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Event cameras are asynchronous and neuromorphically inspired visual sensors,

which have shown great potential in object tracking because they can easily

detect moving objects. Since event cameras output discrete events, they are

inherently suitable to coordinate with Spiking Neural Network (SNN), which has a

unique event-driven computation characteristic and energy-e�cient computing.

In this paper, we tackle the problem of event-based object tracking by a novel

architecture with a discriminatively trained SNN, called the Spiking Convolutional

Tracking Network (SCTN). Taking a segment of events as input, SCTN not

only better exploits implicit associations among events rather than event-wise

processing, but also fully utilizes precise temporal information and maintains

the sparse representation in segments instead of frames. To make SCTN more

suitable for object tracking, we propose a new loss function that introduces an

exponential Intersection over Union (IoU) in the voltage domain. To the best of

our knowledge, this is the first tracking network directly trained with SNN. Besides,

we present a new event-based tracking dataset, dubbed DVSOT21. In contrast

to other competing trackers, experimental results on DVSOT21 demonstrate that

ourmethod achieves competitive performancewith very low energy consumption

compared to ANN based trackers with very low energy consumption compared to

ANN based trackers. With lower energy consumption, tracking on neuromorphic

hardware will reveal its advantage.

KEYWORDS

spiking neural networks, event cameras, object tracking, exponential IoU, event-based

tracking dataset

1. Introduction

Object tracking is a nontrivial problem in computer vision, and is widely used in

security monitoring, sports events broadcasting, robotics, unmanned aerial vehicles and

other fields. In recent years, object tracking with traditional cameras has become very

mature, represented by algorithms based on Siamese networks (Zhang et al., 2020, 2021)

and Transformers (Chen et al., 2021; Wang et al., 2021; Cui et al., 2022). Unfortunately,

traditional cameras have difficulty capturing moving objects under extreme conditions of

high speed and high dynamic range.

Event camera, such as the Dynamic Vision Sensor (DVS), is a novel, asynchronous, and

neuromorphically inspired visual sensor (Gallego et al., 2020). Each pixel on the sensor can

independently detect the illumination changes in the scene, and once the changes exceed

the threshold, it will output visual information in the form of events. Since the brightness
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changes are usually caused by the movement of objects, event

cameras only capture the dynamic information from their visual

input and output it in the form of events, ignoring the static

information in the scene (Khoei et al., 2019).

In contrast to traditional cameras, event cameras have the

advantages of high time resolution, high dynamic range, low power

consumption, and low information redundancy. Therefore, it can

well capture the movement of objects in the dark environment

or the fast-moving scene without motion blur, which is ideal for

object tracking. Several event-based object tracking methods have

been proposed in the past few years. which can be roughly divided

into two categories. The first category is that each incoming event

is determined in time whether it belongs to the target or the

background. In (Litzenberger et al., 2006), the authors performed

event-based object tracking with the clustering algorithm, where

each incoming event is assigned to a cluster and then the

parameters of the cluster are updated. Ni et al. (2015) proposed

an event-based tracking method by making a continuous and

iterative estimation of the geometric transformation. Although

these methods are very fast to track, they are easily affected by

noise events. A single noise event may cause the tracker to make

a wrong inference. Furthermore, they are susceptible to complex

background, shape variation and so on. It is difficult to decide

whether it belongs to the target based on a single event. Because

they cannot utilize the implicit associations between events, which

mean the temporal and spatial associations between events.

The other category is to collect events over a period of

time and track objects according to their features. In Lagorce

et al. (2014), the authors proposed an asynchronous event-based

multi-kernel algorithm, which is based on the assumption that

events generated by object motion approximately follow a bivariate

normal distribution. In Mitrokhin et al. (2018), the authors

presented a tracking-by-detection method, where a novel time-

image representation was proposed. This representation gives

temporal information to events projected to the same pixel, which

facilitates subsequent motion compensation. RMRNet (Chen et al.,

2020) was formulated to predict 5-DoF object motion regression,

which allows end-to-end event-based object tracking. These

methods will have a certain delay compared to the first category,

but usually they will make the tracking more accurate.

