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Introduction: Intermittent theta burst stimulation (iTBS), a novel mode of

transcranial magnetic stimulation (TMS), has curative effects on patients with

post-stroke cognitive impairment (PSCI). However, whether iTBS will be more

applicable in clinical use than conventional high-frequency repetitive transcranial

magnetic stimulation (rTMS) is unknown. Our study aims to compare the

difference in effect between iTBS and rTMS in treating PSCI based on a

randomized controlled trial, as well as to determine its safety and tolerability, and

to further explore the underlying neural mechanism.

Methods: The study protocol is designed as a single-center, double-blind,

randomized controlled trial. Forty patients with PSCI will be randomly assigned

to two different TMS groups, one with iTBS and the other with 5 Hz

rTMS. Neuropsychological evaluation, activities of daily living, and resting

electroencephalography will be conducted before treatment, immediately post-

treatment, and 1 month after iTBS/rTMS stimulation. The primary outcome is the

change in the Montreal Cognitive Assessment Beijing Version (MoCA-BJ) score

from baseline to the end of the intervention (D11). The secondary outcomes

comprise changes in resting electroencephalogram (EEG) indexes from baseline

to the end of the intervention (D11) as well as the Auditory Verbal Learning Test,

the symbol digit modality test, the Digital Span Test findings, and the MoCA-BJ

scores from baseline to endpoint (W6).

Discussion: In this study, the effects of iTBS and rTMS will be evaluated using

cognitive function scales in patients with PSCI as well as data from resting EEG,

which allows for an in-depth exploration of underlying neural oscillations. In

the future, these results may contribute to the application of iTBS for cognitive

rehabilitation of patients with PSCI.

KEYWORDS

post-stroke cognitive impairment (PSCI), high-frequency repetitive transcranial
magnetic stimulation (HF-rTMS), intermittent theta burst stimulation (iTBS),
electroencephalography, randomized controlled trial
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1. Introduction

Post-stroke cognitive impairment (PSCI), one of the most
common complications of stroke (Zlokovic et al., 2020), refers to
a variety of symptoms ranging from mild cognitive impairment
to dementia. Approximately 20–70% of stroke survivors suffer
cognitive impairment within 6 months of stroke (Liao et al.,
2021; Merriman et al., 2021). Due to impaired attention, memory,
language, and visuospatial functions, PSCI impedes recovery
from stroke-related sequelae, including sensory impairment,
motor dysfunction, and limitations in daily activities (Viktorisson
et al., 2021). Currently, evidence-based treatment guidelines for
PSCI are lacking, due to the limited pharmacological (donepezil,
galantamine, and memantine) and non-pharmacological therapies
(cognitive training and physical interventions) (Mijajloviæ et al.,
2017). Hence, the identification of optimal and effective treatment
is crucial. Recent studies have shown that neuromodulation
techniques help improve cognitive impairment through
neuroplasticity (Paolucci et al., 1996; Cicerone et al., 2011;
Paolucci, 2013; Di Lazzaro et al., 2021), similar to repetitive
transcranial magnetic stimulation (rTMS), which has been proven
by several meta-analyses to have promising and positive effects
(Lefaucheur et al., 2014, 2020; Hara et al., 2021; Liu et al., 2021;
Zhang et al., 2021). Intermittent Theta Burst Stimulation (iTBS)
is a novel neuromodulation technique with a unique advantage
in treatment time compared to rTMS (Huang et al., 2005) and a
reported better facilitation effect on modulating cortical excitability
in brain regions (Blumberger et al., 2018; Kaster et al., 2019; Si
et al., 2019). ITBS is effective and safe for treating depression,
autism, and Parkinson’s disease in patients with mild cognitive
impairment (Trung et al., 2019). However, evidence for iTBS
treatment for patients with PSCI is limited. Some studies on
PSCI have demonstrated that iTBS can improve patients’ overall
cognitive function (Tsai et al., 2020; Li et al., 2022), specifically
memory function (Tsai et al., 2020). However, the therapeutic
mechanism of iTBS remains unclear, in the absence of sufficient
neuroimaging assessments and long-term follow-up (Tsai et al.,
2020; Li et al., 2022). In addition, there is inadequate evidence
to suggest that iTBS is equally or more effective than traditional
rTMS in terms of the treatment outcome. Therefore, we are
conducting a randomized, double-blind controlled trial using
neurobehavioral assessments combined with a neurobehavioral
method, electroencephalogram (EEG), to compare the difference
in effect between iTBS and rTMS in treating PSCI, as well as to
explore neuroelectrophysiological changes. We hope to provide
a theoretical basis for PSCI treatment. The protocol for this
trial has been prepared according to the recommendations for
interventional trials (SPIRIT) 2013 guidelines (Chan et al., 2013).

