
TYPE Original Research

PUBLISHED 05 May 2023

DOI 10.3389/fnins.2023.1121592

OPEN ACCESS

EDITED BY

Bo Wang,

Singapore University of Technology and Design,

Singapore

REVIEWED BY

Kejie Huang,

Zhejiang University, China

Anh Tuan Do,

Institute of Microelectronics (A*STAR),

Singapore

Enyi Yao,

South China University of Technology, China

*CORRESPONDENCE

Trevor E. Carlson

tcarlson@comp.nus.edu.sg

RECEIVED 12 December 2022

ACCEPTED 10 April 2023

PUBLISHED 05 May 2023

CITATION

Yu M, Xiang T, P S, Chu KTN,

Amornpaisannon B, Tavva Y, Miriyala VPK and

Carlson TE (2023) A TTFS-based energy and

utilization e�cient neuromorphic CNN

accelerator. Front. Neurosci. 17:1121592.

doi: 10.3389/fnins.2023.1121592

COPYRIGHT

© 2023 Yu, Xiang, P, Chu, Amornpaisannon,

Tavva, Miriyala and Carlson. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A TTFS-based energy and
utilization e�cient neuromorphic
CNN accelerator

Miao Yu1, Tingting Xiang1, Srivatsa P.2, Kyle Timothy Ng Chu3,

Burin Amornpaisannon1, Yaswanth Tavva1,

Venkata Pavan Kumar Miriyala1 and Trevor E. Carlson1*

1School of Computing, Department of Computer Science, National University of Singapore, Singapore,

Singapore, 2School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, United States,
3Centre for Quantum Technologies, National University of Singapore, Singapore, Singapore

Spiking neural networks (SNNs), which are a form of neuromorphic, brain-inspired

AI, have the potential to be a power-e�cient alternative to artificial neural

networks (ANNs). Spikes that occur in SNN systems, also known as activations,

tend to be extremely sparse, and low in number. This minimizes the number

of data accesses typically needed for processing. In addition, SNN systems are

typically designed to use addition operations which consume much less energy

than the typical multiply and accumulate operations used in DNN systems. The

vast majority of neuromorphic hardware designs support rate-based SNNs, where

the information is encoded by spike rates. Generally, rate-based SNNs can be

ine�cient as a large number of spikes will be transmitted and processed during

inference. One coding scheme that has the potential to improve e�ciency is the

time-to-first-spike (TTFS) coding, where the information isn’t presented through

the frequency of spikes, but instead through the relative spike arrival time. In

TTFS-based SNNs, each neuron can only spike once during the entire inference

process, and this results in high sparsity. The activation sparsity of TTFS-based

SNNs is higher than rate-based SNNs, but TTFS-based SNNs have yet to achieve

the same accuracy as rate-based SNNs. In this work, we propose two key

improvements for TTFS-based SNN systems: (1) a novel optimization algorithm to

improve the accuracy of TTFS-based SNNs and (2) a novel hardware accelerator

for TTFS-based SNNs that uses a scalable and low-power design. Our work in

TTFS coding and training improves the accuracy of TTFS-based SNNs to achieve

state-of-the-art results on the MNIST and Fashion-MNIST datasets. Meanwhile,

our work reduces the power consumption by at least 2.4×, 25.9×, and 38.4×
over the state-of-the-art neuromorphic hardware on MNIST, Fashion-MNIST, and

CIFAR10, respectively.

KEYWORDS

artificial neural networks (ANNs), brain-inspired networks, neuromorphic hardware,

spiking neural networks (SNNs), time-to-first-spike

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1121592
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1121592&domain=pdf&date_stamp=2023-05-05
mailto:tcarlson@comp.nus.edu.sg
https://doi.org/10.3389/fnins.2023.1121592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1121592/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

1. Introduction

Artificial neural networks (ANNs) have emerged as the most

promising candidates for performing a wide range of tasks such

as image classification and recognition, object detection, speech

recognition, and speech-to-text translation. There have been

significant improvements in the classification accuracies of ANNs,

and in 2015, ANNs achieved human-level accuracy (He et al., 2015)

at the ImageNet 2012 Visual Recognition Challenge. However, the

high classification performance of ANNs comes at the expense

of a large number of memory accesses and compute operations,

which results in higher power and energy consumption. Recently,

there has been an increased focus on developing more efficient

ANNs (Howard et al., 2019; Tan and Le, 2019).

While these efficient networks provide a promising pathway

toward the deployment of artificial intelligence (AI) in low-power

devices, the use of spiking neural networks (SNNs) improves

power savings even more. First, data are represented in binary, so

the computation is done by only addition. Furthermore, addition

operations are only performed when input is received, whereas

ANN performs multiplications on all neurons across all inputs.

In SNNs, information is represented and transmitted in the form

of binary events called spikes, i.e., similar to the way information

is encoded and propagated in the human brain. To process the

information encoded, SNNs only require addition operations,

whereas the standard ANNs require computationally expensive

multiply-and-accumulate (MAC) operations. Furthermore, sparse

activations (Khoei et al., 2020) lead to a significant reduction in

the data movement between memory and processing elements.

For these reasons, SNNs have garnered interest as potential

candidates for designing the next generation of low-power AI

accelerators (Bouvier et al., 2019).

There are a few prominent fully digital SNN accelerators such

as SpiNNaker (Khan et al., 2008), TrueNorth (Merolla et al., 2014),

and Loihi (Davies et al., 2018). SpiNNaker (Khan et al., 2008)

consists of ARM processors interconnected through a custom

Network-on-Chip (NoC). SpiNNaker is highly reconfigurable that

can provide flexibility but has lower energy efficiency and speedup

when accelerating complex neuron models and synapses as it is

based on traditional CPUs. TrueNorth (Merolla et al., 2014) is a

fully functional ASIC chip with 1 million spiking neurons and

256 million synapses. TrueNorth was innovative in many ways,

including providing a very low-power density of just 20 milliwatts

per square centimeter and supporting high-spike rates, which is the

number of spikes fired within a time window. Unfortunately, they

only support a limited number of neuron models and limited bit-

precision for weights (Bouvier et al., 2019), and do not take into

account activation sparsity, which is the ratio of non-zero values to

the total number of activations. On the other hand, Loihi (Davies

et al., 2018) is a fully asynchronous neuromorphic chip that can

take advantage of the sparse activations present in SNNs, support

many complex neuron models, and facilitate on-chip training

of SNNs with different spiking-time-dependent-plasticity rules.

Furthermore, a comparison of Loihi to general-purpose CPUs

and GPUs in SNN acceleration has shown a 1, 000× efficiency

improvement (Mayberry, 2017). While a significant efficiency

improvement, SNN accelerators using rate coding continue to

suffer from higher levels of energy consumption (For a detailed

comparison of coding method efficiencies, see Section 2.1).

As an alternative to the higher power-consuming rate coding

schemes, some works have looked at temporal coding (Rueckauer

and Liu, 2018; Comsa et al., 2020) as a solution. One such type of

temporal coding is time-to-first-spike (TTFS) coding (Rueckauer

and Liu, 2018). In TTFS coding, the relative time of arrival of the

spikes with respect to the appearance of the first spike represents the

information, not the average number of spikes over a time period.

Consequently, the number of spikes being generated and processed

in the network is reduced significantly. This drop in spiking

activity can lead to reductions in the number of memory accesses,

total accelerator power, and energy consumption. However, in

accelerators like TrueNorth, cores always require memory access

for each neuron on each time step irrespective of spiking activity. As

a result, the drop in spiking activity does not proportionally reduce

the total power and energy consumption, making TrueNorth

unsuitable for accelerating the TTFS-based SNNs.

To achieve better performance with temporal coding, a recent

design, SpinalFlow (Narayanan et al., 2020), proposes a new

structure and a new dimension for reuse patterns. It adopts an

ordering of computations such that the outputs of a network

layer are also compressed, time-stamped, and sorted. All relevant

computations for a neuron are performed in consecutive steps to

eliminate neuron potential storage overheads. While SpinalFlow

can achieve better energy efficiency with better data reuse, it

suffers from several drawbacks: (1) inefficient dataflow, (2) low PE

utilization, and (3) cannot support max-pooling layer. Meanwhile,

SpinalFlow requires large buffers to store and re-order input. More

detailed analyses are given in Section 2.2.2.

With respect to dataflow improvements [drawback (1) above],

we show that for highly sparse neural networks, especially for the

TTFS-based SNNs, the use of the input stationary dataflow pattern

can be more power efficient than the output stationary pattern (see

Section 2.2 for details). We, therefore, focus on input stationary

dataflow patterns in this work. To achieve a high PE utilization,

we propose a mapping algorithm that can fully utilize all PEs when

there is a spike required to be processed. Different from SpinalFlow

which maps each neuron of one spine (their data structure) to each

PE, this work maps the whole single output feature map on one

PE. Whenever one input spike comes to the PEs, all PEs will be

active. This mapping algorithm, as we propose in this work, leads a

PE utilization near 100%. From the hardware perspective, our work

can support different types of layers such as max-pooling layers,

convolutional layers, and fully connected layers. Meanwhile, this

work treats each input spike as an event, which means there is no

input buffer or buffer re-ordering is needed in our design, which

can be a time- and power-consuming step in SpinalFlow.

In addition to the power efficiency of our hardware, we also

aim to improve the classification performance of TTFS-based

SNNs being accelerated on this work. The TTFS-based SNNs

are constructed either by training from the scratch (Mostafa,

2016; Comsa et al., 2020) or by converting from the pre-trained

ANNs (Rueckauer and Liu, 2018) have not yet been able to

reach the classification performance of their ANN counterparts.

As demonstrated in a recent study (Rueckauer and Liu, 2018),

converting from ANNs to TTFS-based SNNs, unfortunately, leads

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

to accumulated approximation errors, and results in a drop in

accuracy. Our work tackles this problem by proposing a novel

training approach to refine the network weights after conversion,

which improves the accuracies of the converted TTFS-based

SNNs. As we intend to train our SNN off-line and only perform

inference on-chip, combining training on chip can lead to higher

power consumption and lower energy efficiency. As a result,

other neuromorphic accelerators with on-chip training capabilities

(e.g., Loihi) are outside the scope of our work. The reason is

that the hardware components used to support on-chip training

in accelerators like Loihi result in additional area and power

overheads during inference.

