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The choice of treatment and prognosis evaluation depend on the accurate 
early diagnosis of brain tumors. Many brain tumors go undiagnosed or are 
overlooked by clinicians as a result of the challenges associated with manually 
evaluating magnetic resonance imaging (MRI) images in clinical practice. In this 
study, we built a computer-aided diagnosis (CAD) system for glioma detection, 
grading, segmentation, and knowledge discovery based on artificial intelligence 
algorithms. Neuroimages are specifically represented using a type of visual 
feature known as the histogram of gradients (HOG). Then, through a two-level 
classification framework, the HOG features are employed to distinguish between 
healthy controls and patients, or between different glioma grades. This CAD 
system also offers tumor visualization using a semi-automatic segmentation tool 
for better patient management and treatment monitoring. Finally, a knowledge 
base is created to offer additional advice for the diagnosis of brain tumors. Based 
on our proposed two-level classification framework, we train models for glioma 
detection and grading, achieving area under curve (AUC) of 0.921 and 0.806, 
respectively. Different from other systems, we  integrate these diagnostic tools 
with a web-based interface, which provides the flexibility for system deployment.
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Introduction

A brain tumor is a mass of tissue that is formed by an accumulation of abnormal brain cells. 
Most brain tumors are primary tumors that originate in the brain, and they are mainly benign 
without aggression to surrounding tissues (Neugut et al., 2019). The malignant brain tumors are 
cancerous and can spread to other part of the brain and central nervous system. Regardless of 
what type of brain tumor, early detection and diagnosis are crucial for appropriate therapeutic 
measures in order to improve the clinical outcomes and patients’ life quality (Yan et al., 2021). 
As one of the most common types of primary brain tumors, glioma can be categorized into 
different grades (from I  to IV) by the degree of malignancy based on the World Health 
Organization (WHO) grading system (Louis et al., 2007, 2016). Among them, grade I is usually 
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benign, and the remaining three grades are now usually categorized 
into the high-grade (WHO IV) and lower-grade (WHO II and III) 
(van den Bent, 2010; Reuss et al., 2015). Lower-grade gliomas have 
more favorable prognoses and longer survival times than high-grade 
gliomas. Also, distinct therapy strategies are used for these two 
subgroups of gliomas. Hence, accurate diagnosis and classification of 
gliomas are crucial for determining the best course of treatment and 
monitoring the progression of the disease.

As a non-invasive technique, magnetic resonance imaging (MRI) 
has been widely used in the clinical diagnosis of brain tumors by 
clinicians to characterize structural, cellular, metabolic, and functional 
properties of brain tumors (Villanueva-Meyer et al., 2017; Roberts 
et  al., 2020). This technique can provide new insight into human 
brains for researchers. The related MRI types include structural MRI 
(sMRI), functional MRI (fMRI) and diffusion MRI (dMRI), which 
provide benefits of localized spatial information about the brain 
structure and function as well as structural and functional connectivity 
(Arbabshirani et al., 2017; Zhang et al., 2020). Among them, sMRI 
images of the brain usually deliver superior spatial and contrast 
resolution, thus suitable for studying various brain structures and for 
detecting structural abnormalities such as brain tumors (Arimura 
et al., 2009; Fangusaro, 2012; El-Dahshan et al., 2014). In recent years, 
the development of artificial intelligence, especially machine learning 
techniques, has promoted a lot of efforts using the sMRI modality to 
automatically detect gliomas (Kavin Kumar et al., 2018; Hussain et al., 
2019; Kang et al., 2021), identify grades or subtypes of gliomas (Hsieh 
et  al., 2017; Lu et  al., 2018; Yang et  al., 2018; Sajjad et  al., 2019; 
Sengupta et al., 2019; Mitra et al., 2020; Zhuge et al., 2020; Tripathi and 
Bag, 2020, 2022a,b).