In addition to these methods, traditional trackers applied in

frame-based video sequences can also be used for event-based

tracking. In this way, the event stream is expected to be converted

into frames at first. In Henriques et al. (2014), the authors proposed

kernelized correlation filters (KCF), using multi-channel features

and mapping the ridge regression of linear space to nonlinear space

through the kernel function, and the Fourier space diagonalization

is used in the circulant matrices. Siamese network and its variants

have achieved excellent performance in recent years. SiamFC

(Bertinetto et al., 2016) is the pioneering work, which uses a fully

convolutional Siamese network for object tracking, and the frame

rate exceeds the real-time requirements. Inspired by this work,

many algorithms based on Siamese networks were generated (Li

et al., 2018;Wang et al., 2019; Zhang et al., 2020, 2021), all achieving

very good performance in object tracking. On the basis of Siamese

networks, TrDiMP (Wang et al., 2021) combines Transformer and

exploits temporal context for object tracking. The transformer

encoder facilitates object templates through attention-based feature

enhancement, which is beneficial for the generation of high quality

trackingmodels. The transformer decoder propagates tracking cues

from previous templates to the current frame, thus simplifying the

object search process.

However, the event stream should be firstly converted into

static images when ANNs are used to process the output of

the event cameras, leading to the loss of precise temporal

information within events. Since events contain precise spatio-

temporal information, they are more suitable to be processed by

SNN, which uses spike coding to integrate timing information

(Ghosh-Dastidar and Adeli, 2009). In this way, events are treated

as spikes that can be handled directly by SNN (Jiang et al., 2021).

SiamSNN (Luo et al., 2021), the deep SNN for object tracking, uses

the model converted from SiamFC and achieves low precision loss

on the benchmarks. But SiamSNN is not directly trained with SNN,

it is trained using the conversion algorithm with pretrained ANN.

In this work, we propose a novel tracking architecture, referred

to as Spiking Convolutional Tracking Network (SCTN), for single

object tracking in event-based video sequences. SCTN can not only

process the event stream without any additional operations, but

also make full use of the temporal information in it. Unlike Nam

and Han (2016), online learning is dispensable in our model, since

it is time-consuming during test and it contributes little to tracking

performance. The power of this online learning method stems from

fine-tuning the network according to the tracking results in the

first few testing frames, however, the network will be updated in

the wrong direction due to taking the inaccurate tracking results as

online training samples.

As far as we know, SCTN is the first event based single object

tracking network directly trained with SNN. Compared with ANN-

based tracking methods, our method can accept the input of

event stream without any preprocessing operations and take full

advantage of the temporal information in it, and especially show

remarkable capabilities of energy-efficient computing. We propose

a new loss function that introduces an exponential IoU between

ground-truths and training bounding boxes in the voltage domain,

while the candidate bounding box corresponding to the largest

voltage is regarded as the target bounding box in the test. Besides,

we present a novel publicly available event-based tracking dataset,

namedDVSOT21, under challenge conditions by implementing the

bounding boxes generation module to extend the ESIM simulator

(Rebecq et al., 2018).

2. Materials and methods

In this section, we first present the description of events and

spiking neuron model used in SCTN in Section 2.1 and Section 2.2.

Then we describe the network architecture and tracking process in

section 2.3. Samples generation for training, fine-tuning and target

bounding box selection will be shown in Section 2.4. We introduce

the learning algorithm and loss function in Section 2.5. Finally, the

target bounding box selection will be demonstrated in Section 2.6.

2.1. Events description

Each of the events can be described as a quadruple (x, y, t, p),

where (x, y) denotes the position of the triggered event, t represents

the timestamp, and the polarity p = +1 means the increasing
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FIGURE 1

(A) The 3D visualization of the rotated star. (B) The time surface of the rotated star.

brightness while p = −1 means the decreasing brightness. The 3D

visualization of the event stream is illustrated in Figure 1A, which

indicates a rotated star. Figure 1B shows the time surface of the

rotated star, where the color from yellow to blue represents the time

trajectory from old to new events. From this we can deduce that the

star is moving clockwise.