Overall, the main objective of this work is to accelerate

SNN inference using TTFS-based solutions on low-power devices,

with minimal loss of accuracy. Therefore, this work focuses

on (1) improving the classification performance of TTFS-based

SNNs, and (2) designing a low-power neuromorphic hardware

accelerator for performing inference of TTFS-based SNNs. The

main contributions of this work can be listed as follows:

• A new training algorithm that reduces the errors accumulated

as a result of converting pre-trained neural network models

to SNNs.

• An efficient mapping algorithm is proposed to achieve

running different types of neural networks with high

PE utilization.

• A novel low-power neuromorphic architecture, this work

is designed to accelerate the inference operations of

TTFS-based SNNs.

• An end-to-end neuromorphic technique that demonstrates

the state-of-the-art performance and accuracy for

TTFS-based SNNs.

The rest of this paper is structured as follows. Section 2.1

introduces SNNs and the existing algorithms for training TTFS-

based SNNs. Section 2.2 introduces SNN hardware accelerators in

detail. Section 2.3 describes the new training methodology model

used to improve the accuracy of TTFS-based SNNs. Section 2.4

introduces the hardware architecture of the proposed TTFS-based

SNN accelerator. Section 2.5 introduces the algorithms used to

process spikes in this work. Section 2.6 describes the mapper

used to accelerate the TTFS-based SNNs on this work. Section 3.1

introduces the experimental setup used to evaluate the proposed

training algorithm and neuromorphic accelerator. Results and

discussion on this work are then presented in Section 3.4. Finally,

Section 4 concludes this paper.

2. Materials and methods

2.1. Background

In this section, we will introduce spiking neural networks

(SNNs) in detail.

2.1.1. Spiking neural networks
SNNs have garnered significant interest over the last few years,

as a candidate for energy-efficient inference on low-power devices.

In SNNs, the information is encoded in the form of discrete

binary events called spikes, i.e., similar to the way the brain

represents information. This is unlike ANNs where information is

encoded as continuous values. The use of SNN processing reduces

the computational power needed by using addition operations

instead of the more power-intensive MAC operations used in

ANNs. Furthermore, SNNs have very low neuron activation

rates as compared to ANNs. Activations are low because every

neuron can only be activated by a strictly positive input or a

subset of all possible inputs above a pre-defined threshold. This

translates to just a small subset of all neurons firing for any

given inference. A small subset of neurons firing translates into

a low memory access count, hence providing low power and

energy consumption when performing inference. Furthermore,

ANNs require synchronous tensor multiplication for each layer,

while SNNs require asynchronous propagation of information.

The two most prominent methods for propagating information

through SNNs are rate coding (Gerstner et al., 2014) and temporal

coding (Rueckauer and Liu, 2018). As shown in Figure 1A, in rate

coding, the information is encoded by the mean firing rate of

the neurons. Although there exist different definitions of firing

rate, it often denotes either spike averaged over repetitions of

an experiment or the average number of spikes over a period of

time. This work refers to the latter when referring to rate-based

networks. Rate-based networks become more accurate over time

as more spikes are generated. From a power consumption point of

view, each spike will require an associated memory access. Because

rate coding has many spikes, having a weight look-up for each

spike limits the minimum number of memory accesses and the

corresponding amount of energy saved.

An alternative approach uses temporal coding to represent

data in the neural network. The traditional temporal coding

schemes include time-to-first-spike (TTFS; Mostafa, 2016), where

information is represented by the relative time of arrival of the

spikes with respect to the first spike (see Figure 1B), and phase-

of-firing, where information is encoded using the time at which

neurons fire within a periodic cycle (Cattani et al., 2015). When

information is encoded in the TTFS scheme, neurons in an SNN

only spike once during each inference pass and see many fewer

spikes than their rate-based counterparts. By definition, the rate

coding scheme can rely on the generation of multiple spikes over a

fixed period of time for each value, while the TTFS coding scheme

relies on the time taken for a single neuron to spike. Therefore,

the TTFS coding scheme allows for fewer spikes than a rate coding

scheme. Assuming that a spike corresponds to one memory access,

the TTFS coding scheme allows for a low number of memory

accesses. In addition, an inference pass of a TTFS-based network

can end once the output layer produces its first output spike

instead of waiting for the rest of the inputs to arrive. As a result, a

minimal number of computations are performed for any particular

inference, making temporal coding a highly suitable candidate for

coding energy-efficient SNNs.

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

FIGURE 1

(A) Rate coding, where the mean firing rate of the neurons represents the information. For example, in (A), the mean firing rate of Neuron 1 in each

time step is 1. Similarly, the mean firing rate of Neuron 2 is 3 and the mean firing rate of Neuron 3 is 2. (B) TTFS coding, where the relative arrival time

of the spikes with respect to the arrival time of the first spike represents the information. Generally, it takes longer to receive the spike if the

information has less value. For example, in (B), Neuron 2 receives the first spike in time step, T = 1. If the information represented by Neuron 2 is

considered as 6, the information represented by Neuron 1 and Neuron 3 will be 2 and 4, respectively.

2.1.2. Training of TTFS-based SNNs
Although significant power and energy savings can be achieved

by using TTFS-based SNNs, TTFS-based SNNs that are constructed

by either training from scratch (Mostafa, 2016; Comsa et al.,

2020) or converting from the pre-trained ANN (Rueckauer and

Liu, 2018; Lew et al., 2022) tend to not perform as well as

their ANN counterparts in terms of the classification accuracy.

As demonstrated in a recent study (Rueckauer and Liu, 2018),

converting from ANNs to TTFS-based SNNs, unfortunately, leads

to accumulated approximation errors, which results in significantly

lower accuracy in the SNNs than the equivalent ANNs, particularly

in larger network architectures. Our work aims to tackle this

problem by proposing a novel training approach to refine the

network weights after conversion, which improves the performance

of the converted TTFS-based SNNs.

2.2. Related work

2.2.1. Rate-based SNN accelerators
Though the above-mentioned neuromorphic hardware

accelerators provide a promising pathway toward low-power and

high-speed SNN acceleration, most of them were designed to

emulate SNNs with rate coding schemes (Gerstner et al., 2014).

In rate coding, the average number of spikes fired over a period

of time represents the information. However, as processing each

spike requires access to either on- or off-chip memory (i.e., to load

the model parameters), the power consumed to accelerate the rate-

based SNNs can be relatively high. For example, Shenjing (Wang

et al., 2020) is a novel rate coding SNN accelerator. According to

the results proposed by Guo et al. (2021), the number of spikes

generated by rate coding can be over 4× more than the temporal

coding. Therefore, under the same hardware structure design

methodology, the rate-based SNN accelerators have to access

the memory at least 4× more than the temporal coding SNN

accelerator. Zhang’s work (Zhang et al., 2021) and Skydiver (Chen

et al., 2022) are recent rate-based SNN accelerators that all suffer

from low energy efficiency due to a large number of spikes.

Shenjing (Wang et al., 2020) also has to process a large number

of spikes due to its rate coding scheme, which harms the energy

efficiency. The mapping algorithm of Shenjing leads to a very large

number of cores. Each output feature map has to be mapped on

multiple processing elements (PEs). This idea of mapping will

not only lead to a large number of cores but also generate a large

amount of inter-core communication. Since one output feature

map is divided into multiple parts which are mapped on separate

PEs. Each PE has to send and receive partial sums generated by

its neighbors. Shenjing’s mapping algorithm introduces a large

amount of data transfer between PEs.

2.2.2. Temporal-based SNN accelerators
SpinalFlow (Narayanan et al., 2020) is a state-of-the-art

temporal-based SNN accelerator. It processes a compressed, time-

stamped, sorted sequence of input spikes. It adopts an ordering

of computations such that the outputs of a network layer are also

compressed, time-stamped, and sorted. All relevant computations

for a neuron are performed in consecutive steps to eliminate

neuron potential storage overheads. While SpinalFlow can achieve

better energy efficiency with better data reuse, it suffers from three

major drawbacks:

• First, the dataflow used by SpinalFlow is output stationary

which is not the optimal traditional dataflow under high

sparsity. Considering one convolutional layer with C input

channels and N output channels. The size of each input feature

map and output feature map is W × H. The size of the filter

is K × K. Depending on the pattern of output stationary and

input stationary, the number of accessing memory can be

calculated mathematically. For the output stationary which is

used by SpinalFlow, each neuron in the output feature map

will access K × K × C input values and K × K × C weight

values. Meanwhile, one neuron should be read and written. So

the number of access of output stationary can be represented

by Equation (1). Also, the number of access of input stationary

dataflow can be represented by Equation (2).

Noutput = H ×W × N × (Sp × K × K × C + K × K × C + 2) (1)

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

Ninput = Sp ×H ×W × C × (K × K × N + 1+ 2× K × K × N) (2)

Considering activation sparsity Sp, the simplified of

Ninput < Noutput is like Equation (3). This equation shows that

when the sparsity is more than 0.5 the number of memory

access generated by input stationary can be less than output

stationary. Since the sparsity of TTFS-based SNN is relatively

high (usually larger than 90%), the input stationary dataflow

can be better for TTFS-based SNN.

Sp <
1+ 2

K×K×C
2+ 1

K×K×N
(3)

• Second, the mapping algorithm has low PEs utilization which

leads to low energy efficiency. SpinalFlow maps one spine in

the output feature maps to 128 PEs. Each PE is responsible

for producing a neuron in an output feature map spine.

