthy individuals, EMG

is sufficient to provide good results, but for stroke patients with

motor impairment, the signal quality of EMG may be weaker and

thus EEG is needed as an aid.

A rehabilitation system based on EEG and EMG has different

implications for different types of stroke patients. For patients

with poor motor control, a system based on EEG may be more

beneficial as it can detect motor intention without requiring

physical movement. For patients with better motor control, a

system based on EMG may be more beneficial as it can provide

detailed analysis of movement execution (Cesqui et al., 2013). By

using both signals, a more comprehensive rehabilitation plan can

be tailored to the specific needs of each patient.

In the field of stroke rehabilitation, corticomuscular coherence

(CMC) is a useful tool for describing changes in central nervous

system activity (Liu et al., 2019). CMC is considered a potential

biomarker of motor deficits after stroke, capable of quantifying

recovery and potentially indicating the cortical areas involved

in functional recovery (Lattari et al., 2010; Krauth et al., 2019).

However, many CMC-based BCIs have not been able to achieve

good results (Chowdhury et al., 2019), likely because CMCs tend

to focus only on the overall correlation between EEG and EMG,

rather than on a more fine-grained level of connectivity. One

study correlated EEG-EMG for four motor tasks and found that

coherence was higher in the contralateral brain cortex than in the

ipsilateral motor cortex (Tun et al., 2021). One study used channel

correlations to create networks between EEG and EMG to analyze

recovery in stroke patients (Tan et al., 2022).

1.3. Graph neural networks for BCIs

The connections between neurons, or brain networks, have

been studied extensively. Some cognitive patterns can be explored

by analyzing the connectivity between different brain regions.

Structural connectivity is often obtained by studying the anatomy

of the brain, while functional connectivity is often obtained by

correlation analysis of signals such as EEG and fNIRS (Bullmore

and Sporns, 2009). Some studies have used dynamic functional

brain networks to extract features in the EEG signal for epilepsy

prediction (Li et al., 2021a) and MI (Zhang et al., 2021) with

high accuracy and robustness. Such analysis and brain-muscle

coupling are essentially equivalent. Fine-grained corticomuscular

coherence (CMC) allows EMG to be incorporated into brain

networks, allowing both signals to be analyzed together. This can

be particularly useful for studying motor intention detection in the

context of stroke rehabilitation.

Graph Neural Networks (GNNs) aim to build neural networks

using graph theory to process data in the graph domain. GNNs have

seen rapid development in recent years and have been increasingly

used in the field of BCIs with good results (Tang et al., 2021). With

this new tool, GNN models can be used to analyze complex graph

structure data that is difficult to analyze using traditional methods.

Researchers have proposed various GNN models for EEG-based

BCIs that project electrodes onto nodes of a graph, where node

features are represented as samples of EEG channels collected

during the experiment. These nodes can be connected by edges

according to a flexible strategy developed by neuroscientists. These

networks have achieved better classification results than commonly

used deep learning models. One study built a graph convolutional

network for the motion imagery task, which achieved excellent

results on publicly available datasets and was able to provide visual

features for motion imagery (Sun et al., 2021). Another study used

mutual information as edge weights of the graph, combined with a

spatio-temporal graph convolutional network, and achieved better

classification accuracy than current state-of-the-art methods (Li

et al., 2021b). However, there is still a gap in the classification of

correlation maps between EMG and EEG.

1.4. Main contributions

The main contribution of this paper is the introduction

of GNNs into the classification of multimodal physiological

data (EEG-EMG), which captures both spatial and temporal

information and generates a sequential coding of a movement.

Furthermore, this paper selects SPMI for graph construction
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and GIN for GNN backbone model, achieving significant results

beyond the baseline methods, and also compares and discusses

other GNN models and graph construction methods. Through

time-based ensemble learning, the method proposed in this paper

can be used to assess each movement, which is useful for stroke

rehabilitation. In the future, our proposed model can be used

to achieve better classification, more interpretable evaluation of

complex actions, and more detailed neurofeedback.

2. Materials and methods

In this section, a general framework for this sequential learning

model based on graph neural networks (GNNs) for EEG-EMG data

is proposed. The construction of graphs from the data and the use

of the GNN model to classify them are described. Additionally,

a time-based ensemble learning approach for continuous motion

recognition and movement quality assessment with split data trials

is presented.

2.1. Model framework

Figure 1 shows the general framework of the model proposed

in this paper. The process begins by acquiring synchronous EEG

and EMG signals and dividing them into small segments based on

time. Pairwise mutual information is then computed to generate

graph structure data. This data is fed into a graph neural network,

which is used to learn the action units represented by each data

segment. Finally, sequences of these sub-actions are smoothed to

determine the complex movements over a given time period and to

assess their quality.

Data from 32 EEG channels and 8 EMG channels were used in

the implementation. The data was sliced once per second, and the

signal from each channel was processed using amultitaper to obtain

Power Spectral Density (PSD). PSD was then used to construct the

features of each channel. Connectivity between each channel was

calculated using normalized pairwise mutual information (SPMI).