2.2. Spiking neuron model

Here, the current-based leaky integrate-and-fire (C-LIF)

neuron model (Gütig, 2016) is used as the basic computational unit

in SCTN. Assuming there are N afferent neurons, the voltage of the

C-LIF spiking neuron can be calculated as:

Vt = Lt − Et (1)

Lt =

N
∑

i=1

wi

∑

t
j
i<t

K(t − t
j
i) (2)

Et = ϑ
∑

t
j
s<t

exp(−
t − t

j
s

αm
) (3)

K(t − t
j
i) = V0[exp(−

t − t
j
i

αm
)− exp(−

t − t
j
i

αs
)] (4)

where wi is the synaptic efficacy, t
j
i denotes the time of the j-

th input spike from the i-th afferent neuron, and t
j
s denotes the

time of the j-th firing spike. Each spike at time t
j
i contributes a

postsynaptic potential (PSP), whose shape is determined by the

double exponential kernel function K(t− t
j
i). V0 is a normalization

factor that normalizes the maximum value of the kernel to 1. αm,αs

mean the time decay factors, which are learnable parameters in

SCTN.ϑ denotes the threshold of the neuron and it is equal to 0.5 in

our experiments. Lt is the dynamics of the leaky integrate-and-fire

(LIF) neuron model (Gerstner and Kistler, 2002), which describes

the input synaptic current from N presynaptic neurons. Compared

with the LIF model, the C-LIF model has one more reset item Et ,

indicating that each output spike will suppress the voltage for a

moment. For C-LIF model, a spike is triggered when Vt exceeds

ϑ and then Vt is reset.

2.3. Network architecture and tracking
process

The architecture of SCTN is illustrated in Figure 2, where the

intensity images are the visualization of all the events within 10 ms.

Too small a time window will make the accumulated events sparse

and too large a time window may result in the motion blur. The

experiments show that 10ms is a compromise value. So in our work,

a segment is defined as all the events accumulated within 10 ms,

which can be processed by SNN without any preprocessing, rather

than being processed as converted into a frame.

Our approach consists of two phases: training and test, where

the sample generator plays an important role. During training, the

input samples produced by sample generator are used for training

SCTN, which contains three convolutional layers and three fully-

connected layers. In the first convolutional layer, the size of the

input image is determined by the largest bounding box, which is

107 × 107 in this paper. For the bounding boxes smaller than 107

× 107, only the neurons corresponding to the events within the

bounding box will emit spikes, otherwise they are set to no output

spikes. There are only two neurons in the last fully connected

layer, one indicates background and the other indicates target. In

addition, we apply adaptive learnable parameters to all the C-LIF

neurons, which are beneficial to improve tracking performance.

As shown in Figure 3, the sample generator is responsible

for generating fine-tuning samples and candidate samples in the

process of tracking by SCTN. The details can be found in Section

2.4. In the first segment of the test sequence, the positive and
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FIGURE 2

The architecture of spiking convolutional tracking network. In this figure, the intensity images are reconstructed from all the events within 10ms.

Note that the network architecture of SCTN is relatively simple, including three convolutional layers and three fully-connected layers. There are only

two neurons in the last fully connected layer, representing background and target respectively.

FIGURE 3

Test flowchart of SCTN. In the test phase, positive and negative samples are generated by the sample generator in order to fine-tune SCTN using the

first segment of the test sequence. For other segments, the candidate samples are also created by the sample generator, in which we need to choose

an optimal candidate sample as the target bounding box through the evaluation of SCTN∗.

negative samples are generated for fine-tuning SCTN so that the

target features specific to each test sequence can be obtained. To

trace the target in the next segments, candidate samples should be

produced by the sample generator. Then SCTN∗ will choose an

optimal candidate sample as the estimated target bounding box.

2.4. Samples generation

Owing to the lack of training samples, we need to utilize

the original data to generate more samples. In this paper, we

adopt the sample generator inspired by Nam and Han (2016). As

illustrated in Figure 4B, 20 positive and 40 negative samples are

generated based on uniform distribution near the ground-truths

from every segment during training, where positive and negative

samples have ≥0.7 and ≤0.5 IoU overlap ratios with ground-

truths. Note that this number of samples has been able to meet

the training requirements. Increasing the number of samples may

lead to overfitting of the network, because these generated training

samples have certain similarities.

Similarly for fine-tuning, we collect 500 positive and 2,000

negative samples in the first segment of a test sequence and the

limitation of IoU is the same as the ones in training. The difference

from training is that 500 positive samples are collected based on

normal distribution, 1,000 negative samples are collected based

on uniform distribution and another 1,000 negative samples are

collected within the whole image. In this way, the features of the

whole image can be extracted to train SCTN, making SCTN more

discriminant to the target and background.

In every segment except the first segment during the test

phase, we choose 256 target candidates generated based on normal

distribution near the estimated target bounding box in the previous

segment, which are displayed in Figure 4C.