After computation, the neuron potential is compared to its

threshold. If one neuron/PE has exceeded its threshold, it

produces a spike. However, SpinalFlow takes advantage of

TTFS coding whichmeans one PEwill be idle for the rest of the

input interval because a neuron can only produce one spike

in its input interval. This mapping algorithm will lead to low

PE utilization. Further, PE utilization will become gradually

lower because at each end of the time step every neuron will be

compared with their threshold and then fire a spike depending

on their neuron potential. With the time step increasing, more

and more neurons will fire their spike which leads more and

more PEs to be idle.

• Finally, beyond the limitations of the dataflow and mapping

algorithm, the hardware design of SpinalFlow has missed a

number of opportunities to improve its energy efficiency. One

limitation of SpinalFlow is that it does not support pooling

operations. This means that modern CNNs with pooling

layers (Simonyan and Zisserman, 2014; Krizhevsky et al.,

2017) cannot be run on the SpinalFlow, which can be limiting

as many general-purpose CNNs make use of pooling layers.

The other drawback is that SpinalFlow requires additional

time and logic to reorder the input feature map buffers. Before

processing the next spine, they must read 16 input feature

map spines from the global buffer into 16 input feature map

spine buffers. These 16 pre-sorted 128-entry spines need to be

merge-sorted to produce the sorted 2 K entries that represent

the input receptive field. Therefore, to initiate every step, 16

cycles are required to populate the input feature map.

2.3. Training competitive TTFS-based SNNs

As discussed earlier in Section 2.1, TTFS-based SNNs can be

constructed by converting pre-trained ANN models into TTFS-

based SNNs. However, the converted TTFS-based SNNs suffer from

quantization errors that accumulate across layers which, compared

to ANNs, can significantly reduce classification accuracy. A second

source of error arises from the intrinsic differences in neuronal

dynamics between spiking neurons in SNNs and analog neurons

in ANNs. With a spiking post-synaptic neuron, an input spike

coming from the synaptic connection with a large weight could

drive the neuron’s internal membrane potential to cross the firing

threshold before subsequent inhibitory input spikes arrive. This

problem can be explained by the different operating mechanisms of

the spiking neuron and analog neuron. A spiking neuron integrates

the temporally distributed input information over time, while

an analog neuron responds to the input stimuli instantaneously.

Raising the threshold value of the post-synaptic neurons may

alleviate this problem. However, it is not the best option in practice

since it adversely increases the latency for decision-making.

To address these problems, we propose a novel training

method to systematically convert the pre-trained ANNs to more

accurate TTFS-based SNNs. First, we apply a data-driven weight

normalization strategy such that the neuron activation is not

dominated by a few input spikes with large weights while also

ensuring timely decision-making. Finally, to mitigate conversion

errors, we propose a layer-wise training methodology. As a whole,

the proposed training framework effectively closes the accuracy gap

between the pre-trained ANNs and the converted SNNs.

2.3.1. Firing threshold determination
Determining the right combination of neuronal firing

threshold, weight, and bias values is crucial to strike a balance

between classification accuracy and latency. Apart from the

learnable parameters (weights and biases) that can be directly taken

from the pre-trained ANNs, the firing threshold requires extra

effort to be determined. An inappropriate threshold value will

cause the converted SNN to perform significantly poorer than the

equivalent ANN. One common approach to this problem would

be to set the threshold to 1 and adjust the weights such that the

activations are normalized. There are some works try to fix this by

using dynamic thresholds or neuron potentials (Stöckl and Maass,

2021). But those solutions can require significantly more memory

as each neuron now needs to have it’s own threshold.

2.3.2. Weight normalization
In order to prevent the converted SNNs from underestimating

the output activation of the corresponding ANNs, this work applies

weight normalization. One way to normalize the weights is to

consider all possible combinations of positive activations that could

occur at a particular ANN layer and scale the weights by that

maximum quantity. The benefit of such an approach is that it only

depends on the weights and biases of the network. However, in

reality, the maximum activation that is determined in this way

might be far from the actual activation values for the majority of

neurons. This leads to weights and biases that are much smaller

than what they need to be, increasing the time taken for a neuron

to get activated. Because the time is taken for a neuron to first

spike increases. A longer duration will be required to achieve high

classification accuracy. This problem will be exacerbated in deeper

networks if weights are normalized in this way for all layers.

Instead of this conservative approach, we estimate the

maximum activation values of an ANN by making use of the

training Images from the training set are converted into input

spike trains before being propagated through a L-layered ANN

to produce n sets of L activation vectors {a1...aL}, where each set

contains the activation vectors obtained from propagating each of

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

Input: {I1...In}: Set of n input spikes vectors

generated from randomly sampling n images from

training set

Input: β: Fraction of neurons to keep in each

layer

Input: η: Learning rate

Input: ǫ: Margin of error

Input: K: Number of iterations

Output: Fine tuned weights vector w

wi ← get_parameters_from_ann(β);

wn ← normalize_weights(wi, {I1 ...In});
k = 0

while k < K and error > ǫ do

for Ir in {I1...In} do
// Get activation vectors for each layer in

an L-layered ann

{a1...aL} ← ann_forward_pass(Ir);

// Get vectors of spike times for each layer

in an L-layered snn

{t1...tL} ← snn_forward_pass(Ir);

// Get vectors of instantaneous spike rates

for each layer in an L-layered snn {r1...rL} ←
get_spike_rates({t1...tL});
for q=1 to L do

layer_type ← get_layer_from_index(q);

if layer_type in {batch norm, dropout} then
skip

else

error = L2(a
q, rq);

// update weight

wn -= η ∗ ∂L
∂w ∗ error;

k+=1

Algorithm 1. train_network: SNN training.

the n input spike trains. The scale factor for each layer, scurrent ,

is set to the magnitude of the maximum activation observed in

{a1...aL}. Weight and bias vectors are then scaled by the scale factor.

Note that because this algorithm uses data from the training set, a

strong performance guarantee cannot be extended to the test set.

As long as the training and test sets have a similar data distribution,

which is typically the case, the activation vectors observed using

the training set would be similar to that observed in the test set.

However, there might be instances where the activations observed

in the test set are more extreme than those observed in the training

set, potentially leading to a reduction in accuracy. We feel that our

proposal provides a better trade-off between latency and accuracy,

as shown in Section 3.4.2.2. This is because the time taken to spike

is shorter to achieve similar accuracy.

2.3.3. Training network
Errors arising from converting ANNs to SNNs can be further

reduced through (1) retraining an ANN with constraints or (2)

refining the learnable parameters on the converted temporally-

encoded SNN.

Training algorithms typically applied to SNNs can be broadly

classified into two categories: (a) membrane potential driven

and (b) spike driven. Membrane potential driven training

algorithms treat membrane potentials as differentiable signals

and use surrogate derivatives (Neftci et al., 2019), or use back-

propagation through time (BPTT) (Wu et al., 2019) for training.

While competitive results have been shown (Wu et al., 2019),

these algorithms can be demanding in terms of memory and

computation as the entire forward pass of the network needs to be

stored to compute the necessary derivatives.

The second category is spike-driven learning algorithms which

rely on the spike timing information to train the network.

These algorithms (Shrestha and Song, 2017) usually assume that

membrane potentials are linear around the time at which the

neuron spikes to avoid dealing with non-differentiability. There are

some works (Mostafa, 2016) that do not require this assumption by

using integrate-and-fire neurons, which is one of the most widely

used models for analyzing the behavior of neural systems.

Instead of choosing between training SNNs from scratch and

converting ANNs-to-SNNs, we propose to convert an ANN to an

SNN and train to minimize approximation errors. This allows for

a significant reduction in the training time needed to construct an

accurate SNN. We propose coupling each layer in an ANN and the

corresponding layer in the converted SNN, andminimizing a layer-

wise cost function. Unlike traditional SNN training algorithms

which utilize a loss computed at the final layer, the algorithm we

are proposing is aimed at minimizing the divergence between ANN

activations aLi and SNN activations sLi for every neuron with index

i in a layer L.

From the ANN-SNN conversion, the analog activation of a

neuron in the ANN is equivalent to the instantaneous firing rate

of TTFS-based SNN. The instantaneous firing rate is given by the

inverse of the time taken for a neuron to first spike. It is possible to

model the approximation between the activation of a single neuron

i in a particular layer l in an ANN and the corresponding neuron in

an SNN: ali =
1

tli
+ǫ where the introduction of ǫ allows for activation

between SNN and ANN to deviate by a reasonable margin of error.

A potential loss function is the L2-norm, given by L = 1
2 ∗ (a

l
i− rli)

2

where rli is the instantaneous firing rate of neuron i in layer l given

by rli =
1

tli
.

The loss function is minimized by updating synaptic weights

as described in Algorithm 1. β is the fraction of neurons to

keep. By removing the least salient 1 − β neuron weights in

get_parameters_from_ann, it is possible to remove connections that

could potentially lead to long-latency spikes. For each iteration

in all iterations K, the forward pass of ANN produces a set

of activation vectors, {a1...aL}, and SNN produces a set of first

time spikes vectors, {t1...tL}. For each layer, L, the divergence

between the ANN activation vector and SNN instantaneous rate

vector is computed and minimized. This has the effect of delaying

or advancing spike times in the network. In Section 3.4, we

demonstrate how this improved training method works to increase

inference accuracy.

For complex datasets such as CIFAR or ImageNet, existing

TTFS algorithms fail to produce high accuracy results. Although

there are some temporal-based works that propose solutions with

higher accuracy on CIFAR and ImageNet (Park et al., 2020; Stöckl

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

and Maass, 2021), these spiking mechanisms require much more

complex hardware design with much higher energy consumption.

For example, high accuracy algorithms (Stöckl and Maass, 2021;

Lew et al., 2022) require updating neuron potentials dynamically,

which leads to complex logic and higher memory access counts.

The original TTFS-based SNN algorithm, which is the main

workload of this work, is currently unable to achieve comparable

accuracy on these complex datasets. To achieve better accuracy, a

new SNN mechanism, potentially using less-efficient methods, is

required which is beyond the scope of this work.