Graph Isomorphic Network (GIN) (Xu et al., 2018) was used for the

classification of graph-structured data. Each complex movement

was sliced into 1-s segments, and the model learned which kinds

of movement each segment belonged to and when it occurred.

Finally, a time-based ensemble learning approach was performed

to combine the outputs of the model and determine the complex

movement for each period and assess its quality.

2.2. EEG-EMG heterogeneous graphs
construction

A graph is an ordered pair G = {V ,E,A}, where V represents

the channel set |V| = N, and E represents the connection between

the channels. V = {V1,V2, ...,VN}, each Vi ∈ R1d represents the

feature of the i th channel where d represents the dimension of

the feature. A ∈ RNN is the adjacency matrix, which represents

the connection relationship between the two channels inV . Among

them, Aij represents the importance of the connection between the

i th channel and the j th channel.

The node feature is obtained by using multitaper to compute

the power spectral density (PSD) and provide frequency domain

information. Similar to the traditional physiological signal

processing method, the signals in different frequency bands are

focused separately. The percentage of power in different frequency

bands to the total power is used as the node feature, and the

numbering of electrodes is added to the node features as a location

code, to better learn the structural information in the graph. The

focused frequency bands are Delta, Theta, Alpha, Beta, and Low

Gamma, so each node will have a feature of length 7, including the

percentage of total power for each of the five bands, the total power,

and the numbering of the electrode.

Standardized Permutation Mutual Information (SPMI)

(Afshani et al., 2019) is used to construct edges in graphs. SPMI

is capable of detecting both linear and non-linear statistical

dependence, and has been widely used in neurological studies

as a measure of communication between cortical areas. The

distribution of SPMI is smooth and continuous between EEG

and EEG channels, EEG and EMG channels, and EMG and EMG

channels. Therefore, SPMI is a suitable coherence metric for graph

construction. For a EEG or EMG signal X = x(t)(t = 1, 2, . . . ,N),

the set of embedding vectors is xi(i = 1, 2, . . . ,N − (n − 1)τ )

according to

xi = [x(i), x(i+ τ ), . . . x(i+ (n− 1)τ )] (1)

where n is embedding dimension and τ is time lag. The

embedding vectors are the fragments of EEG or EMG signals. The

embedding vector’s ordinal pattern was determined by ranking the

signal value. Therefore, each signal value can be permutated into

n! kinds of ordinal pattern possibilities. Then, the Permutation

Entropy (PE) of a signal X is defined as the following formula

(Bandt and Pompe, 2002):

PEX = −

n!
∑

j

PX(j) log
(

PX(j)
)

(2)

PX(j) is the empirical probability of j th ordinal pattern. Then,

the joint PE of X and Y is defined as the following formula (Afshani

et al., 2019):

PEX,Y = −

n!
∑

j

n!
∑

k

PX,Y (j, k) log
(

PX,Y (j, k)
)

(3)

PX,Y (j, k) is the joint probability of permutation of X and Y .

Finally, SPMI between two time series X and Y can be calculated as

the following formula (Afshani et al., 2019):

SPMIX,Y =
PEX + PEY − PEX,Y

PEX,Y
. (4)

The range of SPMI is between 0 and 1, which allows obtaining

a standardized degree of correlation between each channel. By

connecting the channels with a high degree of association according

to a threshold, the connectivity between channels, which is the edge

information of the graph, can be obtained.
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FIGURE 1

Model framework.

The graph used in this study contains both EEG and EMG

data, and the difference between EEG and EMG data makes

the graph containing both data and the relationship between

them a heterogeneous graph. After separate preprocessing, the

preprocessed EEG and EMG data are processed into graph data in

the same way. This is to allow a general GNN (e.g., GIN) to handle

EEG-EMG synchronization data as well. the GNN will treat the

graph data as general graphs. The method of edge concatenation

is also consistent for inter-EEG and inter-EMG connections, with

SPMI serving as a measure of mutual information between nodes.

For connections between EEG and EMG channels, the SPMI can

be considered as a measure of corticomuscular coupling (CMC),

providing insight into complex brain-muscle interactions. This

allows the use of a graph neural network to analyze the data

and potentially improve the classification of motor intentions in

stroke rehabilitation.

2.3. Graph isomorphic network

The Graph Isomorphic Network (GIN) is used to process the

graph structure data of EEG-EMG. The GIN model is described by

the following equation:

x
′
i = h2



(1+ ǫ) · xi +
∑

j∈N (i)

xj



 (5)

where h is a multilayer perceptron (MLP) for fitting the

combination of functions. In this study, the network is a two-layer

neural network with batch normalization. The variable xi is the

node feature and N(i) is the neighbor set of node i. The variable

ǫ is a learnable irrational number parameter.

Node embeddings learned by GIN can be directly used for

tasks such as node classification and link prediction. For graph

classification tasks, the following readout function is performed.