2.5. Learning algorithm and loss function

The learning algorithm used in SCTN is Spatio-Temporal

Credit Assignment (STCA) (Gu et al., 2019), which is a supervised

learning algorithm for training deep SNN with the output of multi-

spike. STCA introduces an iterative strategy for backpropagating

the residual error in the spatio-temporal domain based on C-LIF

spiking neuron model. The details of STCA algorithm can be seen

in Gu et al. (2019).
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FIGURE 4

(A) Sample generator. (B) Positive and negative samples. (C) Candidate samples and target bounding box selection.

In our work, to better apply SCTN to object tracking, we

propose a new loss function that introduces an exponential IoU in

the voltage domain, making SCTN more sensitive to well-classified

positive samples. Note that well-classified positive samples mean

they have large IoUs with ground-truths. The error signal to be

backpropagated is the difference between the expected and the

actual output voltage of the last layer in SCTN. So we can define

the loss function as follow:

LOSS =

{

ϑ + Rs − Vmax, fail to fire

Vmax − Rs − ϑ , fire wrongly
(5)

where Vmax denotes the maximum voltage of the output neuron

over all time steps, Rs represents the feedback of a sample to the

voltage and Rs + ϑ means the expected output voltage. Assuming

the IoU overlap ratios between the training bounding boxes and

the ground-truths are Os, where s denotes a positive sample or a

negative sample, the feedback of a sample can be calculated using

the following function:

Rs =

{

eβOs

γ
, s ∈ positive samples

−0.3, s ∈ negative samples
(6)

where β = 5 and γ = 100, mapping the values of positive feedback

between (0.3, 1.5). Additionally, the exponential form allows

positive samples with larger IoU to get higher positive feedback.

2.6. Target bounding box selection

During test, a sequence is presented and the target location is

only given in the first segment. In other words, we only know the

ground-truth of the target in the first segment and we are expected

to figure out the target locations in the next segments.

Suppose we want to find out the bounding box of the target in

the i-th segment, 256 target candidates C1, . . . ,C256 are sampled

around the estimated target bounding box in the (i-1)-th segment

and they are evaluated using SCTN. Then we obtain 256 scores,

s(Ck), k = 1, ..., 256, for each candidate. As shown in Figure 4C, the

optimal target bounding box C∗ is found with the maximum score

as below:

C∗ = argmax s(Ck)
Ck

(7)

The test procedure of tracking with SCTN can be summarized

in Algorithm 1.

3. Results

Since target candidates are randomly generated, the results of

each track may differ for the same test sequence. So in this paper,

we select the constant random seed in the test phase to ensure the

target candidates generated for the same location are fixed. Our

model is implemented by PyTorch (Paszke et al., 2019), and runs
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Input: test sequence S, ground-truth G1 in S1, trained

SCTN model M.

Output: target bounding box Ti in S.

1: Generate positive and negative samples around G1

2: The generated samples are used to fine-tune M

3: Set T1 = G1

4: Initialize the translation range employed in

generating target candidates

5: for i← 2 to nFrames do

6: Generate target candidates C around Ti−1

7: Feed C to M

8: Obtain the target bounding boxes corresponding

to the top 3 maximum voltage values through the

entire time window

9: Get mean voltage V∗ and location C∗ of them

10: if V∗ ≥ 0.2 then

11: Initialize the translation range

12: else

13: Expand the translation range

14: end if

15: Set Ti = C∗

16: end for

17: Return T

Algorithm 1. The test procedure of tracking with SCTN.

on a 64-core Intel Xeon Gold 5218 2.30GHz CPU and an NVIDIA

2080Ti GPU.

3.1. DVSOT21

Although various event-based tracking algorithms have

emerged in recent years, most of them indicate the target location

by distinguishing whether each pixel belongs to the target or the

background. However, such methods neither fully utilize implicit

associations among events nor extract environmental features

around the target, hence they are easily disturbed by inevitable

noise. To exploit the surroundings of targets for more robust

features, we use bounding box-based tracking in our work. While

there are some event-based tracking datasets available, a number of

targets within them are too small to generate enough events, which

is difficult to support the emission of spikes in the last layer of SNN.

So in this paper, we propose an event-based dataset DVSOT21 for

bounding box-based single object tracking, which contains few

tiny targets. Instead of recording event from sensors and manually

labeling bounding boxes, the ESIM simulator (Rebecq et al., 2018)

is applied to generate nine sequences with the spatial resolution of

640× 480 pixels.