2.4. Architecture description

In this section, we describe the implementation details of

our proposed hardware design and architecture. The objective

of this work is to enable ultra-low-power inference operations

using TTFS-based SNNs. As introduced in Section 2.1, during

inference operations, TTFS-based SNNs can exhibit extremely

low (sparse) spiking activity with small numbers of spikes being

propagated and processed in the network (Guo et al., 2021). The

aim of the accelerator design proposed in this work is to leverage

the available sparsity in the network to optimize efficiency by

minimizing the number of local memory accesses required per

inference. We discuss the details of our implementation in the

following subsections and Section 2.5, and an overview of the

hardware architecture can be seen in Figure 2.

2.4.1. Router interface
Input activations, or spikes, are received by the router interface,

the gateway into the PE. It primarily performs three types of

operations: (1) delivering the activation to the core for processing,

(2) forwarding the activation to other PEs, and (3) receiving

information from spike address SRAMwhen a neuron emits a spike

and sends the spike to the destination processing element. In our

design, operations (1) and (2) are performed at the same time to

enable parallel processing of the activation.

2.4.2. Memory interface
The memory interface consists of four individual SRAM

interfaces—one for each of the SRAMs in the PE. This work

organizes memory locally with computation units, which can

reduce the latency of memory access and improve energy efficiency.

This processing-in-memory nature helps this work outperform

other traditional SNN accelerators. As this work uses single-port

SRAMs to reduce power consumption, either a single reading

request or a writing request can be processed at one time. As a

result, the SRAM interfaces alternate between servicing requests

from theWrite Request FIFO and the Read Request FIFO to ensure

that all the requests are processed within a reasonable amount

of time.

2.4.3. Core
The core is the key computational element of the PE. The design

of our core is inspired by traditional deep learning accelerators (Luo

et al., 2017; Moreau et al., 2018) and adopts a decoupled access-

execute model (Smith, 1982). As shown in Figure 2C, It consists of

three key modules: the load, compute, and store modules. The key

idea adopted from the decoupled access-execute model is that all

these three modules inside the core will only communicate with

each other via FIFOs. As a result, the entire core is given some

additional flexibility and will not be stalled immediately, even if one

of the modules is stalled. It also enables the core to hide memory

access latency due to the fact that the load module can compute

target addresses and load target data values without waiting for the

rest of the modules to be free. Meanwhile, the store module can

push its store requests to the write request FIFOs, enabling it to

generate additional store requests without waiting for its former

store requests to be completed. This allows for better utilization of

the core’s resources as the other modules can continue execution if

one of them encounters a stall.

2.4.3.1. Load module

The load module (left unit in Figure 2C) processes three kinds

of input: CNN input spikes, MLP input spikes, and End of Timestep

(EoT) signals which are processed when all input spikes are

received. There are three states in the load module:

Configuration state. At the beginning of receiving input spikes,

the inner decoder will decode input spikes to initialize the registers

used in the processing state. After configuring, the load module will

come to the processing state.

Processing state. In this state, the load module will generate

memory read requests with addresses that are sent to the

corresponding on-chip SRAMs and the store module. Two of

the generated addresses point to the corresponding weight and

accumulated sum to be accessed from the weight SRAM and ACC

SRAM in the computation of a spike in the compute module.When

a CNN input spike is received, generated addresses to access the

weight and accumulated sum are relevant to the coordinate of the

spikes and the size of the filters. When an MLP spike is received,

weight and accumulated sum access addresses are generated based

on the neurons that are connected with the spike. A neuron address

is generated when EoT is received and a read request is sent to the

neuron SRAM to access the neuron potential. After processing a

spike, the load module sends a read signal to the input FIFO to read

a new input spike. Then the load module transits to the idle state

until the next input is read from the FIFO.

Idle state. In this state, the load module will stay idle until

receiving a new input spike read from the input FIFO again. Then

the load module will enter the configuration stage again.

2.4.3.2. Compute module

Spike data is accumulated in the compute module. Like the load

module, the compute module (center unit in Figure 2C) is a finite

state machine with an idle state and an active state. In the idle

state, the compute module waits for the load module to send the

spike type and the number of neurons that connect with the input

spike. The compute module initializes its registers with this data

and transits to the active state.

In the active state, the compute module performs addition

operations on the data retrieved from the memory interface in

response to the memory read requests generated by the load

module. When a CNN or MLP spike is received, the compute

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

FIGURE 2

(A) The proposed accelerator with Network-on-Chip (NoC) architecture that is built on the OpenSMART NoC generator (Kwon and Krishna, 2017).

The number of processing elements (PEs) required in the NoC depends on the size and complexity of the neural network being accelerated. (B) The

architecture of each processing element (PE), and (C) core in each PE.

module accumulates weights into the accumulated sum. When

an EoT spike is received, the compute module accumulates

accumulated sums to neuron potentials. Saturating adders are used

to prevent overflow and underflow. The results are then sent to

the store module along with the spike type. After all the data is

processed, the compute module transits back to the idle state.

2.4.3.3. Store module

The store module (right unit in Figure 2C) has two states: active

state and idle state. In the active state, the store module can process

three kinds of input: results from compute module, the EoT signal,

and the softmax signal.

The store module can take the results generated from compute

module and store them in the address obtained from the load

module. When the core is processing the CNN or MLP input

spikes, the store module takes the store address from the load

module and the accumulated result from the compute module. In

this stage, the store module only needs to store the value to the

accumulated SRAM.

When the store module receives an EoT signal, it will check the

value of neuron potential (the result computed and sent from the

compute module) first. If the neuron potential is greater than the

threshold set during the programming stage, the store module will

send a spiking signal to spike SRAM. The corresponding neuron

stored in spike SRAM whose potential is greater than the threshold

will then be sent as a spike to the next layer. There is also a max-

pooing mask in the store module. In layers where max-pooling is

required, the store module first applies a max-pooling mask to the

address of the incoming neuron potential. Then, it identifies neuron

potentials that are in the same pool in the max-pooling process.

From the pool, only the spiking signal of the max neuron potential

is sent to the spike SRAM.

After receiving the softmax signal, the store module will

compare neuron potentials in this layer. Then it will find the

maximal value of neuron potential in this layer and the neuron

address. This address will be sent to the spike SRAM.

2.5. Dataflow

2.5.1. Convolutional layers
We will now discuss the algorithms used to process spikes

in this work. Each PE in our hardware supports the processing

of two types of spike signals—input spikes and End-of-Timestep

(EoT) signals. Input spikes are the spikes generated by traditional

integrate-and-fire neurons in SNNs, and EoT signals are the spikes

used to indicate that a timestep is complete. In this work, to

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

differentiate between these two spike signals, an additional bit is

appended to all the spike packets as a prefix. If the prefix of the

spike packet is “0,” it is treated as an input spike and processed

accordingly. If the prefix of the spike packet is “1,” it is treated as

the EoT signal.

When a PE in our hardware receives an input spike, it will

be processed using the spike processing algorithm described in

Algorithm 3. This algorithm uses eight registers to implement an

access pattern for accessing the weights required and calculating the

accumulated weights. Two registers store the addresses of weight

(w_address) and accumulated weight (acc_addrs) to be accessed.

Two register stores the values of variable, x and y in Algorithm 3.

Two registers store the offsets of this input (i.e., referred to as

y_jump and x_jump in Algorithm 3). The last two registers store

the width of the output feature map and weight, wid_output, and

wid_weight in Algorithm 3.

For example, let us consider one convolutional neural network

(CNN) with one convolutional layer containing six by six neurons,

three by three weights, and a two by two max-pooling layer. This

simple CNN can be mapped on one PE. This PE is required to

process the input spikes. The addresses 0–8 in weights SRAM

will store the weights. The accumulated weights will be stored

at the addresses 0–35 in the accumulated weights SRAM in

the PE assigned for the convolutional layer. In Algorithm 3, the

START_Acc and START_Weight will be different values depending

on the position of the input spike in the input image. Assuming that

the padding in this CNN is one, the START_Acc of input in position

(0,0) will be 7, and the START_Weight should be 0.

If neuron j in the convolutional layer emits a spike, the

acc_addrs and w_address in the second layer PE will be set based

on the index of j. The core will then generate the required number

of memory accesses depending on the values of x_jump, y_jump,

START_Acc, and START_Weight. For instance, if the first neuron

in the first convolutional layer emits a spike to the next layer

in time step, ti, the spike packet emitted contains x_jump = 1,

y_jump = 1, START_Acc = 7, and START_Weight = 0. When

the core receives this packet, weights at the address 0 will be

read from the weights SRAM first and added to the accumulated

weights. According to the Algorithm 3, acc_addrs will then be

updated to 6 and w_address will be 1. After that, x will be equal

to x_jump. Thus, the inner loop will be complete. acc_addrs and

w_address will be recalculated. In the second round of the inner

loop, acc_addrs should start from 1 and w_address should start

from 3.

At the end of ti, the accumulated weights will be added to the

neuron potentials. If neuron potentials cross the threshold, output

spikes are generated and transmitted to the next layer. Thus, using

this new algorithm, our core can accelerate CNN efficiently without

unnecessary computations and memory accesses.

Next, as time is used as the state variable to process information

in this work, EoT signals are used to indicate that a timestep is

complete and the accelerator canmove on to the next time step. The

PEs in our hardware support two ways of handling EoT signals—

the standard integrate-and-fire method and the softmax method,

which is normally used in the final layer of the networks.