It can transform given embeddings of individual nodes to the

embedding of the whole graph as the followed formula (Xu et al.,

2018):

hG = CONCAT
(

READOUT
({

h(k)v | v ∈ G
})

| k = 0, 1, . . . ,K
)

(6)

Where hG is the graph embedding, READOUT is the

readout function that applies a linear transformation to all node

embeddings, CONCAT concatenates the output of READOUT

function, and k is the number of iterations of the GIN model.

As the number of iterations increases, the node representations

corresponding to subtree structures in the graph-level readout

become more refined and global. A sufficient number of iterations

is crucial for achieving good discriminative power. However,

features from earlier iterations may sometimes generalize better. To

account for all structural information, information from all depths

or iterations of the model is used. This allows the GIN to effectively

classify complex motor intentions and improve rehabilitation

outcomes for stroke patients.

2.4. Time-based ensemble learning
approach

The input to the GNN model is a graph-structured

representation of EEG and EMG data over time, and the output

is a label representing a specific movement. However, this model

ignores the high temporal resolution of EMG and EEG and does

not allow for the assessment of complex movements. To capture

the time domain features of a movement and to assess its quality,

the data of each trial is segmented and fed into the GNN model

separately, resulting in labels for the corresponding sub-actions.

Each sub-action label consists of two parts: the movement to which

the sub-action belongs and the segment of that movement to which

the sub-action belongs. By connecting the predicted labels of the

sub-actions, a sequence of predicted labels can be obtained. By

analyzing this sequence, the movement can be classified and its

score calculated.
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FIGURE 2

An example of time-based ensemble learning. Green blocks mean

the model predicted the movement and the position exactly, blue

blocks mean the model predicted the movement correctly but not

the same position, and red blocks mean the model predicted a

wrong movement.

Suppose the sequence of predicted sub-actions is M[n], where

M[i] represents the prediction of the i th sub-action given by the

model. The actual label is G[n] and G[i] represents the actual

label of the i th sub-action. The score of the movement is then

calculated as:

scoreGi =

∑n
i=1 similarity(Gi,Mi)

n
(7)

where the similarity is defined as:

similarity(a, b) =

{

0 a and b are fromdifferentmovement

1− |a−b|
n a and b are from same movement

(8)

The score of the predicted label sequence for each movement

can be calculated, and the movement with the highest score can

be obtained as the predicted output. This improves the overall

classification accuracy. Figure 2 shows an example of the process

of the ensemble. This is a labeled push action, and the model first

divides the movement into six segments to separately predict which

segment belongs to which action. Then, the scores of each possible

movement label are calculated separately according to equation

(7), and the label with the highest score is taken as the overall

prediction. In the example in the Figure 2, this movement data is

predicted to be a push and has a score of 55.

3. Experiments and results

3.1. Datasets

A public dataset of simultaneous EEG-EMG acquisition (Tan

et al., 2022) was used for the experiment. The data consisted of

32 channels of EEG data according to the international 10-10

system. The EEG sampling rate was 500 Hz. Eight EMG electrodes

were placed on the arm at the following positions: (a) flexor

digitorum superficialis (FDS), (b) flexor carpi ulnaris (FCU), (c)

flexor carpi radialis (FCR), (d) extensor carpi ulnaris (ECU), (e)

extensor carpi radialis longus (ECRL), (f) biceps brachii short head

(BBS), (g) triceps brachii long head (TBL) and (h) lateral deltoid

(LD). Figure 3 shows the location of EEG and EMG electrodes. The

EMG sampling rate was 1,000 Hz. The dataset collected EEG EMG

FIGURE 3

The location of EEG and EMG electrodes.

data from 5 healthy volunteers and 2 stroke patients performing

isometric push and pull movements of 3 s duration. The dataset

contains data from a total of 516 trials of healthy individuals and

174 trials of stroke patients.

3.2. Data preprocessing and graph
construction

To prepare the data for analysis, the EMG data were

downsampled to 500 Hz and aligned with the EEG data. The EEG

signals were band-pass filtered from 2 to 40Hz and the EMG signals

were band-pass filtered from 2 to 100 Hz. Noise was removed using

Independent Component Analysis (ICA) with a threshold of 99%.

Finally, the epochs were divided according to the time of the action

cues and grouped from 0 to 3 s. Many significant signal power

changes occur at integral multiples of 0.5 s, such as 1.5 s and 2 s,

based on the observed EMG signals. Therefore, each data epoch is

divided into six segments of 0.5 s each. The data was divided into

training and test sets at a ratio of 4:1. The model obtained from the

training data was then evaluated on each subject’s test set, resulting

in a cross-subject model.

After preprocessing, the segmented EEG-EMG data is used to

construct the graph data. The information in the nodes is based on

the power spectral density of the data for each channel, while the

relationships between the nodes are based on normalized pairwise

mutual information.

To extract node features for the graph structure, the Power

Spectral Density (PSD) is calculated for each channel’s signal using

multitapers. The percentage of each band in the total power is then

calculated. The specific band divisions are Delta (2–4 Hz), Theta

(4–8 Hz), Alpha (8–15 Hz), Beta (15–30 Hz), and Low Gamma

(30–40Hz). These divisions combine physiological significance and

experimental results and are slightly different from the usual band

divisions. However, the banding has little effect on the results.