We design a new approach that implements the bounding

boxes generation module to extend the ESIM simulator, getting

the ground-truth bounding boxes of moving objects. First, the

moving object is rendered separately to get grayscale images. Then

the images are binarized and the contours are detected. Finally,

circumscribed rectangles for the contours are produced as the

ground-truth bounding boxes.

TABLE 1 The details of nine sequences on DVSOT21, where the top four

sequences are used for training and the bottom five are used for test.

Sequence
Name

Challenges Object Background

woman_cat − Cat Galaxy

trees_bottle − Bottle Mountain

trees_star − Star City

woman_cube − Cube Galaxy

city_cat Fast moving+ Rich

texture

Cat Sea

city_bottle Partial occlusion+

rich texture

Bottle window

city_star rotation+ rich texture star window

sky_cube Rotation+

background clutter

Cube Galaxy

woman_ball Partial sparse events Ball Flower

Each of the candidate scenes and moving objects are imported

into a 3D computer graphics software, Blender (Community, 2018),

from which the camera trajectories and object trajectories are

generated and exported. To keep the camera field of view consistent

in the Blender and ESIM simulator, we obtain the camera intrinsics

matrix in the Blender. After the object models are imported and

the config parameters are specified, the extended ESIM simulator

outputs event-based sequences, and a brief description of these

sequences is given in Table 1. We recorded four pairs of sequences

and a single sequence. Since each pair of sequences has the same

kind of moving objects, we use one for training and the other one

for test. The single sequence in the test set is used to demonstrate

that our algorithm is powerful enough to track objects even not

appearing in the training set. Some segments in the DVSOT21

training set can be seen in Figure 5.

3.2. Evaluation on DVSOT21

For DVSOT21, we collect all the events within 10ms as a

segment, and we set the time resolution of SCTN to 1ms. Therefore,

the time window of SCTN is equal to 10, while the input of each

time step is different, which contains all the events in every 1ms.

In this way, we take advantage of the temporal information in the

events, reflecting the superiority of SNN.

We useA and R as evaluationmetrics, which show accuracy and

robustness of tracking and they are calculated as:

A =

Nseq
∑

i=1

Si
∑

j=1

OP
i,j ∩ O

G
i,j

OP
i,j ∪ O

G
i,j

(8)

R =

Nseq
∑

i=1

Si
∑

j=1

Successi,j (9)

where Nseq is the number of sequences and Si is the number of

segments in the i-th sequence. OP
i,j denotes the predicted bounding

box in the j-th segment of the i-th sequence and OG
i,j denotes the
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FIGURE 5

The first segment of four sequences in the DVSOT21 training set, where the green bounding boxes represent the corresponding ground-truths. From

left to right and from top to bottom, the sequences are woman_cat, trees_star, woman_cube and trees_bottle respectively.

corresponding ground-truth. Successi,j has two values, 1 means

tracking successfully in the j-th segment of the i-th sequence while

0 means failure. We will consider it as a failure case when the

IoU between the predicted bounding box and the corresponding

ground-truth is under 0.5. If a failure occurs, we will reinitialize the

tracker in the next segment in order to better measure the tracking

performance throughout the sequence.

Both A and R are important metrics to evaluate the

performance of a tracker, but sometimes there will be inconsistency

between A and R, i.e., a high R value with low A value or a low

R value with high A value. Therefore, we need to define another

metric in order to comprehensively evaluate the performance of a

tracker. We use ARscore as follow:

ARscore = (1+ β2)
AR

β2A+ R
(10)

Such a calculation form is similar to F1score when β is set to

1. In our work, the low R value means that the tracker has

been reinitialized many times, which will cause the A value to

be falsely high, so we pay more attention to the R value by

setting β = 2.

Table 2 illustrates the quantitative results of our method and

some representative competing trackers on DVSOT21, where RCT

(Delbruck, 2007) and our method are event-based trackers, and the

others are conventional ANN-based trackers. In fact, GOTRUN

(Held et al., 2016), SiamRPN (Li et al., 2018), SiamMask (Wang

et al., 2019), Ocean (Zhang et al., 2020) and AutoMatch (Zhang

et al., 2021) are all based on the Siamese Network, which has

remarkable performance in object tracking. As for conventional

trackers, we need to convert the input event stream into frames

at first, and here we use the Adaptive Time-Surface with Linear

Time Decay event-to-frame conversion algorithm in Chen et al.