Algorithm 3 also shows how a PE updates neuron potentials

when it receives an EoT signal. When the type of layer is the

fully connected layer or convolutional layer without max-pooling,

Input: Acc_SRAM: Set of accumulated weights in

the accumulated weights SRAM

Input: Weight_SRAM: Set of weights in the

weights SRAM

Input: START_Acc: Starting address of the

accumulated weights in the accumulated weights

SRAM

Input: START_Weight: Starting address of the

weights in the weights SRAM

Input: NP_SRAM: Set of neuron potentials in the

neurons SRAM

if type of input spike != EoT then
acc_addrs = START_Acc

weight_addr = START_Weight

for y= 0 to y_jump do

for x= 0 to x_jump do
Acc_SRAM[acc_addrs] +=

Weight_SRAM[w_address]

acc_addrs -= 1

w_address += 1
acc_addrs = (START_Acc - wid_output) *

(y_jump - y + 1)

w_address = (START_Weight - wid_weight) *

(y_jump - y + 1)

else

if layer_type == conv without maxpooling then

for i=1 to num_neurons do
NP_SRAM[i] += Acc_SRAM[i]

if NP_SRAM[i] >= threshold AND NOT

ALREADY_SPIKED(i) then
GENERATE_SPIKE(i)

else

for i=1 to num_neurons do
NP_SRAM[i] += Acc_SRAM[i]

if NP_SRAM[i] >= threshold AND NOT

ALREADY_SPIKED(i) then

if MAXPOOLING_MASK(i) is not 1 then
filling MAXPOOLING_MASK[i]’s

neighbor with 1

GENERATE_SPIKE(i)

Algorithm 2. Input spike processing algorithm.

each neuron loads a neuron potential and its accumulated weight,

adds the neuron potential with the accumulated weight, and stores

the result back to the neuron potential address. In the standard

integrate-and-fire method, spikes are generated when the neuron

potential crosses the threshold and if the neuron has not spiked

before. But for the convolutional layer with a max-pooling layer,

there is a max-pooling mask to help the PE knows which neurons

should emit a spike after max-pooling. If one neuron’s potential is

more than the threshold and this neuron has not spiked before, the

PE checks the max-pooling mask of this neuron. If this neuron

is not marked in the mask, PE should mark this neuron and all

neighbors of this neuron in the mask. The position and the number

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

Input: AW_BLOCK: Set of accumulated weights in

the accumulated weights SRAM

Input: W_BLOCK: Set of weights in the weights

SRAM

Input: AW_START: Starting address of the

accumulated weights in the accumulated weights

SRAM

Input: W_START: Starting address of the weights

in the weights SRAM

aw_address = AW_START

w_address = W_START

for k= 0 to x_jump do
AW_BLOCK[aw_address] += W_BLOCK[w_address]

aw_address += x_inc

w_address += x_inc

Algorithm 3. Spike processing algorithm.

of neighbors depend on the size of the max-pooling layer. After

marking the mask, this neuron can emit a spike.

2.5.2. Fully connected layers
2.5.2.1. Processing of input spikes

When a PE in the accelerator receives an input spike, it will

be processed using the spike processing algorithm described in

Algorithm 3. This algorithm uses four registers to implement an

access pattern for accessing the weights required and calculate the

accumulated weights, which are the gradients of neuron potentials

as introduced in Section 2.4. The first register stores the addresses

of weight (w_address) and accumulated weight (aw_address) to

be accessed. The second register stores the value of variable, k

in Algorithm 3. The third register stores the number of neurons

assigned for that PE (i.e., referred to as x_jump in Algorithm 3).

The fourth register stores the amount of increment in aw_address

and w_address after each weight access (i.e., referred to as x_inc in

Algorithm 3).

If neuron j in the first layer emits a spike, the aw_address

and w_address in the second layer PE will be set based on the

index of j. The core will then generate the required number of

memory accesses depending on the values of x_jump and x_inc.

For instance, if the second neuron in the first hidden layer emits

a spike to the next layer in the time step, ti, the spike packet

emitted contains a weight offset, W_START = 4. When the core

receives this offset, weights at addresses 4–7 will be read from

the weights SRAM and added to the accumulated weights. As we

will discuss in Section 2.5.2.2, at the end of ti, the accumulated

weights will be added to the neuron potentials. If neuron potentials

cross the threshold, output spikes are generated and transmitted

to the next layer. Thus, using this algorithm, our core can

accelerate FCNs efficiently without unnecessary computations and

memory accesses.

Input: AW_BLOCK: Set of accumulated weights in

the accumulated weights SRAM

Input: N_BLOCK: Set of neuron potentials in the

neuron SRAM

MAX_NEURON = 1

MAX_POTENTIAL = -MAX_INT

for i=1 to num_neurons do
N_BLOCK[i] += AW_BLOCK[i]

if N_BLOCK[i] >= MAX_POTENTIAL then
MAX_POTENTIAL = N_BLOCK[i]

MAX_NEURON = i

GENERATE_SPIKE(MAX_NEURON)

if LAST_PE_IN_LAYER then
GENERATE_EOT_SIGNAL()

Algorithm 4. Algorithm for EoT handling for softmax layers.

2.5.2.2. Processing of end-of-timestep (EoT) signals for

softmax layers

For MLP layers, the algorithm for EoT handling for the

integrate-and-fire layer is the same as the Convolutional layer

without max-pooling in Algorithm 2. For the softmax layer, only

the neuron with the largest neuron potential produces a spike. In

both methods, an EoT signal is sent to the next layer after the last

PE in the current layer has finished updating the neuron potentials

and generating spikes.

2.6. Mapping methodology

2.6.1. Convolutional layers
Before running, the mapper needs a trained CNN model

from the training software The mapping technique proposed

helps eliminate the need for memory transactions between

different PEs.

In this section, we explain how SNNs are mapped to our

accelerator using the mapper that enables efficient computations

on our accelerator. Algorithms for mapping convolutional, max-

pooling, and fully connected layers are explained here.

To map an N × N convolutional layer, a minimum of CC =
MAX(nN ,

w×w×c
W) PEs are needed where N andW are the maximum

numbers of neurons and weights that can be mapped to a single

PE, respectively, where w represents the width of the filters and c

is the number of channels mapped to different PEs. As the max-

pooling layer is always used in the convolutional layers, each PE that

is mapped to compute a convolutional layer contains a configurable

max-pooling layer.

As CNNs can also require fully connected layers as the last

stages of a network, a mapping algorithm that maps MLPs to our

accelerator is needed. To map a m × n fully-connected layer, a

minimum of CF = MAX(nN ,
m×n
W) PEs are needed, where N and

W are the maximum numbers of neurons and weights that can

be mapped to a PE. The PEs are placed within a
√
CC + CF by√

CC + CF grid. One PE can only be allocated to one layer to

process all spikes received by this layer.

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

FIGURE 3

(A) A toy CNN with one convolutional layer, one max-pooling layer, and one fully-connected layer. (B) The cores used to map the CNN in (A). Two

channels in the convolutional layer are mapped to eight PEs with relevant filters. The fully-connected layer is mapped on one PE. The di�erent colors

represent the di�erent parts of the CNN.

2.6.2. Parameter mapping
The parameters to be mapped to our accelerator consist of

biases, weights, and output addresses.

2.6.2.1. Neurons and bias

For a convolutional layer, the mapper allocates one of the

channels in at least one PE. To avoid memory transactions between

different PEs, the number of neurons mapped on one PE should

be multiple of the size of the max-pooling layer. In this way, the

neurons needed to be processed by the max-pooling layer are in

the same PE. For example, to map a 28×28×2 convolutional layer

with one 2-max-pooling layer, themaximumnumber of neurons on

one PE is 256. Since the maximum number of neurons that can be

mapped to one PE is 256, each 28×28 featuremap has to bemapped

to at least 4 PEs. Meanwhile, each channel has to be mapped to at

least one PE. Therefore, this 28× 28× 2 layer will be mapped on at

least 4× 2 PEs. For a fully connected layer, the number of neurons

mapped depends on the maximal number of neurons and weights

in the PE. Take one fully connected layer with 128 neurons and

1,568 inputs as an example. Assuming that the PE can store at most

9K weights and 256 neurons, these 128 neurons will be mapped to

22 = MAX(128256 ,
1568×128
9,000) PEs.

In the convolutional layer, the values of the biases are

different between channels. Mapper takes biases from CNN trained

model and then converts these biases to the format of hardware

compatible. For the fully connected layer, each neuron has its own

bias value. The mapper maps biases in the trained model to each

neuron in the fully connected layer.

2.6.2.2. Weights

Weights in the convolutional layer (also called a filter) have

to be mapped channel by channel. As mentioned before, one PE

can only be allocated to one layer. It means that one layer can

be mapped to multiple PEs, which improves the scalability of our

design. It also applies to channels. When one channel is mapped to

multiple PEs, each PEs mapped to this channel will be allocated the

same filter. As for the fully connected layer, one input spike of one

fully connected layer will update all neurons in the fully connected

layer. Hence, one PE which contains m neurons will store m ×
n weights in its weights SRAM, and n is the number of input

spikes of this fully connected layer. According to this access pattern

in hardware, weights associated with corresponding neurons will

be mapped on one PEs. As shown in Figure 3B, the mapper we

proposed mapped a CNN whose structure is shown in Figure 3A.

The mapper maps each feature map to four cores according to the

rules proposed in Section 2.6.2.1. Since each feature map shares

the same filter, each core stores the corresponding filter separately

(represented by a different color).

2.6.2.3. Input

Input data of this work can be various kinds of data such

as imagines from MNIST or Fashion-MNIST, features generated

by front-end processors, audio signals, etc. The mapper converts

these input data items into a form that can be used by our

custom hardware design. There are two kinds of CNN data format

packets that are used in our accelerator. The mapper divides the

input into several timesteps according to the value of each input

value. The input in the same timestep represents the same value.

The information stored in each input spike is about weights and

the neuron this input will access. For CNN format spikes, one

converted input spike contains information about the weights

address and neurons address where this spike starts accessing and

the number of weights and neurons the spike will access. The CNN

format input spike is organized by this format:

{Ch,Y jump,X jump, Sneuron, Sweight}

Ch is short for Channel, whichmeans the channel this pixel belongs

to. The Yjump and Xjump represent the way the filter should move

on this pixel, which means that the filter should move Xjump times

in the direction of the x-axis andmove Yjump times in the direction

of the y-axis. The Sneuron means the start neuron this input spike

should access at first. It’s the same with the Sweight, which is the

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

FIGURE 4

A simple example that explains the dataflow. There is one input

feature map on the left and one output feature map on the right.