The results of the studies have, however, hardly ever been 
applied in clinical settings. The main cause of this is that, despite 
having claimed to get promising findings, the procedures suggested 
in many studies are complex and/or not intended to generalize to 
clinical data. Additionally, they either only give a single setup 
package that requires the difficult installation of numerous third-
party data libraries and may depend on certain system architecture, 
or they do not offer clinicians user-friendly tools at all. In this study, 
we develop a novel computer-aided diagnosis (CAD) system for the 
detection and grading of gliomas. Models are first trained based on 
the features extracted from the available training data. The models 
are used by the CAD system to make a prediction on the test data. 
The CAD system is construed using a web-based architecture 
providing functions of preprocessing, prediction, segmentation, 

and knowledge-based guidance. The advantage of the web-based 
architecture is that we only need to deploy the machine learning 
tools and algorithms on a centralized server. The physicians can 
access the CAD system with a web browser installed on a standard 
PC. Additionally, it enables the continuous addition of new data to 
the training dataset to guarantee continual model 
performance improvement.

In a prior study, we  developed a two-level histogram-based 
morphometry (HBM) classification framework by examining MRI 
images to identify autism (Chen et al., 2020) and glioma (Chen et al., 
2021). In the first-level classification stage, the entire brain image was 
separated into a number of regions, and the histogram of gradients 
(HOG) (Dalal and Triggs, 2005) feature was extracted for each image 
region. Then a clustering method was used to transform each regional 
HOG feature into a high-level feature (e.g., diseased-related or 
healthy-related). Each region’s high-level feature was finally combined 
into a vector as a represent of the whole brain. In the second-level 
classification stage, these whole-brain vectors and labels were used to 
train a final classifier to make a prediction of the unknown data. When 
applied to the second edition of The Cancer Imaging Archive (TCIA) 
datasets and the Autism Brain Imaging Data Exchange (ABIDE) 
datasets, this methodology has shown encouraging results. Hence, in 
this glioma CAD study, we  will also use the two-level HBM 
classification framework to the glioma diagnosis.

Materials and methods

Datasets

In this study, we trained two classification models based on two 
datasets. The first dataset is named as DS-Detect and used to identify 
whether the brain contains the glioma. In the DS-Detect dataset, the 
preoperative structural MRI (sMRI) data from June 2014 to December 
2019 were collected from ZhongNan Hospital of Wuhan University. 
And this retrospective study on archived anonymized data was 
approved by the Ethics Committee of Zhongnan Hospital of Wuhan 
University. The second dataset is named as DS-Grade and used for 
glioma grading. In the DS-Grade dataset, the preoperative sMRI data 
were retrieved from TCIA database.1 The collection of original 
materials and data provided by TCIA was conducted in compliance 
with all applicable laws, regulations, and policies for the protection of 
human subjects.

The DS-Detect dataset contains 99 subjects including 62 patients 
with glioma and 37 healthy controls. Imaging was performed on a 
SIEMENS MAGNETOM Trio Tim 3.0 T MRI Scanner. Whole brain 
coverage was obtained with 23 contiguous 6 mm axial slices 
(TR = 7,000 ms, TE = 94 ms, TI = 2,210 ms, FA = 130, matrix 
size = 464 × 512). The DS-Grade dataset includes 134 subjects among 
which 76 are diagnosed as high-grade (WHO IV), and 58 as lower-
grade (WHO II and III). Table 1 shows the subject characteristics in 
dataset DS-Detect and DS-Grade. Both datasets include three sMRI 
modalities: T1-weighted, T2-weighted, and T2-FLAIR. We  chose 
T2-FLAIR modality since T2-FLAIR images are of higher-contrast 

1 http://www.cancerimagingarchive.net/

TABLE 1 Subject characteristics in the dataset for this study.

Characteristic DS-detect DS-grade

Patients Healthy 
controls

High-
grade

Lower-
grade

Total number of 

subjects
62 37 76 58

Gender

Male: 41 

(66.1%)

Male: 27 

(73.0%)

Male: 51 

(67.1%)

Male: 27 

(46.6%)

Female: 21 

(33.9%)

Female: 10 

(27.0%)

Female: 25 

(32.9%)

Female: 31 

(53.4%)

Mean age
62.5 ± 8.3 

(41–77)

51.4 ± 10.2 

(32–73)

57.6 ± 14.0 

(17–81)

47.9 ± 14.1 

(21–75)
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and the high signal of tissue indicates the possible tumor growth. 
We also used three patients for blind test after training classification 
model based on these two datasets.