Total channel power and channel number are also included as

node information.

For edge information, the SPMI between pairs of channels is

computed with an embedding dimension of 5 and a time delay of

1. The 25% percentile of all SPMIs is then used as the threshold

for connecting edges in the graph. This results in a graph with

195 edges for a graph with 40 points. This value was determined
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FIGURE 4

Graph feature analysis (A) visualization of the connectivity between EEG and EMG channels (B) each labels’ EMG degrees heat-map for each

sub-actions.

experimentally, and the effect of different graph construction

methods on the results is analyzed.

3.3. Graph feature analysis

Figure 4A visualizes the connectivity between each channel

over time. As time changes, the connectivity of the graph changes in

different ways. The figure shows the pushing movement of a typical

healthy person (subject 19). It can be seen that different EMG

channels have more connections with EEG channels over time.

For example, channel ECU and ECRL are connected to more EEG

channels in 0 0.5s, which gradually changes to more connections

in channel FCU and FDS in the third figure after 0.5s. Then

channel FCR and TBL got more connections. Channel BBS and

LD don’t have many connections during this movement because

they are not related to this movement. The change in EMG and

EEG connections is essentially giving weight or attention to the

node information of the graph to help the model identify important

features. This is thought to reflect the sequential behavior of the

brain controlling the muscles.

The average degrees of the EMG channel for each sub-action are

shown in Figure 4B. A clear change in connectivity can be observed

during the different phases of different movements. For example,

the degree of the ECU gradually decreases during the push and

gradually increases during the pull. The opposite change can be

observed in the TBL channel.

3.4. Experiments settings

The Graph Isomorphic Network (GIN) model was used in this

study to process graph-structured data. The GIN was trained with

300 epochs and a batch size of 128. The multilayer perceptron in

each node has an input channel of 7 (the dimension of the node

features), 64 hidden channels, and 2 layers of MLP.

The training phase used the Adam optimizer with a learning

rate of 0.005. The model was trained with the sum of the

cross-entropy loss for sub-actions and whole movements. In the

evaluation phase, the average classification accuracy was used as a

metric to evaluate the performance of the model.

To evaluate the trained GIN model, it was first used to predict

the labels of each sub-action for each trial. The sequence of

predicted labels was then used to determine the overall predicted

label for the trial, as well as to assess the quality of the movement.

The scores for each movement were calculated, and the movement

label with the highest score was selected as the overall predicted

label. Finally, the predicted labels were compared to the ground

truth labels to evaluate the performance of the model.

3.5. Classification results

In the experiment, the proposed GIN-based model was trained

using data from all individuals and its performance was evaluated

using data from each healthy individual and stroke patient,

respectively. The performance of themodel was compared with two

commonly used benchmark methods: CSP+SVM (Ang et al., 2008)

and EEGNet (Lawhern et al., 2018). In addition, two other types of

GNNs were tested: Graph AttentionNetwork v2 (Brody et al., 2021)

and Residual Gated Graph ConvNets (Bresson and Laurent, 2017).

All experiments were repeated five times and the average is shown.

Table 1 displays the results of every patient on the approach

used in the study and the baseline models. The results showed

that the GIN-based model outperformed the benchmark methods.

It achieved 88.89% classification accuracy, significantly higher

than the 73.23% of CSP+SVM and 67.60% of EEGNet. The

poor performance of EEGNet is mainly due to its reliance on

a large amount of data, while the proposed method does not

require a large amount of data due to its simpler structure. In

addition, the higher classification accuracy of the proposed method

demonstrates its ability to capture important features and its ease
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TABLE 1 Every patient’s results on our approach and baseline models.

Methods Health Patients Overall 2 4 14 15 17 18 19

CSP+SVM 75.74% 63.89% 73.23% 69.23% 60.87% 61.90% 76.92% 80.00% 95.65% 75.00%

EEGNet 72.64% 52.77% 67.60% 46.15% 56.52% 57.14% 84.61%84.61%84.61% 56.00% 95.65% 75.00%

GraphAttentionNet 83.01% 57.86% 77.64% 46.15% 69.57% 71.42% 69.23% 88.00% 91.30% 87.50%

ResGatedGraph 79.24% 70.83% 76.06% 61.53% 69.57% 76.19% 61.53% 88.00% 91.30% 70.83%

Ours 93.96%93.96%93.96% 73.54%73.54%73.54% 88.89%88.89%88.89% 72.30%72.30%72.30% 74.78% 82.85%82.85%82.85% 83.07% 99.20%99.20%99.20% 100.00%100.00%100.00% 98.33%98.33%98.33%

Ours(single-subject) / / / 38.46% 82.60%82.60%82.60% 71.42% 76.92% 92.00% 95.65% 85.83%

The largest result number in each column is in bold.

of training. CSP+SVM is a common benchmark method that

usually performs well on small datasets. However, in this study,

it did not perform as well on the data set, which may be due

to the large differences between EEG and EMG data. The other

two graph neural networks performed better than CSP+SVM

and EEGNet, proving the effectiveness of our graph construction

method. Meanwhile, GIN can identify more node features and also

better analyze the structural information of the graph, which makes

the results of GIN the best performance among the graph neural

network methods.