2. Methods and analysis

2.1. Patients

2.1.1. Study setting
This study will be conducted at Zhujiang Hospital, Southern

Medical University (Guangzhou, China). Forty inpatients with

PSCI in the rehabilitation medicine ward will be included between
October 2022 and December 2023.

2.1.2. Eligibility criteria
Researchers will screen patients based on the inclusion and

exclusion criteria. Once participants are confirmed as eligible,
they will sign an informed consent form. To maintain safety
criteria, we will not enroll patients who are intolerant to TMS.
Women who are pregnant, breastfeeding, or intend to have
children in the near future will not be eligible for enrolment.
In addition, we will not enroll patients who have participated
in other clinical trials or have a history of epilepsy. If a patient
who has had TMS treatment has not received TMS treatment in
more than 3 months, we may consider enrolling them. Finally,
by conducting a preliminary exploratory study to compare clinical
efficacy between rTMS and iTBS therapy on patients with PSCI,
we aim to analyze data within and between the two hemispheres
(the healthy and the affected sides) for the dynamic changes of
oscillations to mine additional information. In light of the above
statistical analysis, we decide to exclude patients with bilateral
lesions from this study.

2.1.2.1. Inclusion criteria

• Age 18 to 80 years;
• Stroke patients meeting the diagnostic criteria established

at the Fourth National Cerebrovascular Disease Academic
Conference in 1995;

• Imaging evidence of stroke confirmed by computed
tomography (CT) or magnetic resonance imaging (MRI);

• Montreal Cognitive Assessment Scale (MoCA) score ≤24;
• Cognitive impairment should occur within 12 months of the

vascular event and last for at least 3 months;
• First-ever stroke;
• Right-handed;
• Normal cognitive function before stroke;
• No severe aphasia (screened by the Chinese Aphasia Battery)

and capable of completing cognitive tests;
• Stable vital signs;
• Voluntary participation and signed informed consent (signed

by the patient or another authorized representative).

2.1.2.2. Exclusion criteria

• Complete damage to the left prefrontal cortex confirmed by
CT/MRI;

• Bilateral brain lesions;
• Defect of the skull;
• Use of antidepressants or psychostimulants;
• Metal or cardiac pacemaker implants near the treatment site;
• Previous brain disorders such as brain tumors, brain trauma,

and seizures;
• History of malignant trauma;
• Unstable vital signs or failure of vital organs;
• Any neuropsychiatric comorbidity or affective disorder that

could affect the test results;
• Patients with dementia (Clinical Dementia Rating grade

≥0.5) who are unable to cooperate with the cognitive assessment
and intervention described below.
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2.1.3. Participant timeline
The study will begin by screening the participants for eligibility.

Once the patient’s eligibility has been confirmed, an informed
consent form will be signed, and the patient will be randomly
assigned to one of the two treatment groups. Clinical assessment
and resting EEG measurements will be performed at baseline (D0),
after 10 TMS treatments (D11), and at the 6-week follow-up (W6).
It is possible that some participants will not be able to attend our
hospital for their evaluation at W6. Therefore, we will present two
situations. Participants who can return to the hospital will have
their EEG data collected at W6, while those who are unable to
return to the hospital will be evaluated door-to-door. A record will
be made if a patient leaves the trial, is excluded, or withdraws at
any point, along with the reasons. The visit schedule and study
flowchart are presented in Table 1 and Figure 1.

2.1.4. Sample size
This will be an exploratory study. The required sample size

for this study was estimated using GPower software (version
3.1.9.7) (Faul et al., 2007). Repeated measures analysis of variance
(ANOVA) will be used for statistical analysis, with group and time
as affecting factors. Accordingly, the F-test (repeated-measures
ANOVA, between factors) was chosen, with a power of 85%, an
alpha value of 0.05, and an effect size of 0.25 (Cunningham and
Mccrum-Gardner, 2007). The predicted minimum sample size was
32 (two groups) considering a 20% loss to follow-up. Therefore, we
set the sample size at 40 patients in total, with 20 patients in each
group.