Data preprocessing

As the first step of image preprocessing, the MRIcron tool was 
used to convert the original DICOM scans of an individual into a 
single NifTI image file. Then we  applied the bias correction and 
Z-score normalization methods, respectively, to address the issue of 
non-standardized MRI intensity values among intra-patient and inter-
patient acquisitions. For the intra-patient intensity non-uniformity 
problem, we  used the SPM12’s scan bias correction algorithm to 
minimize the inhomogeneity of MRI intensity within a tissue region. 
For the inter-patient intensity variability problem, we performed a 
Z-score normalization for each image, which normalize an image by 
simply subtracting the mean and dividing by the standard deviation 
of the whole brain, followed by clipping of the intensity value at [−4, 
4] and a transformation to [0, 1]. Finally, we used the SPM12’s spatial 
normalization method to register all MRI images to the standard MNI 
space, which allows a meaningful comparison in a same place and at 
similar sizes.

Overview of CAD system

The goal of the CAD system presented in this paper is to detect 
gliomas and differentiate what grades the gliomas belong to. The 
architecture of the system is illustrated in Figure 1.

This figure shows the diagnostic process of an individual patient 
with glioma. First, the image data acquired from an MRI scanner are 
preprocessed using a standard pipeline. Then the regional HOG 
features are extracted from the preprocessed sMRI image. And these 
features are transformed into high-level features which are used to 
train classification models performing glioma detection or glioma 
grading. This CAD system also provides visualization of lesion 
boundaries for clinicians by using a semi-automatic segmentation 
method. Finally, the clinicians can acquire more diagnosis guidance 
from a brain tumor knowledge base.

The CAD system can be  divided into four modules: model 
training, glioma diagnosis (detection/grading), segmentation, 
knowledge discovery. The web interface of the system for clinicians is 

illustrated in Figure 2. In addition to the diagnostic process, we also 
provide the interface of model training for system administrator.

Detection and grading

In this study, we  use our recently developed two-level HBM 
classification framework to perform glioma detection or grading. 
Based on the DS-Detect and DS-Grading datasets, we  train two 
machine learning models to perform different classification tasks. For 
the sake of convenient illustration, we take glioma detection as an 
example and only show one MRI slice in Figure 3. Actually, we use all 
the slices in the execution of the algorithm.

We divide the whole brain into various local regions/cells, as 
shown in Figure 3. Following that, each cell’s local HOG feature is 
extracted. In the traditional HOG application, these local features are 
combined into a large descriptor representing the entire image. 
Although the combined HOG descriptor can depict the MRI image in 
detail covering all pixel gradients, the high dimensionality of the 
feature vector and disease-unrelated information may lead to a 
reduction in model performance. Thus, instead of directly 
concatenating these local HOG features, we  transform them into 
individual high-level features. Specifically, for all images in the 
training dataset, we apply the fuzzy c-means clustering method on 
HOG features with the same cell position. The centroids for the 
disease-related cluster and the health-related cluster are then obtained, 
together with fuzzy numbers that indicate the degree to which the 
features are disease- (or health-) related. Then all the transformed 
high-level features (e.g., fuzzy numbers) are concatenated into a 
feature vector which is used as input to train a final or second-level 
classifier based on the SVM method. And this final classifier is used 
to predict whether an unknown subject is healthy or diseased.

Segmentation

The segmentation of glioma in MRI images allows quantitative 
analysis of clinical parameters related to volume and shape (Litjens 
et al., 2017). The task of segmentation is the assignment of each voxel 
in the MRI image to a specific category, based on the environmental 
information around the voxel. According to the summative work of 
other researchers (Anwar et al., 2018; Chen and Pan, 2018; Guo et al., 
2018; Li et al., 2018), the main segmentation methods can be divided 

FIGURE 1

Diagnostic process for the glioma CAD system.
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into two categories: region-based segmentation, and FCNN-based 
segmentation. Classifiers or feature extractors must be trained with 
labeled MRI images for both types of segmentation approaches. If the 
training MRI images are obtained from various scanners, there may 
be significant differences between them. Also, there are variations 
between the new MRI scans and the training MRI images. Despite the 
model performing well on the training dataset, these variations can 
result in poor model performance on the new MRI images. To 
eliminate those differences between MRI images, we proposed a novel 
semi-automatic segmentation algorithm named as Expanding 
Segmentation (Exp-seg) for the CAD system to identify the contour of 
glioma region slice by slice. The clinician should label some glioma 
voxels and some normal voxels in the representative slice containing 
the most gliomas before automatically executing Exp-seg. The convex 
polygons connected by the glioma voxels are defined as the initial 
glioma region, and the initial normal region is defined similarly.