The experiments in this study were cross-subject, where data

from all subjects were used to train the same model during the

training process. Compared to the results of the single-subject

experiments, where a model was trained for each subject, most

subjects had higher accuracy. The single-subject results for Subject

4 were slightly higher than the cross-subject results, probably

because stroke patients have their own unique movement patterns.

The purpose of the method proposed in this paper is to better

assess the movement quality of stroke patients compared to healthy

subjects, so a cross-subject experiment is necessary. The GNN-

based method proposed in this paper is more suitable for the cross-

subject task because it can clearly and separately process data on

EEG, EMG, and brain-muscle coupling information.

For stroke patients, the proposed method also outperformed

the baseline methods. The poor signal quality of both EEG and

EMG data, caused by the patients’ weak EMG performance and the

effect of brain damage on the EEG, hindered the baseline methods’

ability to capture important features. However, the proposed

GNN-based method achieved higher classification accuracy due

to its use of the EEG-EMG correlation graph, which provides

new information to the model. The graph network model also

performed consistently on healthy human data, achieving nearly

100% accuracy for three of the subjects.

3.6. Ablation experiments

In this study, several ablation experiments were performed to

assess the contributions of different data sources and processing

methods to the overall model performance. The results of these

experiments are shown in Figure 5.

The results indicate that both EEG and EMG signals contribute

to the performance of the model. When only one data source

was used, the model achieved an accuracy of 64.09% for EEG

and 64.79% for EMG. However, when the graph structure was

considered without the node information, the model achieved

only 52.35% accuracy, indicating that the graph data based

on EEG-EMG coupling mainly reflects the relationship between

different node features and contains relatively little information

by itself. By incorporating both EEG and EMG data and their

relationship through the graph, the model achieved significantly

better classification accuracy than using a single data source.

The experiments also showed the contribution of both

node and edge information in the graph. The proposed graph

construction method was compared with other methods that do

not consider SPMI between channels, including random graphs

and complete graphs. The accuracy of the random graph (with a

25% probability of connecting edges) and the complete graph was

about 60%, while the fixed graph achieved an accuracy of 71.67%.

This indicates that the edge information in the graph provides

useful information, and that this information is not just a structural,

fixed representation, but a feature that changes over time and

reflects movements.

The effect of time-based ensemble on the results was also

investigated. When the data was not split and classified directly, the

accuracy rate reached 80.97%. This shows that the model can still

achieve good results without considering the sequential features

of the movements. However, when data splitting was added, the

model was able to capture more temporal features, resulting in

improved accuracy. For the sub-action data, the model was able to

identify the corresponding movement with 75.23% accuracy and

its exact position within the movement with 20.30% accuracy (12

categories). The mutual information graph used in the proposed

method captures better correlation and frequency domain features

for each channel, allowing the model to identify the label of a small

segment of data with similar accuracy as the entire segment. In

addition, by learning the position of sub-actions within the labels,

the network can capture the temporal features of the data. This

allows the proposed method to achieve high accuracy and assess

the quality of each movement.

3.7. Movement assessment

A sequential learning approach was used to calculatemovement

scores for each healthy individual and stroke patient in the dataset.

As shown in Figure 6A, the mean scores and variances for healthy

individuals are significantly higher and smaller, respectively,
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FIGURE 5

Ablation experiments results.

indicating that healthy individuals can perform each movement

consistently. In contrast, the scores for stroke patients are generally

low and have larger variances, likely due to their limited ability

to control their movements. In addition, the scores for different

patients are at different intervals, indicating that their motor

functions are at different stages. Patient 4 was able to perform some

of the movements, resulting in a higher score among the stroke

patients. Patient 2, on the other hand, had difficulty performing

movements independently, resulting in a lower assessment score.

This is consistent with the results observed in the EMG data.

Independent samples t-tests were used to assess the difference

between the scores of the two groups of stroke patients and healthy

subjects. The results showed a t-value of -4.88 and a p-value

of 2.83e-06. This indicates a significant difference between the

movement scores of stroke patients and healthy subjects.

Figure 6B shows the weight of the reasons for low scores for

each patient. Two factors can affect the score: if the segmentation

belongs to a differentmovement than the label, or if it belongs to the

same movement but appears in a different location. The prediction

results of the sub-actions were classified into three categories:

close, meaning that the absolute value of the distance between the

prediction result and the label is less than or equal to 3, far, meaning

that the absolute value of the prediction result and the label is

greater than 3, and wrong, meaning that the prediction result and

the label belong to different moves. Each sub-action represents

some muscle stretch or contraction in time, and since these actions

are equally segmented from a full movement, they have no explicit

semantic information. It can be observed that the features of each

segment are basically similar.