(2019). For all events generated every 10ms, they are expected

to be converted into a frame. Above all, we need to subtract the

timestamp corresponding to the earliest event in the event stream

from the timestamps corresponding to all events to obtain t∗. Then

we can get the timestamp t∗i of the latest event ei = (xi, yi, pi, ti)

at the coordinates (xi, yi). So the pixel value of the frame can be

calculated as follow:

F(xi, yi) = round(
255× t∗i

10
) (11)

The pixel value of the locations where no event is produced are set

to 0.

SiamMask achieves the most outstanding performance,

reaching 0.939 ARscore over five sequences. Besides, SiamRPN

and our proposed method SCTN achieves the second and

the third highest performance respectively, where SCTN even

surpass SiamRPN and SiamMask on city_bottle. This is because

SCTN focuses on the events generated by the movement

of object contours rather than a gray-scale synthetic image

patch, so it can accurately capture objects even if they are

partially occluded. Furthermore, SCTN also has a relatively good

performance on woman_ball, which means it can successfully

track objects not appeared in the training set. In comparison,

GOTURN, Ocean and AutoMatch usually achieve low ARscore
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TABLE 2 Quantitative results on the five event-based test sequences from DVSOT21 dataset.

Method city_cat city_bottle city_star sky_cube woman_ball all

A R A R A R A R A R A R

ARscore ARscore ARscore ARscore ARscore ARscore

RCT 0.054 0.020 0.014 0.014 0.344 0.130 0.435 0.294 0.114 0.102 0.223 0.135

(Delbruck, 2007) 0.023 0.014 0.149 0.315 0.104 0.147

GOTURN 0.511 0.490 0.643 0.890 0.532 0.554 0.597 0.773 0.522 0.636 0.562 0.681

(Held et al., 2016) 0.494 0.827 0.550 0.730 0.609 0.653

SiamRPN 0.767 0.980 0.700 0.959 0.754 0.978 0.838 0.992 0.819 0.983 0.786 0.980

(Li et al., 2018) 0.928 0.893 0.923 0.956 0.945 0.934

SiamMask 0.749 0.980 0.721 0.973 0.775 0.957 0.814 1.000 0.863 0.992 0.797 0.982

(Wang et al., 2019) 0.923 0.909 0.914 0.956 0.963 0.939

Ocean 0.577 0.653 0.535 0.562 0.581 0.717 0.564 0.681 0.670 0.890 0.592 0.721

(Zhang et al., 2020) 0.636 0.556 0.685 0.654 0.835 0.691

AutoMatch 0.631 0.755 0.620 0.795 0.661 0.880 0.682 0.891 0.728 0.932 0.674 0.869

(Zhang et al., 2021) 0.726 0.752 0.826 0.839 0.883 0.822

SCTN 0.788 0.939 0.762 0.959 0.739 0.946 0.805 0.992 0.769 0.949 0.773 0.960

0.904 0.912 0.896 0.948 0.907 0.916

Red, blue and orange represent 1st, 2nd and 3rd respectively. Our method achieves competitive performance with a much simpler network compared to SiamRPN and SiamMask.

FIGURE 6

Qualitative results on the five event-based test sequences from DVSOT21 dataset, where the bounding box with red, blue, green, cayn, orange, pink

and purple color represent SCTN, SiamRPN, SiamMask, Ocean, GOTURN, AutoMatch and RCT respectively. From left to right, the corresponding

sequences are city_cat, city_bottle, city_star, sky_cube and woman_ball respectively.

value, due to the influence of rich texture, fast moving and

motion blur. However, the performance of RCT is low. We

find that RCT is mainly based on the clustering algorithm, so

it is susceptible to noise events. Some qualitative results are

presented in Figure 6.

3.3. Ablation experiments

To prove the importance of exponential IoU proposed in the

loss function, we compare it with the loss function with linear IoU

and the basic loss function. For the sake of fairness, the feedback
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FIGURE 7

(A) ARscore plots of three models on DVSOT21, ranked the SCTN with exponential IoU in the loss function, the SCTN with linear IoU in the loss

function and the SCTN with basic loss function in descending order of performance. (B) The feedback of positive training samples with three models.

of a sample with linear IoU in the loss function can be calculated

as below:

Rs =

{

µOs − ν, s ∈ positive samples;

−0.3, s ∈ negative samples.
(12)

where µ = 4 and ν = 2.5, mapping the values of positive feedback

between (0.3, 1.5).