Algorithm framework

The framework of Exp-seg is shown in Figure 4. G and N denote 
the glioma region and the normal region in the brain MRI image, 
respectively. Gpi , Gb

i , and Gf
i  denote the possible glioma region, the 

initial glioma region, and the final glioma region in the slice i 
respectively. Similarly, Npi , Nb

i , and N f
i  denote the possible normal 

region, the initial normal region, and the final normal region in the 
slice i respectively.

After segmentation of slice i is finished, Gf
i  and N f

i  are obtained. 
Then the masks of Gf

i  and N f
i  are projected onto the adjacent slice 

i +1 where the brain region covered by the projected mask are defined 

as Gpi+1 and Npi+1 respectively. Due to the differences between adjacent 
slices, we need to train a classifier based on the voxels in Gf

i  and N f
i  

to identify glioma and normal voxels in Gpi+1 and Npi+1. After 
evaluation by the classifier, the voxels classified as non-glioma in Gpi+1 

are removed, and the voxels classified as non-normal in Npi+1 are also 
removed. To minimize the number of misclassified voxels in Gpi+1, 
morphology erosion is performed after the evaluation.

In slice i +1, Gb
i+1 is considered as the origin of the glioma region. 

Glioma segmentation is applied on Gb
i+1 by multiple times of 

expansion-segmentation that is named as slice glioma segmentation. 
Slice glioma segmentation can produce the final segmentation result 
in slice i +1: Gf

i+1 and N f
i+1. The above process will be  executed 

sequentially on the following slices until all glioma slices 
are segmented.

Slice glioma segmentation

Figure 5 shows the slice glioma segmentation process taking slice 
i for example. G jj

i =( )1 2, ,  denotes the glioma region of jth  
segmentation in slice i, and G Gi

b
i

1 = . E jj
i =( )1 2, ,  denotes the 

expanded region of jth  segmentation in slice i. EG jj
i =( )1 2, ,  

denotes the expanded glioma region of jth  segmentation in slice i. 
With Gb

i  and Nb
i  given, Gf

i  and N f
i  can be obtained by slice glioma 

segmentation. The segmentation process is iterated multiple times 
until the stop condition is met.

Because the expanded region may include both glioma voxels and 
normal voxels. Thus, we need to train a classifier based on the voxels 

FIGURE 2

Web interface of the glioma CAD system for clinicians.
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in Gji  and Nb
i  to recognize glioma and normal voxels in the expanded 

region. After iterating multiple times, almost all voxels in the expanded 
region are normal voxels. Therefore, the formula in Figure 5 is used as 

the iteration stop condition where count x( ) is the function to count 
the number of voxels in x , and threshold  is a hyperparameter ranging 
from 0 to 0.1. In this process, Gji  updates many times, and the last Gji  

FIGURE 3

The two-level classification framework for glioma detection.

FIGURE 4

Exp-seg framework.
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is the final glioma region Gf
i . There is no change in Nb

i , and Nb
i  is 

equal to N f
i .

Knowledge base of brain tumors

In this study, we also develop a web-based knowledge base on typical 
brain tumors, which include data such as tumor profile, tumor 
characteristics, imaging description, auxiliary diagnosis, and reference 
literatures. This knowledge base is constructed according to the WHO 
classification system for tumors of the central nervous system. The typical 
brain tumors are listed on the left panel of Figure 6 in a tree-like layout. 
When a specific tumor type is selected or located via a search, the detailed 
information about the tumor will be displayed on the right panel of 
Figure 6, which can provide some guidance for the diagnosis of gliomas.