Our results showed that for healthy individuals, most of

the data corresponding to sub-actions were accurately or closely

predicted by the model. However, for stroke patients, most of the

data for sub-actions was predicted incorrectly. The model struggled

to accurately predict data for more distant sub-actions of the

same movement for all subjects. This is likely because adjacent

sub-actions are more similar to each other, making it easier to

predict the data of one sub-action as the adjacent sub-action. Since

stroke patients often perform movements differently, evaluating

sub-actions separately may lead to a more accurate assessment of

a movement. However, accurately determining which sub-action a

movement belongs to and distinguishing between sub-actions can

be challenging for stroke patients, so calculating scores based on the

distance between the predicted and true labels can provide a more

convincing evaluation of their movements.

3.8. Model performance

The proposed model in this paper is designed to be lightweight,

making it ideal for use in hospitals and homes for rehabilitation

purposes. The training time for 300 epochs takes an average of

4.27 h on a laptop with a quad-core Intel Core i5 processor.

The performance bottleneck is mainly in the calculation of SPMI,

which has a high computational complexity. However, in practical

rehabilitation applications, the model can be quickly retrained with

the fully preprocessed data in a few minutes after incremental

preprocessing of the new data.

To deploy the model proposed in this paper in a rehabilitation

system, it is only necessary to first build a graph of the input

data and then predict it with the preloaded model. This process

is similar to other common classification models, making it easy

to integrate into existing systems. The prediction process takes

less than 3 s, providing users with soft real-time feedback. In

a practical application, offline computation of the brain-muscle

connectivity map for a specific user can be considered to achieve
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FIGURE 6

Results of movements assessment (A) mean value and std for each patient (pink) and healthy subject (light blue). (B) Proportion of predictions for

each subject that are correct or close to the label (red), far from the label (yellow), and wrong (green).

better real-time performance at the expense of some accuracy. The

results of ablation experiments show that the model’s accuracy is

acceptable with fixed maps computed using the SPMI.

Currently, a rehabilitation system based on this model is under

development. In the future, it has the potential to be integrated

with hardware that provides more detailed feedback, such as

functional electrical stimulation and advanced mechanical gloves

with increased degrees of freedom.

4. Discussion

The model proposed in this paper has potential for further

development in two areas.

First, a more robust definition and evaluation of sub-actions

is needed. The sub-actions in this paper are simply a complex

movement equally divided by time, which allows the capture

of action characteristics at a finer granularity. However, the

interpretation of these sub-actions is weak. If semantic information

can be obtained for each sub-action through the use of kinematic

principles or unsupervised learning-based methods, the model

may perform better. In addition, the evaluation of actions can

be improved by considering the similarity of different sub-

actions.

Second, the output of the model can be used to provide more

effective feedback to patients. Currently, the model outputs a

sequence of sub-actions from which predicted labels and scores

can be obtained for the entire action. However, EMG and EEG-

based brain-computer interfaces are able to simultaneously capture

a user’s motor intention and motor execution. This allows us to

learn the gap between a user’s intended movement and its actual

execution.With this information, appropriate compensation can be

provided to help the patient perform the correct movement. With

this precise feedback, patients can gain a better understanding of

their rehabilitation process and gradually become less dependent

on exoskeletons.

5. Conclusion

In this paper, a novel sequential learning model based on

graph neural networks has been proposed for use in EEG-EMG

brain-computer interfaces to support the rehabilitation of motor

function in stroke patients. Using a publicly available dataset, our

method achieves a classification accuracy of 88.89%, significantly

outperforming the benchmark method (73.23%) and providing

an interpretable movement assessment for each movement. This

model has the potential to provide sequential compensatory

feedback to patients, allowing them to receive better feedback on

the quality of their movements, and may be effective in helping

them rebuild their neural circuitry. This technology is currently

being used to develop a stroke rehabilitation system to aid in the

recovery of hand function in stroke patients.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: https://github.com/CM-connectivity/CM-graph.

Author contributions

HL: carried out experiment and writing. HJ, JY, and JL:

designed the overall framework. LJ, LL, ZB, and CY:methodological

guidance and formal analysis. All authors contributed to the article

and approved the submitted version.

Funding

This work was supported by the Shanghai Municipal

Science and Technology Major Project (2021SHZDZX0100), the

Fundamental Research Funds for the Central Universities, the

Science and Technology Innovation Action Plan of the Shanghai

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1125230
https://github.com/CM-connectivity/CM-graph
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1125230

Science and Technology Commission (19441908000), and Program

of Shanghai Academic Research Leader (20XD1403400).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Afshani, F., Shalbaf, A., Shalbaf, R., and Sleigh, J. (2019). Frontal-temporal
functional connectivity of eeg signal by standardized permutation mutual information
during anesthesia. Cogn. Neurodyn. 13, 531–540. doi: 10.1007/s11571-019-09553-w

Aggarwal, S., and Chugh, N. (2019). Signal processing techniques for motor imagery
brain computer interface: a review. Array 1, 100003. doi: 10.1016/j.array.2019.100003

Alankus, G., and Kelleher, C. (2012). “Reducing compensatory motions in video
games for stroke rehabilitation,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Austin, TX), 2049–2058.