The results of ablation experiments are shown in Figure 7A,

which is calculated from the average of ten experiments. It can be

seen that the SCTN with exponential IoU in the loss function is

ranked top overall and its robustness is also the highest. Compared

to the loss function with linear IoU, the loss function with

exponential IoU is more discriminative. As illustrated in Figure 7B,

for positive samples of different IoU, the feedback allocated by the

loss function with exponential IoU is steeper. Besides, the SCTN

with linear IoU in the loss function is superior to SCTN with basic

loss function. The reason is that the basic loss function can only give

constant feedback to samples. Nevertheless, the loss function with

linear IoU is able to pay more attention to positive samples with

larger IoU.

3.4. Energy consumption

To investigate the energy efficiency of the trained SCTN,

we evaluate it on DVSOT21 and compare it to the ANN-based

trackers. The energy consumption of ANN and SNN models can

be calculated as follow:

EANN = nMAC × eMAC (13)

ESNN = nAC × eAC (14)

where MAC denotes multiply-and-accumulate operation and AC

denotes accumulate operation, n means the total number of

operations, and e represents the energy cost per operation. As

reported by (Han et al., 2015), a 32-bit floating point MAC

and AC operation consume 4.6 pJ and 0.9 pJ in 45 nm

technology respectively.

We know that the energy consumed by SNN depends on the

firing rate of spikes. As shown in Figure 8A, the spike firing rate of

SCTN processing a segment is estimated by sampling 64 segments

in DVSOT21 and calculating their average firing rates, which is very

sparse across all network layers in the entire time window. But for

ANN-based trackers, the energy consumption is a fixed number.

As illustrated in Table 3, SiamRPN and SiamMask require 3203

and 8355 times total energy to SCTN. With a comparable tracking

performance, SCTN can achieve energy-saving computing. In

addition, Figure 8B shows that even in the same network structure,

the energy consumption of ANN is much greater than that of

SNN. However, the above calculation of energy consumption is

actually incomplete, considering only synaptic operands. In fact,

the movement of data between memory and CPU also has a certain

energy consumption. This part of the energy consumption is related

to the hardware environment, which is difficult to be quantified.

Compared to the numerical operations in the GPU, it does not

consume a large amount of energy consumption. Therefore, it

does not have an impact on the comparison results of energy

consumption, and SCTN still consumes much less energy than

SiamRPN and SiamMask.

3.5. Discussion

In fact, a general event-based object tracking algorithm can

highlight the advantages of event cameras in many applications.

Here, we discuss two major limitations of SCTN as below.

The first limitation is that SCTN cannot process the bounding

boxes with spatial resolution less than 10 × 10. Because the
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FIGURE 8

(A) Average spike count per neuron per time step of the trained SCTN on DVSOT21. It is shown that the neuronal activities of all network layers are

sparse in the entire time window, which leads to the very low energy consumption of SCTN in Table 3. (B) The operation ratio of ANN/SNN in the

same network structure.

TABLE 3 Energy consumption of two ANN-based trackers and SCTN on

processing a frame or a segment during tracking.

Method MAC/AC Ops Energy consumption

SiamRPN 4.82× 109 2.22× 1010pJ

SiamMask 1.26× 1010 5.79× 1010pJ

SCTN 7.69× 106 6.93× 106pJ

number of events contained in the small bounding boxes is

insufficient, the C-LIF neurons in the deep layers cannot emit

spikes. Thus, investigating a more general model is necessary in

the future.

The other limitation is that the tracking precision of our

method is not as good as state-of-the-art ANN models. This

is because SNN cannot deal with numeric regression problems

directly, resulting in certain errors in generating target bounding

boxes. Hence, an event based tracking model combining ANN and

SNN is needed for the further work.

Thus, how to capture the tiny objects and improve the

tracking performance of SNN is a worthwhile topic in

the future. We believe this work could lay the foundation

for building universal event-based object tracking on the

neuromorphic hardware.

4. Conclusion

In this paper, we propose a novel spiking convolutional tracking

network directly trained with SNN, which can process event

stream without any other preprocessing operations. We propose

a new loss function that introduces an exponential IoU in the

voltage domain so as to make SCTN more suitable for object

tracking. Moreover, we present a new publicly available event-

based tracking dataset, dubbed DVSOT21. Experimental results

on DVSOT21 demonstrate that our method achieves competitive

performance with very low energy consumption compared to other

competing trackers.
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