Text mining

From descriptions of brain tumors, important data is extracted 
using text mining algorithms, such as tumor-prone brain areas, 
clinical manifestations, morbidity, and susceptible populations. The 
extraction of tumor-prone brain regions only involves named entities, 
while the extraction of morbidity and susceptible populations involves 
both entity and relationship. Before extracting information, we need 
to use open source tools like NLTK, Stanford NLP, and the Python 
jieba library for word segmentation and part-of-speech tagging. The 
extraction methods are mainly divided into two types based on rules 
or statistics. The WHO tumor classification system has a maximum of 
200 tumors, whereas the statistical-based technique requires a large 
amount of training data. Hence, target information is extracted 
manually using a rule-based technique in this knowledge base.

Ontology design

The ontology of brain tumor is constructed based on the tumor 
data including tumor profile, tumor characteristics, imaging 
description, auxiliary diagnosis, and reference literatures. Through the 
brain area and the susceptible population, respectively, the tumor 
ontology is related to the brain ontology and population ontology. The 
knowledge organization of the brain ontology is mainly composed of 

two dimensions: brain structure and blood supply system, while the 
population ontology is composed of susceptible population. On this 
basis, the ontology network of the resulting knowledge base is 
established as shown in Figure 7.

The main steps of the ontology relationship design are as follows:
First, according to the established brain tumor knowledge 

organization dimension, we obtain the semantic relationship related 
to brain tumors, including diagnosis, symptoms, susceptible 
population, susceptible brain area, and upper position tumor. 
Secondly, according to the functional requirements of the knowledge 
base, some inverse object attributes are inferred, including the disease 
symptoms, population susceptible, brain susceptible, and lower tumor. 
Finally, association tumors are established through text mining. There 
are three sources of similar diseases: literature, similar predictions, 
and reasoning. The similarity total score of tumors is calculated with 
the characteristics of three areas: tumor-prone brain regions, clinical 
manifestations and imaging findings. And the calculation includes the 
following steps: calculating feature score, preprocessing feature data, 
training feature weight, testing similar threshold, and predicting 
similar tumor.

We build an ontology model in Protégé, and fill in more than 170 
types of tumor data collected. The amount of data is large, so 
we developed python programs to automatically fill them. We use 
OwlReady’s Python third-party library for ontology reading, editing, 
and saving.

Results

One of the capabilities of the CAD system is to make a prediction 
of whether the brain scan images contain gliomas and what grade the 
gliomas belong to. The prediction accuracy depends on the 
performance of the training model. In this section, we first give an 
evaluation of the classifier trained on the DS-Detect and DS-Grading 
dataset, respectively. And then we provide a visualization of the glioma 
segmentation result using our proposed Exp-seg algorithm.

Model performance evaluation

Cross-validation is typically used to evaluate the model 
performance. The widely used methods in brain image analysis is 

FIGURE 5

Slice glioma segmentation process.
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k-fold cross-validation, especially 10-fold cross-validation. In this 
study, we  used the stratified 10-fold cross-validation method to 
evaluate the model performance. The stratified method ensures that 
the sample percentage for each of the classes in every fold is equal to 

that in all samples, retaining the original data distribution pattern of 
the entire dataset. Furthermore, the variance of the model will 
decrease by performing several random runs, each of which first 
shuffles the dataset and then splits it into a pair of training and test 

FIGURE 7

Ontology relationship network of knowledge base.

FIGURE 6

Web-based knowledge base of brain tumors.
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sets. The stratified cross-validation method proposed in this study is 
implemented as the pseudo-code shown in Figure 8.

In this study, we evaluated the model performance using the 
measurements such as accuracy (ACC), sensitivity (SEN), specificity 
(SPE), and area under curve (AUC). These measurements can 
be calculated from the classification confusion matrix. Here, the 
accuracy is defined as the ratio of correctly classified subjects over 
all subjects. The sensitivity is the ratio of correctly classified subjects 
with glioma over all subjects with glioma, and the specificity is the 
ratio of correctly classified subjects without glioma over all subjects 
without glioma. The AUC refers the area under the receiver 
operating characteristic (ROC) curve. The larger AUC value means 
better model performance. As mentioned above, cell size is a 
parameter that will affect the performance of the model. In the 
experiment, we assign the cell size with value from 10 to 20. Table 2 
shows the cross-validation performance of the two-level 
classification framework.