Ang, K. K., Chin, Z. Y., Zhang, H., and Guan, C. (2008). “Filter bank common
spatial pattern (fbcsp) in brain-computer interface,” in 2008 IEEE International Joint
Conference on Neural Networks (IEEE World Congress on Computational Intelligence)
(Hong Kong: IEEE), 2390–2397.

Balasubramanian, S., Garcia-Cossio, E., Birbaumer, N., Burdet, E., and
Ramos-Murguialday, A. (2018). Is emg a viable alternative to bci for detecting
movement intention in severe stroke? IEEE Trans. Biomed. Eng. 65, 2790–2797.
doi: 10.1109/TBME.2018.2817688

Bandt, C., and Pompe, B. (2002). Permutation entropy: a natural
complexity measure for time series. Phys. Rev. Lett. 88, 174102.
doi: 10.1103/PhysRevLett.88.174102

Bresson, X., and Laurent, T. (2017). Residual gated graph convnets. arXiv preprint
arXiv:1711.07553. doi: 10.48550/arXiv.1711.07553

Brody, S., Alon, U., and Yahav, E. (2021). How attentive are graph attention
networks? arXiv preprint arXiv:2105.14491. doi: 10.48550/arXiv.2105.14491

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.
doi: 10.1038/nrn2575

Cesqui, B., Tropea, P., Micera, S., and Krebs, H. I. (2013). Emg-based pattern
recognition approach in post stroke robot-aided rehabilitation: a feasibility study. J.
Neuroeng. Rehabil. 10, 1–15. doi: 10.1186/1743-0003-10-75

Chowdhury, A., Raza, H., Meena, Y. K., Dutta, A., and Prasad, G. (2019). An EEG-
EMG correlation-based brain-computer interface for hand orthosis supported neuro-
rehabilitation. J. Neurosci. Methods 312, 1–11. doi: 10.1016/j.jneumeth.2018.11.010

Hooda, N., Das, R., and Kumar, N. (2020). Fusion of eeg and emg signals for
classification of unilateral foot movements. Biomed. Signal Process. Control 60, 101990.
doi: 10.1016/j.bspc.2020.101990

Hwang, H.-J., Kwon, K., and Im, C.-H. (2009). Neurofeedback-basedmotor imagery
training for brain-computer interface (BCI). J. Neurosci. Methods 179, 150–156.
doi: 10.1016/j.jneumeth.2009.01.015

Jerbi, K., Vidal, J., Mattout, J., Maby, E., Lecaignard, F., Ossandon, T., et
al. (2011). Inferring hand movement kinematics from meg, eeg and intracranial
EEG: from brain-machine interfaces to motor rehabilitation. IRBM 32, 8–18.
doi: 10.1016/j.irbm.2010.12.004

Krauth, R., Schwertner, J., Vogt, S., Lindquist, S., Sailer, M., Sickert, A.,
et al. (2019). Cortico-muscular coherence is reduced acutely post-stroke and
increases bilaterally during motor recovery: a pilot study. Front. Neurol. 10, 126.
doi: 10.3389/fneur.2019.00126

Lattari, E., Velasques, B., Paes, F., Cunha, M., Budde, H., Basile, L., et al. (2010).
Corticomuscular coherence behavior in fine motor control of force: a critical review.
Rev. Neurol 51, 610–623. doi: 10.33588/rn.5110.2010311

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., and
Lance, B. J. (2018). Eegnet: a compact convolutional neural network for EEG-based
brain-computer interfaces. J. Neural Eng. 15, 056013. doi: 10.1088/1741-2552/aace8c

Li, H., Zhang, Q., Lin, Z., and Gao, F. (2021a). Prediction of epilepsy based
on tensor decomposition and functional brain network. Brain Sci. 11, 1066.
doi: 10.3390/brainsci11081066

Li, Y., Zhong, N., Taniar, D., and Zhang, H. (2021b). Mutualgraphnet: a
novel model for motor imagery classification. arXiv preprint arXiv:2109.04361.
doi: 10.48550/arXiv.2109.04361

Liu, J., Sheng, Y., and Liu, H. (2019). Corticomuscular coherence and its
applications: a review. Front. Hum. Neurosci. 13, 100. doi: 10.3389/fnhum.2019.00100

McAvinue, L. P., and Robertson, I. H. (2008). Measuring motor imagery ability: a
review. Eur. J. Cogn. Psychol. 20, 232–251. doi: 10.1080/09541440701394624

Ruhunage, I., Mallikarachchi, S., Chinthaka, D., Sandaruwan, J., and Lalitharatne,
T. D. (2019). “Hybrid eeg-emg signals based approach for control of hand motions of
a transhumeral prosthesis,” in 2019 IEEE 1st Global Conference on Life Sciences and
Technologies (LifeTech) (Osaka: IEEE), 50–53.