2.1.5. Recruitment
Forty inpatients with PSCI at Zhujiang Hospital, Southern

Medical University will be recruited. The participants will be
screened by a dedicated individual for those who meet the inclusion
and exclusion criteria and are willing to receive TMS treatment.
The participants will receive information in both written and verbal
formats about the purpose and procedures of the study once their
verbal consent has been confirmed. In this study, no biological
specimens will be collected for storage, and no severe adverse effects
on the participants are expected (Lefaucheur et al., 2020). The study
will begin with a baseline assessment followed by random allocation
after written informed consent is obtained from the participants.

2.1.6. Randomization and blinding
Using a random number sequence generated using SPSS 25.0

software, all eligible patients will be randomly assigned to one of
two treatment groups. The allocation and detailed TMS protocol
will be known only to the two doctors who will perform TMS
stimulation but will be blinded to the patients and other members of
the study staff (such as outcome assessors or data analysts). Doctors
performing TMS interventions will not be involved in any other
aspect of the study, such as patient recruitment, randomization,
allocation, outcome assessment, or data analysis.

2.2. Interventions

Transcranial magnetic stimulation treatments will be delivered
by a magnetic simulator (Magneuro100, VISHEE Medical

Technology Co., LTD, Nanjing, China) with a figure-8 coil. Each
patient will receive TMS stimulation in the afternoon for 10
consecutive days. The left DLPFC (F3) will be the target site to
stimulate the left prefrontal cortex according to the international
10/20 EEG recording system (Kim et al., 2010). The intensity will
be set at 80% of the resting motor threshold in both the rTMS and
iTBS groups (Shajahan et al., 2002; Kim et al., 2010).

2.2.1. rTMS protocol
The 5 Hz rTMS parameters include 2-s trains (10 pulses) at

an intertrain interval of 8 s, repeated every 10 s for a total of
10 min and 600 pulses.

2.2.2. iTBS protocol
The iTBS parameters include three continuous pulses at 50 Hz,

repeated at 5 Hz (2 s on, 8 s off) for a total of 192 s and 600 pulses.
After the stimulation is completed, the direction of the coil is turned
90◦, and a sham stimulation lasting 408 s is conducted in order to
ensure the consistency of treatment time such that all patients are
blinded to the experimental protocol.

2.2.3. RMT
The resting motor threshold (RMT) refers to the minimum

stimulus intensity that can evoke a response at least 50% of the
time in a given number of trials (usually 10 trials). The patients
will be asked to relax with their eyes open. During the recording
process, the coils will be systematically moved (mapped) over the
primary motor cortex until the maximal consistent response of
the contralateral first dorsal interosseous muscle is detected. The
RMT between the first dorsal interosseous bone and the minimum
intensity is defined as the ability to elicit motor-evoked potentials of
at least 50 mV in 5 out of 10 consecutive treatments (Rossini et al.,
2015).

2.2.4. Routine medical care
Medical care based on the disease of each patient is permitted.

2.2.5. Discontinuation criteria
Patients with worsening symptoms, such as recurrent stroke,

decreased muscle strength, or persistent unexplained infections.
Patients who wish to discontinue participation.
Patients who are unable to complete the treatment sessions.
Patients who are unable to participate in the

baseline assessment.

2.3. Outcomes

Our primary outcome will be the Montreal Cognitive
Assessment Beijing Version (MoCA-BJ) score from baseline to
the end of the intervention (D11). Secondary outcomes will be
resting EEG indexes, the Auditory Verbal Learning Test (AVLT),
the symbol digit modality test (SDMT), the Digital Span Test
(DST), and adverse events. Indexes of resting EEG include the
absolute power and relative power of neural oscillations. Other
outcomes include the Hamilton Depression Scale (HAMD) and
Activities of Daily Living (ADL). All clinical assessments will be
performed thrice: pre-treatment (baseline), post-last treatment, and
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TABLE 1 Trial schedule.

Trial schedule

Enrollment Allocation Post-allocation Close-out Follow-up

Timepoint -D1 0 D1–D10 D11 W6

Enrolment

Eligibility screen ×

Informed consent ×

Allocation ×

Interventions

(rTMS) ×———×

(iTBS) ×———×

Assessments

Demographics and clinical characteristics ×

MoCA; AVLT; SDMT; DST; HAMD; ADL × × ×

Resting EEG × ×

DLPFC, dorsolateral prefrontal cortex; rTMS, repetitive transcranial magnetic stimulation; iTBS, intermittent theta burst transcranial magnetic stimulation; MoCA, Montreal cognitive
assessment; AVLT, auditory verbal learning test; SDMT, symbol digit modalities test; DST, digital span test, HAMD: Hamilton depression scale; ADL, activities of daily living; EEG,
electroencephalography.