When one input activation is fired (which is the box in orange.),

weights 0/1/3/4 are read to update neuron 3/4/0/1 in the output

feature map.

first weight this input should access. Once the load module has this

information, it can load values from addresses computed by these

parameters. As each input spike will update relative accumulated

addresses, the input spikes also contain the information on padding

and stride. As shown in Figure 4, the size of the input is 5 × 5 and

the size of one output feature is also 5×5. A 3×3 filter is used with

the 1 stride and without padding. For the first pixel in the input

whose index is (0,0), the input spike should be:

{Ch(0),Y jump(1),X jump(1),Sneuron(4),Sweight(0)}

This input spike means that it will access neuron 4 (1,1) and weight

0 (0,0) as the first neuron and weight address.

If a spike is encoded in MLP format, this spike will store the

weight address which is the start address accessed by this spike. As

mentioned in Section 2.6.2.2, one input will update all neurons in

the fully-connected (FC) layer with corresponding weights. Hence

the information stored in the spike will give the start address of the

corresponding weights.

2.6.2.4. Spiking address

Spiking addresses mean that when one neuron’s potential is

more than the threshold, the value is fired to the next layer. Thus the

value of spiking addresses can be seen as the input of the next layer.

In the convolutional layer, the value of spiking addresses depends

on the position of each neuron in the feature map. They can be

seen as the pixel in the input image. As the spike addresses are the

input of the next layer, the spiking address has the same format as

the input spike. The mapper will generate the value of the spiking

address depending on the type of the next layer and how neurons

connect with the next layer.

2.6.2.5. Programming spikes

This kind of spike contains various information needed for

each PE. For each PE, the width of the filter and output

feature map, the value of threshold and max_time_steps, and

the type of the layer mapped on the PE will be set before

running the whole accelerator. In addition to these parameters,

the first PE in each layer is chosen to be the output destination

PEs. The forwarding destinations also need to be set on

each PE.

2.6.3. Fully connected layers
In this section, we introduce the mapper used to accelerate the

TTFS-based SNNs on this work.

To accelerate FC layers on our accelerator, the mapper enables

us to calculate the minimum number of PEs needed for accelerating

a particular neural network, depending on the number of layers

in the network, neurons, and weights in each layer. For example,

to map m × n fully-connected layers, a minimum of C =
MAX(nN ,

m×n
W) PEs are needed, where N is the maximum number

of neurons that can be mapped to a single PE, and W is the

maximum number of weights that each PE can store. As shown in

Figure 2, the PEs are placed within a
√
C by
√
C grid.

The mapper also assigns a layer (or a group of neurons in a

layer) to each PE in the grid. To optimize for latency, more PEs

can be assigned to a particular layer. It also facilitates the transfer of

learnedmodel parameters from software to hardware by converting

the biases, weights, and initial neuron potentials of the network

into spikes as required by this work. The mapper also generates the

spikes needed to fill the values of xjump and xinc in the respective

registers, as we discussed in Section 2.5.

3. Results

3.1. Experimental methodology

In this section, we outline the details of the experimental setup

and algorithms used in evaluating our work.

3.2. Networks

The MNIST Handwritten Digits dataset (LeCun et al., 1998)

contains gray scale images of 10 handwritten digits of size 28× 28,

with a total training set of 60,000 examples, and a test set of 10,000

examples. We built an FCN with four layers (784-300-300-10), i.e.,

with the input layer containing 784 neurons, two hidden layers

containing 300 neurons each, and an output layer containing 10

neurons. We also built some CNN workloads, which are shown

in Table 1. These networks are trained offline using the training

methodology introduced in Section 2.3. The learned weights and

biases are then transferred to our hardware for accelerating the

inference operations. Usually, quantized weights and biases are

used to achieve high energy and area efficiency in neuromorphic

accelerators. In this work, we quantized the weights and biases to

8-bit precision before transferring them to our hardware. Timestep

is set to 8 in TTFS coding SNN. We also studied the influence of

such quantization on the classification accuracy of our network.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

TABLE 1 Workload used for comparing with di�erent accelerators.

Shenjing-CNN Systolic-CNN-a Systolic-CNN-b SC DWC PWC

Input (28, 28, 1)

Conv1 (3, 3, 1, 16)

Pool1 (2, 2)

Conv2 (3, 3, 16, 32)

Pool2 (2, 2)

FC1(1568, 128)

FC2 (128, 10)

Input (28, 28, 1)

Conv1 (5, 5, 1, 12)

Pool1 (2, 2)

Conv2 (5, 5, 12, 64)

Pool2 (2, 2)

FC1 (3136, 10)

Input (28, 28, 1)

Conv1 (5, 5, 1, 64)

Pool1 (2, 2)

Conv2 (5, 5, 64, 64)

Pool2 (2, 2)

Conv3 (5, 5, 64, 100)

FC1 (4900,10)

Input (14, 14, 64)

SC (3, 3, 64, 64)

Input (14, 14, 1)

DWC (3, 3, 1, 64)

Input (14, 14, 512)

PWC (1, 1, 512, 512)

SC, standard conv; DWC, depth-wise separable conv; PWC, point-wise separable conv.

TABLE 2 Hardware configuration parameters.

Name Size

Tech node 22 nm

Accumulated weights 1 kB

Neurons 1 kB

Weights 1 9 kB

Weights 2 19 kB

Spike address 2 kB

Weights 1 is for the MNIST MLP model and CNN models. Weights 2 is for the Fashion

MNIST MLP model.

3.3. Hardware simulation environment

Our accelerator is synthesized using Synopsys Design Compiler

version P-2019.03 targeting an industry-grade 22 nm technology

node. Gate-level simulations are performed using Synopsys VCS-

MX K-2015.09 and power analysis was performed with Synopsys

PrimePower version P-2019.03. The simulations are performed

at different frequencies to achieve comparable latency with other

designs and account only for inference time. Table 2 shows the

system configuration used.

3.4. Results and discussion

In this section, we first describe the accuracy, power, and energy

efficiency results, and finally analyze the impact of noise.

3.4.1. Comparison with SpinalFlow
To present a fair comparison with SpinalFlow, we aim to run

the same workload proposed in their paper (SC, DWC, and PWC

in Table 1) on our design and compare our results with their

proposed results. Activation sparsity levels are also set to be the

same as evaluated by SpinalFlow, which is the ratio between zero

value neurons and the total number of neurons. For example,

Sp60 means that 60% of the neuron potentials are zero. We

compare our work with SpinalFlow separately because SpinalFlow

is modern temporal coding SNN accelerator. It is worth clarifying

how our work aims to improve over this (and other) previous

works. Furthermore, SpinalFlow focuses mainly on optimizing its

hardware design rather than the SNN algorithm. Hence, we begin

by comparing the same workload used in the show the benefits

of our hardware implementation. We then compare our work

with other SNN accelerators on both hardware performance and

accuracy in Section 3.4.2.

3.4.1.1. Latency

The latency per inference, with a batch size of 1, for this work is

normalized to SpinalFlow as shown in Figure 5A. At high activation

sparsity levels, in this example is set to 98%, this work can operate

3.88×, 31.35×, and 64.6× faster than SpinalFlow. Even at relatively

lower sparsity (60%), this work is still 1.09×, 8.5×, and 16.2× faster

on SC, DWC, and PWC workloads. Different from SpinalFlow,

which maps each neuron of one spine to each PE, this work maps

the entire output feature map to one PE to enable efficiency with

high utilization. Whenever one input spike comes to the PEs, all

PEs will be active. This mapping algorithm leads to a near-100%

PE utilization.

3.4.1.2. Energy consumption

To evaluate the energy efficiency of the this work and to

compare against SpinalFlow, we evaluate the workloads proposed

by SpinalFlow at different levels of sparsity. These workloads are

shown in Table 1. Based on our mapping algorithm and the size

of the output feature map, each channel is mapped to one PE.

Figure 5B compares the energy consumption of this work and

SpinalFlow on different workloads. It can be seen that this work

achieves 5.7×, 45.9×, and 12.9× lower energy consumption at very

high sparsity levels (98%).

3.4.2. Performance and power consumption
3.4.2.1. Accuracy

Prior TTFS-based work (Rueckauer and Liu, 2018) has shown

an accuracy of 98.30% (without quantization) on the MNIST

dataset. Our work, in contrast, achieves an accuracy of 98.44%

(without quantization) and 98.40% (with quantization; see Table 3

and Figure 6A). Our proposed training method improves the

accuracy of fully-connected TTFS-based SNNs on the MNIST

dataset than previous TTFS-based SNN accelerators (by 0.85%;

Mostafa, 2016) and most other rate-based SNN works. While

the rate-based accelerator, TrueNorth-b, reaches a slightly higher

accuracy than this proposed work, the costs are significant,

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

FIGURE 5

Comparison with SpinalFlow on latency/inference and energy/inference by running workload SC, DWC, and PWC. Sp is activation sparsity, which

means the ratio of non-zero input activations to the total number of input activations. Sp60, Sp90, and Sp98 refer to 60, 90, and 98% activation

sparsity for the SNN. (A) Speedup normalized to SpinalFlow. (B) Energy normalized to SpinalFlow.

TABLE 3 Classification performance on MNIST dataset.

Network Coding ANN acc (%) SNN acc (%)

TrueNorth-a Rate – 92.70

TrueNorth-b Rate – 99.42

Mostafa Temporal – 97.55

Comsa et al. Temporal – 97.96

Rueckauer et al. Temporal 98.56 98.30

This work Temporal 98.56 98.44

This work + Quant. Temporal 98.56 98.40

The bold values indicated to highlight the results.

with almost 3.83× lower energy efficiency and a 147× higher

power consumption.