Sarasola-Sanz, A., Irastorza-Landa, N., López-Larraz, E., Bibián, C., Helmhold, F.,
Broetz, D., et al. (2017). “A hybrid brain-machine interface based on EEG and emg
activity for themotor rehabilitation of stroke patients,” in 2017 International Conference
on Rehabilitation Robotics (ICORR) (London, UK: IEEE), 895–900.

Sun, B., Zhang, H., Wu, Z., Zhang, Y., and Li, T. (2021). Adaptive spatiotemporal
graph convolutional networks for motor imagery classification. IEEE Signal Process.
Lett. 28, 219–223. doi: 10.1109/LSP.2021.3049683

Tan, G., Wang, J., Liu, J., Sheng, Y., Xie, Q., and Liu, H. (2022). A
framework for quantifying the effects of transcranial magnetic stimulation on motor
recovery from hemiparesis: corticomuscular network. J. Neural Eng. 19, 026053.
doi: 10.1088/1741-2552/ac636b

Tang, S., Dunnmon, J. A., Saab, K., Zhang, X., Huang, Q., Dubost, F.,
et al. (2021). Automated seizure detection and seizure type classification from
electroencephalography with a graph neural network and self-supervised pre-training.
arXiv preprint arXiv:2104.08336. doi: 10.48550/arXiv.2104.08336

Tun, N. N., Sanuki, F., and Iramina, K. (2021). “EEG-EMG correlation analysis
with linear and nonlinear coupling methods across four motor tasks,” in 2021 43rd
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC) (Mexico: IEEE), 783–786.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful are
graph neural networks? arXiv preprint arXiv:1810.00826. doi: 10.48550/arXiv.
1810.00826

Xue, X., Tu, H., Deng, Z., Zhou, L., Li, N., and Wang, X. (2021). Effects
of brain-computer interface training on upper limb function recovery in stroke
patients: a protocol for systematic review and meta-analysis. Medicine 100, 23.
doi: 10.1097/MD.0000000000026254

Yao, T., Gao, F., Zhang, Q., and Ma, Y. (2021). Multi-feature gait
recognition with dnn based on semg signals. Math. Biosci. Eng. 18, 3521–3542.
doi: 10.3934/mbe.2021177

Young, B. M., Williams, J., and Prabhakaran, V. (2014). Bci-fes: could a new
rehabilitation device hold fresh promise for stroke patients? Expert. Rev. Med. Devices
11, 537–539. doi: 10.1586/17434440.2014.941811

Zhang, J., Wang, B., Zhang, C., Xiao, Y., and Wang, M. Y. (2019). An eeg/emg/eog-
based multimodal human-machine interface to real-time control of a soft robot hand.
Front. Neurorob. 13, 7. doi: 10.3389/fnbot.2019.00007

Zhang, Q., Guo, B., Kong, W., Xi, X., Zhou, Y., and Gao, F. (2021). Tensor-based
dynamic brain functional network for motor imagery classification. Biomed. Signal
Process. Control 69, 102940. doi: 10.1016/j.bspc.2021.102940

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1125230
https://doi.org/10.1007/s11571-019-09553-w
https://doi.org/10.1016/j.array.2019.100003
https://doi.org/10.1109/TBME.2018.2817688
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.48550/arXiv.1711.07553
https://doi.org/10.48550/arXiv.2105.14491
https://doi.org/10.1038/nrn2575
https://doi.org/10.1186/1743-0003-10-75
https://doi.org/10.1016/j.jneumeth.2018.11.010
https://doi.org/10.1016/j.bspc.2020.101990
https://doi.org/10.1016/j.jneumeth.2009.01.015
https://doi.org/10.1016/j.irbm.2010.12.004
https://doi.org/10.3389/fneur.2019.00126
https://doi.org/10.33588/rn.5110.2010311
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.3390/brainsci11081066
https://doi.org/10.48550/arXiv.2109.04361
https://doi.org/10.3389/fnhum.2019.00100
https://doi.org/10.1080/09541440701394624
https://doi.org/10.1109/LSP.2021.3049683
https://doi.org/10.1088/1741-2552/ac636b
https://doi.org/10.48550/arXiv.2104.08336
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.1097/MD.0000000000026254
https://doi.org/10.3934/mbe.2021177
https://doi.org/10.1586/17434440.2014.941811
https://doi.org/10.3389/fnbot.2019.00007
https://doi.org/10.1016/j.bspc.2021.102940
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	A sequential learning model with GNN for EEG-EMG-based stroke rehabilitation BCI
	1. Introduction
	1.1. Sequential motor rehabilitation
	1.2. EEG-EMG-based Hybrid BCIs
	1.3. Graph neural networks for BCIs
	1.4. Main contributions

	2. Materials and methods
	2.1. Model framework
	2.2. EEG-EMG heterogeneous graphs construction
	2.3. Graph isomorphic network
	2.4. Time-based ensemble learning approach

	3. Experiments and results
	3.1. Datasets
	3.2. Data preprocessing and graph construction
	3.3. Graph feature analysis
	3.4. Experiments settings
	3.5. Classification results
	3.6. Ablation experiments
	3.7. Movement assessment
	3.8. Model performance

	4. Discussion
	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