FIGURE 1

Design and flow of participants through the study.

at the 1-month follow-up. An experienced physician will conduct
all cognitive assessments throughout the study and will be blinded
to the participants’ group assignment and trial phases. The resting
EEG will be conducted at baseline and at the end of TMS treatment.

2.3.1. MoCA-BJ
The MoCA-BJ is a Chinese version of the Montreal Cognitive

Assessment that is highly sensitive and specific for screening

cognitive impairment in stroke patients (Nasreddine et al., 2005;
Yu et al., 2012).

2.3.2. Resting EEG measurements
A resting EEG is a graphical representation of the spontaneous

electrical activity of a population of brain cells. It is obtained
by magnifying and recording spontaneous biopotentials of the
brain from the scalp using sophisticated electronic equipment
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(Höller and Nardone, 2021). EEG signals will be recorded using an
EEG cap equipped with 64 Ag/AgCl electrodes, arranged according
to the Extended International 10–20 electrode placement system
(Tamburro et al., 2020). A 5-min EEG recording will be conducted
with participants seated comfortably in a sound-insulated, dimly
lit room with their eyes closed. All channels will be referenced
online to the bilateral mastoid and amplified using an amplifier
(Compumedics Neuroscan, Neuroscan 8050). Data will be sampled
at 2,048 Hz, with impedances kept below 10 k� for all channels
throughout data collection.

The acquired EEG signals will be analyzed offline using
MATLAB2013b. Given previous evidence that oscillatory dynamics
are affected by rTMS (Thut et al., 2011; Veniero et al., 2011; Chota
et al., 2021) and are closely related to cognitive improvement
(Klimesch et al., 1993; Richard Clark et al., 2004; Iliopoulos
et al., 2020), we will analyze the power spectrum and functional
connectivity of each oscillation within and between hemispheres,
between groups, and pre- and post-treatment. Oscillation ratios,
such as θ/α ratio, θ/γ ratio, and (α + β)/(θ + δ) ratio will be further
analyzed (Coben et al., 1985; Moretti et al., 2013; Sato et al., 2022).

2.3.3. AVLT
In the neuropsychology literature, AVLT is frequently used

to assess memory. The test measures immediate and delayed
free recall, retroactive and proactive interference, and recognition
through verbal learning (Hawkins et al., 2004).

2.3.4. SDMT
Several cognitive operations require the evaluation of

information processing speed, which can be achieved through
SDMT (Silva et al., 2018).

2.3.5. DST
The scale can be divided into digit span forward (DSF) and digit

span backward (DSB), each of which consists of two sets of 2-digit
to 10-digit tables. The total score of the DSF and DSB indicates the
participant’s attentional functioning, with a higher score indicating
better function (Jahanshahi et al., 2008).

2.3.6. HAMD
Hamilton Depression Scale has been widely used in

psychopharmacological and clinical research since the 1960s
(Hamilton, 1967).

2.3.7. ADL
The modified Barthel Index (MBI) is used to assess an

individual’s ability to perform basic activities of daily living
(Mahoney and Barthel, 1965; Shah et al., 1989). In this study,
a Chinese version of the MBI that includes ten items (personal
hygiene, bathing, feeding, toileting, stair climbing, dressing, bowel
control, bladder control, walking or wheelchair transfers, and chair-
bed transfers) will be used (Leung et al., 2007). Total independence
is indicated by a score of 100.

2.3.8. Adverse events
During the treatment period and within 1 h following each

treatment, adverse events, such as headaches, scalp sensations
or nociception, temporal and neck muscle pain, and seizures
will be recorded.

2.4. Statistical analyses

In the case of quantitative data, we will calculate the
mean, standard deviation, and confidence interval as well as
the minimum, maximum, P25, P50, and P75, as needed. For
count data, we will calculate the frequency distributions and
corresponding percentages. For rank data, we will provide
frequency distributions and percentages, as well as median and
mean rankings. Qualitative data will be presented as the positive
rate, positive number, and denominator number of cases. Data
from MoCA-BJ, AVLT, SDMT, DST, HAMA, and ADL will be
analyzed by repeated-measures ANOVA using SPSS software
(version 25.0; IBM, Armonk, NY, USA). Repeated-measures
ANOVA will be used to analyze the differences between time points
and groups. The acquired EEG signals will be analyzed offline using
MATLAB2013b. The EEGLAB toolbox (version 13.0.0b) will be
used for EEG data preprocessing (Delorme and Makeig, 2004),
followed by interest channel selection based on the average level of
the two groups and the relative spectral energy extracted from each
frequency band. Finally, we will use repeated-measures ANOVA to
compare the differences between groups and the relative spectral
energy at different times. Statistical significance will be set at
P < 0.05.