We also evaluate the performance of this work on relatively

complex datasets, such as Fashion MNIST (Xiao et al., 2017). A

simple three-layer MLP (784-1000-10) and a convolutional neural

network (CNN) with two convolution, two max-pooling, and two

fully connected layers are used for the study of the Fashion MNIST

data (see Table 4). These networks are trained as ANNs, converted

to SNNs, and retrained using Algorithm 1. In a similar way to

previous works (Esser et al., 2016; Yakopcic et al., 2017), we

convert CNNs to MLPs to accelerate them on our accelerator. The

comparison between the accuracy of this work and other works on

Fashion MNIST data is shown in Table 4. This work provides good

classification performance with minimal accuracy drop from its

ANN equivalent and high energy efficiency compared to the state-

of-the-art works. Meanwhile, the number of spikes in our work is

4.8× lower than the rate-based coding SNN. However, we observed

an accuracy drop (5.1%) between this work and its equivalent ANN.

The reason is that this work has more layers and when the number

of layers in the network increases, the ANN-to-TTFS-based SNN

conversion error increases.

3.4.2.2. MNIST

With the TTFS-based accelerator proposed in this work, the

power and energy consumed per inference are significantly lower

than that of the vast majority of rate-based accelerators. Table 5

shows the storage space needed and weight data width used by

other work. Table 6 and Figure 6B show the performance on the

MNIST dataset. To achieve comparable latency, the simulations are

performed at 18 MHz and 720 KHz when comparing with Systolic

SNN-CNN-a and Shenjing-CNN, respectively. For comparison

with other works, the simulation is run at 120 KHz. It should be

noted that the latency only accounts for the inference time.

Our work pushes the performance and efficiency boundary

through the use of TTFS-based SNNs, and it can achieve both

high accuracy and low power. We compare our results to other

neuromorphic accelerators such as TrueNorth, Loihi, Systolic

SNN, and Shenjing. Our work outperforms other neuromorphic

accelerators in energy efficiency. This work beats Systolic SNN

by 21.0× on MNIST. This work can also achieve at least 27.5×
higher energy efficiency than Shenjing on MNIST. For MLP, our

work is better by at least 2.4× than the state-of-the-art except for

TrueNorth-b which sacrifices accuracy significantly to achieve a

lower power consumption.

3.4.2.3. Fashion-MNIST

With the CNN mapping algorithm proposed in this work, our

work can support more complex datasets, such as Fashion-MNIST,

with more complex convolutional neural networks. We compare

our results to Loihi and Systolic SNN on Fashion-MNIST. As

shown in Table 7, this work is able to provide improved energy

efficiency over Systolic-SNN and Loihi by 49.6× and 26× on

Fashion-MNIST, respectively.

3.4.2.4. CIFAR10

On the CIFAR10 dataset, our work outperforms Shenjing

38.37× on energy efficiency under the same frames-per-second

configuration. Although the accuracy of the TTFS algorithm

on CIRAR10 dropped to 49.4%, we can increase accuracy

to 87.05% by applying existing work (Stöckl and Maass,

2021) with small changes. The main difference between this

work and the conventional TTFS algorithm is that this work

changes neuron potentials at every end of the timesteps and

fires more than one spike per neuron. Changing the neuron

potential dynamically can be supported with a straight-forward

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

FIGURE 6

A comparison to other neuromorphic accelerators based on (A) accuracy and (B) energy consumption per inference. This work is the only one that

achieves both high accuracy and low-energy consumption at the same time. TrueNorth-b consumes almost 6.87×more energy than this work to

achieve its higher accuracy, while TrueNorth-a gives up a significant amount of accuracy (92.70 vs. 98.40% for our work) to achieve lower energy

consumption.

TABLE 4 Classification performance on fashion MNIST dataset.

Proposal Coding No. of spikes ANN acc (%) SNN acc (%)

(Network architecture)

S4NN Temporal – – 88.00

(784-1000-10)

This work (MLP) Temporal 128 88.78 88.21

(784-1000-10)

This work Temporal – 91.71 86.50

(28×28-16C3-P2-32C3-P2-128-10)

Zhang et al. Rate 621 – 89.50

(784-400-400-10)

Hao et al. Rate – – 85.30

(784-6000-10)

The bold values indicated to highlight the results.

TABLE 5 Storage and weight width configuration of other SNN

accelerators.

Accelerator Storage/Core Weight width

Systolic SNN – 32b

Shenjing – 5b

Spinnaker 96.00 KB 32b

Loihi 264.00 KB 9b

TrueNorth 12.75 KB 4b

Tianjic 125.00 KB 8b

SpinalFlow 4.50 KB 8b

This work 13.00 KB 8b

modification of the spiking module in our architecture. We

estimate the energy efficiency from the number of spikes of Stöckl

and Maass (2021). The results show that our hardware can

still achieve 3.1× better energy efficiency than Shenjing with

comparable accuracy.

3.4.2.5. Power and area breakdown

Lastly, the power consumption and the area of the processing

element of our accelerator are evaluated. Figure 7 provides a

detailed illustration of the power and area breakdown of the

hardware components inside the processing element. From the

power breakdown, we find that FIFOs and SRAMs consume around

76% of the total power consumed by the processing element. From

the area breakdown, the weight SRAM takes up around 71% of

the total area. Using a sufficiently-sized weight SRAM, allows for

higher flexibility in our design, which allows it to support models

in different sizes.

3.4.3. Impact of noise
We present the impact of noise on the classification accuracy of

TTFS-based SNNs on MNIST and Fashion MNIST datasets. After

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

TABLE 6 Comparison of this proposal with rate-based neuromorphic accelerators on the MNIST dataset.

Accelerator Enc. Acc. FPS Tech Power uJ/Frame No. of cores Power/Neuron Network

Systolic SNN-CNN-a Rate 98.98 333 – 754.00 2237.24 1024 - CNN

This work Temp. 98.90 333 22 53.49 160.63 113 1.85

Shenjing-CNN Rate 97.15 30 28 87.54 2918.00 705 0.49 CNN

This work Temp. 97.90 30 22 3.20 106.51 120 0.10

Spinnaker Rate 95.01 77 130 300.00 3896.00 48 1.20 MLP

Shenjing-MLP Rate 96.11 40 28 1.26 38.00 10 0.49

Systolic SNN-MLP Rate 98.84 278 – 745.00 2679.86 1024 –

Zhang et al. Rate 95.30 3,704 – – 340.00 – –

Skydiver Rate – 1,040 – 960.00 40.00 – –

Loihi-MLP Rate 99.21 150 14 99.25 660.00 128 0.76

TrueNorth-a Rate 92.70 1,000 28 0.27 0.27 5 0.21

TrueNorth-b Rate 99.42 1,000 28 108.00 108.00 30 14.06

Tianjic Hybrid 96.48 – 28 950.00 – 156 23.79

This work Temp. 98.40 26 22 0.41 15.72 42 0.04

Enc., coding; Acc., Top-1 accuracy in percent; FPS, frames per second; CMOS technology node (Tech) in nm, power in mW, and power/neuron in uW.

TABLE 7 Comparison of this proposal with rate-based neuromorphic accelerators on the Fashion-MNIST dataset.

Accelerator Enc. ACC. FPS Tech Power (mW) uJ/Frame Network

Loihi-CNN Rate 84.30 97 14 240 2474.23 CNN

Systolic SNN-CNN-b Rate 87.56 157 – 745 4745.22

This work Temp. 86.50 30 28 2.87 95.67

FIGURE 7

Power and area breakdown of the processing element. (A) Power breakdown. (B) Area breakdown.

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

FIGURE 8

Impact of noise on the classification accuracy of this work. Gaussian

noise with zero mean and a non-zero standard deviation (stddev) is

added to every pixel of input images in MNIST and Fashion MNIST

datasets for this study.

training the networks, Gaussian noise with zero mean and a non-

zero standard deviation (stddev) is added to the input images to

study the influence of noise on inference accuracy. The dependence

of accuracy on stddev is shown in Figure 8. It can be referred from

the figure that increasing the stddev beyond 0.1 significantly affects

the classification accuracy.

4. Conclusion and discussion

In this work, we introduce our accelerator and an improved

time-to-first-spike training algorithm which demonstrates the

viability of temporally-encoded SNNs for image classification

tasks. To address the limitations of temporally-encoded

SNNs, we proposed a novel training algorithm that achieves

state-of-the-art accuracy on temporally encoded SNNs.

Combining this highly accurate temporal coding method

with our energy-efficient hardware design improves the

accuracy of TTFS-based SNNs to achieve state-of-the-

art results on the MNIST and Fashion-MNIST datasets.

Meanwhile, this work reduces the power consumption by

at least 2.4×, 25.9×, and 38.4× over the state-of-the-art

neuromorphic hardware on MNIST, Fashion-MNIST, and

CIFAR10, respectively.

Data availability statement

The original contributions presented in the study are included

in the article, further inquiries can be directed to the corresponding

author.

Author contributions

MY designed hardware and algorithm, ran evaluation,

and wrote the paper. TX, YT, and VM improved the

idea and paper writing. BA developed the hardware

platform. SP and KC developed the hardware prototype.

TC guided the research and polished the paper. All

authors contributed to the article and approved the

submitted version.

Funding

This research is supported by A∗STAR under its RIE2020 IAF-

ICP (Award I2001E0053). Any opinions, findings and conclusions

or recommendations expressed in this material are those of the

authors and do not reflect the views of the A∗STAR.

Acknowledgments

We thank the reviewers who provided comments on the

manuscripts that contributed significantly to the quality of this

paper.

Conflict of interest

VM was employed by National University of Singapore during

the time of the paper. VM is current employed by Advanced Micro

Devices (Singapore) Pte. Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yu et al. 10.3389/fnins.2023.1121592

References

Bouvier, M., Valentian, A., Mesquida, T., Rummens, F., Reyboz, M., Vianello, E.,
et al. (2019). Spiking neural networks hardware implementations and challenges: a
survey. ACM J. Emerg. Technol. Comput. Syst. 15, 1–35. doi: 10.1145/3304103

Cattani, A., Einevoll, G. T., and Panzeri, S. (2015). Phase-of-firing code.
arXiv:1504.03954 [q-bio.NC]. doi: 10.48550/arXiv.1504.03954

Chen, Q., Gao, C., Fang, X., and Luan, H. (2022). Skydiver: A spiking neural
network accelerator exploiting spatio-temporal workload balance. IEEE Trans.
Comput. Aided Design Integr. Circuits Syst. 41, 5732–5736. doi: 10.1109/TCAD.2022.
3158834

Comsa, I. M., Fischbacher, T., Potempa, K., Gesmundo, A., Versari, L., and
Alakuijala, J. (2020). “Temporal coding in spiking neural networks with alpha synaptic
function,” in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (Barcelona), 8529–8533. doi: 10.1109/ICASSP40776.2020.9053856

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy,
R., Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-
efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113, 11441–11446.
doi: 10.1073/pnas.1604850113

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014).Neuronal Dynamics:
From Single Neurons to Networks and Models of Cognition. Cambridge: Cambridge
University Press. doi: 10.1017/CBO9781107447615

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2021). Neural coding in
spiking neural networks: a comparative study for robust neuromorphic systems. Front.
Neurosci. 15:638474. doi: 10.3389/fnins.2021.638474

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification. arXiv:1502.01852.
doi: 10.1109/ICCV.2015.123

Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., et al. (2019).
Searching for MobileNetV3. arXiv:1905.02244. doi: 10.1109/ICCV.2019.00140

Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X., Painkras, E., et al. (2008).
“Spinnaker: mapping neural networks onto a massively-parallel chip multiprocessor,”
in 2008 IEEE International Joint Conference on Neural Networks (IJCNN) (Hong Kong),
2849–2856. doi: 10.1109/IJCNN.2008.4634199

Khoei, M. A., Yousefzadeh, A., Pourtaherian, A., Moreira, O., and Tapson, J.
(2020). “SpArnet: sparse asynchronous neural network execution for energy efficient
inference,” in 2020 2nd IEEE International Conference on Artificial Intelligence Circuits
and Systems (AICAS) (Genova), 256–260. doi: 10.1109/AICAS48895.2020.9073827

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with
deep convolutional neural networks. Commun. ACM 60, 84–90. doi: 10.1145/3065386

Kwon, H., and Krishna, T. (2017). “OpenSMART: single-cycle multi-hop
NOC generator in BSV and Chisel,” in 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS) (Santa Rosa, CA), 195–204.
doi: 10.1109/ISPASS.2017.7975291

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceed. IEEE 86, 2278–2324.

Lew, D., Lee, K., and Park, J. (2022). “A time-to-first-spike coding and conversion
aware training for energy-efficient deep spiking neural network processor design,” in
Proceedings of the 59th ACM/IEEE Design Automation Conference (New York, NY),
265–270. doi: 10.1145/3489517.3530457

Luo, T., Liu, S., Li, L., Wang, Y., Zhang, S., Chen, T., et al. (2017).
Dadiannao: a neural network supercomputer. IEEE Trans. Comput. 66, 73–88.
doi: 10.1109/TC.2016.2574353

Mayberry, M. (2017). Intel’s New Self-Learning Chip Promises to Accelerate Artificial
Intelligence. Available online at: https://newsroom.intel.com/editorials/intels-new-
self-learning-chip-promises-accelerate-artificial-intelligence/#gs.klti3g

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada,
J., Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit
with a scalable communication network and interface. Science 345, 668–673.
doi: 10.1126/science.1254642

Moreau, T., Chen, T., Jiang, Z., Ceze, L., Guestrin, C., and Krishnamurthy, A.
(2018). VTA: an open hardware-software stack for deep learning. arXiv:1807.04188.
doi: 10.48550/arXiv.1807.04188

Mostafa, H. (2016). Supervised learning based on temporal
coding in spiking neural networks. doi: 10.1109/TNNLS.2017.
2726060

Narayanan, S., Taht, K., Balasubramonian, R., Giacomin, E., and Gaillardon, P.-E.
(2020). “Spinalflow: an architecture and dataflow tailored for spiking neural networks,”
in 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), 349–362. IEEE. doi: 10.1109/ISCA45697.2020.00038

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Park, S., Kim, S., Na, B., and Yoon, S. (2020). “T2fsnn: deep spiking neural
networks with time-to-first-spike coding,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 1–6. doi: 10.1109/DAC18072.2020.9218689

Rueckauer, B., and Liu, S.-C. (2018). “Conversion of analog to spiking neural
networks using sparse temporal coding,” in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS) (Florence), 1–5. doi: 10.1109/ISCAS.2018.8351295

Shrestha, S., and Song, Q. (2017). Robust spike-train learning in spike-event based
weight update. Neural Netw. 96, 33–46. doi: 10.1016/j.neunet.2017.08.010

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv [preprint] arXiv:1409.1556.
doi: 10.48550/arXiv.1409.1556

Smith, J. E. (1982). “Decoupled access/execute computer architectures,” in
Proceedings of the 9th Annual Symposium on Computer Architecture (ISCA) (Austin,
TX), 112–119. doi: 10.1145/1067649.801719

Stöckl, C., and Maass, W. (2021). Optimized spiking neurons can classify images
with high accuracy through temporal coding with two spikes. Nat. Mach. Intell. 3,
230–238. doi: 10.1038/s42256-021-00311-4

Tan,M., and Le, Q. (2019). “EfficientNet: rethinkingmodel scaling for convolutional
neural networks,” in Proceedings of the 36th International Conference on Machine
Learning, Vol. 97 of Proceedings of Machine Learning Research, eds K. Chaudhuri and
R. Salakhutdinov (Long Beach, CA), 6105–6114.

Wang, B., Zhou, J., Wong, W.-F., and Peh, L.-S. (2020). “Shenjing: a
low power reconfigurable neuromorphic accelerator with partial-sum and
spike networks-on-chip,” in Proceedings of Design, Automation, and Test
in Europe (DATE) (Grenoble), 240–245. doi: 10.23919/DATE48585.2020.91
16516

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct
training for spiking neural networks: faster, larger, better,” in Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33 (Honolulu, HI), 1311–1318.
doi: 10.1609/aaai.v33i01.33011311

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. arXiv:1708.07747.
doi: 10.48550/arXiv.1708.07747

Yakopcic, C., Alom, M. Z., and Taha, T. M. (2017). “Extremely parallel memristor
crossbar architecture for convolutional neural network implementation,” in 2017
International Joint Conference on Neural Networks (IJCNN) (Anchorage, AK),
1696–1703. doi: 10.1109/IJCNN.2017.7966055

Zhang, J., Wang, R., Pei, X., Luo, D., Hussain, S., and Zhang, G. (2021). A
fast spiking neural network accelerator based on BP-STDP algorithm and weighted
neuron model. IEEE Trans. Circuits Syst. II 69, 2271–2275. doi: 10.1109/TCSII.2021.31
37987

Frontiers inNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnins.2023.1121592
https://doi.org/10.1145/3304103
https://doi.org/10.48550/arXiv.1504.03954
https://doi.org/10.1109/TCAD.2022.3158834
https://doi.org/10.1109/ICASSP40776.2020.9053856
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.3389/fnins.2021.638474
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.1109/IJCNN.2008.4634199
https://doi.org/10.1109/AICAS48895.2020.9073827
https://doi.org/10.1145/3065386
https://doi.org/10.1109/ISPASS.2017.7975291
https://doi.org/10.1145/3489517.3530457
https://doi.org/10.1109/TC.2016.2574353
https://newsroom.intel.com/editorials/intels-new-self-learning-chip-promises-accelerate-artificial-intelligence/#gs.klti3g
https://newsroom.intel.com/editorials/intels-new-self-learning-chip-promises-accelerate-artificial-intelligence/#gs.klti3g
https://doi.org/10.1126/science.1254642
https://doi.org/10.48550/arXiv.1807.04188
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1109/ISCA45697.2020.00038
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/DAC18072.2020.9218689
https://doi.org/10.1109/ISCAS.2018.8351295
https://doi.org/10.1016/j.neunet.2017.08.010
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1145/1067649.801719
https://doi.org/10.1038/s42256-021-00311-4
https://doi.org/10.23919/DATE48585.2020.9116516
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.1109/IJCNN.2017.7966055
https://doi.org/10.1109/TCSII.2021.3137987
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	A TTFS-based energy and utilization efficient neuromorphic CNN accelerator
	1. Introduction
	2. Materials and methods
	2.1. Background
	2.1.1. Spiking neural networks
	2.1.2. Training of TTFS-based SNNs

	2.2. Related work
	2.2.1. Rate-based SNN accelerators
	2.2.2. Temporal-based SNN accelerators

	2.3. Training competitive TTFS-based SNNs
	2.3.1. Firing threshold determination
	2.3.2. Weight normalization
	2.3.3. Training network

	2.4. Architecture description
	2.4.1. Router interface
	2.4.2. Memory interface
	2.4.3. Core
	2.4.3.1. Load module
	2.4.3.2. Compute module
	2.4.3.3. Store module

	2.5. Dataflow
	2.5.1. Convolutional layers
	2.5.2. Fully connected layers
	2.5.2.1. Processing of input spikes
	2.5.2.2. Processing of end-of-timestep (EoT) signals for softmax layers

	2.6. Mapping methodology
	2.6.1. Convolutional layers
	2.6.2. Parameter mapping
	2.6.2.1. Neurons and bias
	2.6.2.2. Weights
	2.6.2.3. Input
	2.6.2.4. Spiking address
	2.6.2.5. Programming spikes

	2.6.3. Fully connected layers

	3. Results
	3.1. Experimental methodology
	3.2. Networks
	3.3. Hardware simulation environment
	3.4. Results and discussion
	3.4.1. Comparison with SpinalFlow
	3.4.1.1. Latency
	3.4.1.2. Energy consumption

	3.4.2. Performance and power consumption
	3.4.2.1. Accuracy
	3.4.2.2. MNIST
	3.4.2.3. Fashion-MNIST
	3.4.2.4. CIFAR10
	3.4.2.5. Power and area breakdown

	3.4.3. Impact of noise

	4. Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