3. Discussion

Transcranial magnetic stimulation modulates brain function
through neural changes induced by magnetic pulses. Using pulsed
magnetic fields, TMS regulates the action potentials of nerve cells
by inducing current in the central nervous system. This approach
can affect the metabolic and neurophysiological activities of the
brain. In recent decades, TMS has been widely used to treat
cognitive impairment caused by various neurological, psychiatric,
and psychological disorders, including stroke, Alzheimer’s disease,
Parkinson’s disease, and schizophrenia. While iTBS, a new model
of TMS, has been proven to be effective in Parkinson’s disease
with cognitive impairment, its use in patients with PSCI is unclear.
Several studies have shown that rTMS is a safe and effective
method for improving cognitive function (Chou et al., 2020; Jiang
et al., 2020; Alyagon et al., 2021). Regarding neurophysiology, iTBS
may have equal or greater excitatory effects than conventional
TMS (Di Lazzaro et al., 2011; Bakker et al., 2015). However,
previous evidence indicates that conventional high-frequency TMS
facilitates neurogenesis in the motor cortex more effectively than
iTBS in a rat model (Luo et al., 2017). Another study that applied
rTMS to healthy individuals found that rTMS produced a greater
response than iTBS (Curtin et al., 2017). In patients with PSCI,
there is no consensus regarding whether conventional rTMS or
iTBS is more effective.

To assess the effect of the treatment, neurobehavioral scales are
often used in studies of PSCI (Tsai et al., 2020). However, scale
results are sometimes, to some extent, subjective because of the
evaluator’s judgment and the state of the patient (Tsai et al., 2020).
Therefore, objective means of assessment are urgently needed. EEG
is gaining increasing attention because it is a special and complex
bioelectrical signal reflecting the functional state of the brain, with
the advantages of high temporal resolution, non-invasiveness, and
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low cost. A direct effect of rTMS treatment on brain function is
altered nerve oscillation, which can have a therapeutic effect by
resetting the oscillations of the thalamus and cortex (Thut et al.,
2011; Veniero et al., 2011; Chota et al., 2021). Rhythmic patterns
of neural oscillations are believed to play a functional role in local
processing and communication among neuronal systems (Fries,
2005; Thut et al., 2012). Different regions of the human cortex tend
to oscillate at different frequencies. Thus, it is possible to study
neural oscillation activity in more detail. Most cognitive processes
are associated with a frequency band in the delta, theta, alpha, beta,
or gamma range. Several researchers have suggested, based on high-
quality correlative EEG data, that brain oscillations are involved in a
variety of sensory and cognitive processes (Klimesch, 1999; Lu et al.,
2022). However, a causal relationship can only be demonstrated
by directly modulating the oscillatory signals. EEG is an effective
and dependable tool for detecting neural oscillations in the brain.
Thus, this study may be able to investigate the specific relationship
between neural oscillations and TMS facilitative effects on cognitive
function in more detail.

In conclusion, the goal of this study will be to compare effect
differences among various TMS protocols (iTBS and conventional
rTMS) on PSCI and analyze whether iTBS is non-inferior or
superior to conventional rTMS treatment. Given that iTBS has a
shorter treatment time, it is more convenient to use if its therapeutic
effect is not inferior to that of rTMS. Thus, iTBS might prove
more advantageous and convenient than the classic rTMS for
outpatients. Furthermore, we hope to explore the neural activity
changes underlying iTBS/rTMS intervention in PSCI and thus,
provide a theoretical foundation for clinical applications.

This study has some limitations. It will be a single-center
trial with a comparatively small sample size, due to recruitment
difficulties associated with the management of coronavirus disease
2019. In addition, the heterogeneity of oral medication in patients
with PSCI may also pose potential problems in measuring cortical
excitability and therapeutic response (Cantone et al., 2020).
Future multi-center studies should be conducted to mitigate these
limitations.
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