The measurements from Table 2 are calculated after 10 random 
runs of stratified 10-fold cross-validation for each cell size. In glioma 
detection task, the model achieves the best performance when cell size 
equals 20 as the Table 2 shows. In glioma grading task, the model 
achieves the best performance when cell size equals 18. And the model 
performance of glioma detection is generally better than that of 
glioma grading. The reason why glioma grading is more challenging 
is that it needs to distinguish the subtle structural differences between 
different grades of gliomas.

CAD system evaluation

The CAD system can provide a pipeline for glioma diagnosis by 
analyzing the sMRI images including image preprocessing, glioma 
detection and grading, glioma segmentation, and related knowledge 
discovery. As Figure 2 shows, the CAD system provides web access for 
clinicians. Here we choose brain MRI scans from two subjects to 
evaluate the CAD system.

DICOM preprocessing

DICOM is the standard medical imaging format generated by the 
MRI device. When we click on the ‘Load DICOM’ link, the system 
prompts a dialog for choosing the folder of DICOM images. We can 
select the slice number to view the corresponding 2D MRI image. 
Once the DICOM image is loaded, we may select the ‘Preprocess’ link 
to begin the preprocessing process, which includes conversion from 
DICOM to NifTI, bias correction, Z-score normalization, and spatial 
normalization. Figure 9 shows the DICOM preprocessing results of 
the two subjects.

Glioma diagnosis

We trained two models for glioma detection and glioma grading 
using the DS-Detect and DS-Grading datasets, and they achieved 
accuracy of 86.3 and 76.3%, respectively. These models can then 
be used to detect gliomas and determine the grade of gliomas present 
in the brain. Here we take glioma detection as an example. When 
we click on the ‘Predict’ link, the system will make a prediction of 
whether the loaded DICOM images contain gliomas. Figure 10 shows 
the prediction results of the two subjects.

Visualization of glioma region

To evaluate the segmentation effect of our proposed Exp-seg 
algorithm, we choose one patient with glioma from the DS-Detect 
dataset as an example, and the segmentation steps are shown in 
Figure 11. To obtain the best segmentation result, we choose the slice 
with the largest tumor area. Because Exp-seg is a semi-automatic 
segmentation algorithm, it requires the clinician to label some glioma 
voxels and normal voxels on the selected MRI slice (Figure 11A). Then 
after runs of two iterations (Figures 11B–F), the final glioma region is 
segmented out with red line on its contour (Figure 11G).

FIGURE 8

Algorithm of the stratified cross-validation with multiple random runs.
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Discussion

The CAD system proposed in this paper provides fundamental 
capabilities such as glioma classification and segmentation. For 
ease of use in the clinical setting, we  have integrated these 
procedures into a web-based platform. The clinicians can operate 
the system via a web browser without the need to install extra 
tools like SPM, FSL, FreeSurfer etc. Another advantage of the 
CAD system is that we build the classification model based on 
machine learning techniques. Such model can be used to assign 

the candidate to one of the possible categories (e.g., diseased 
status or healthy status, high-grade or lower-grade). Different 
from other CAD systems based on statistical analysis, the machine 
learning based models enables classification or prediction on an 
individual level (Arbabshirani et  al., 2017). And the model 
performance could be  enhanced with expansion of the 
training dataset.

Glioma segmentation is performed in a very intuitive and graphical 
way, and the segmentation results are robust and reproducible. 
Although the Exp-seg algorithm is not fully automatic, little 

TABLE 2 Cross-validation performance of two glioma classification tasks.

Cell Size Glioma detection Glioma grading

ACC (SD) SEN (SD) SPE (SD) AUC (SD) ACC (SD) SEN (SD) SPE (SD) AUC (SD)

10 74.9% (2.8) 92.1% (2.1) 51.6% (4.9) 0.832 (0.012) 71.2% (1.8) 81.6% (1.5) 58.0% (3.2) 0.781 (0.017)

11 73.4% (1.5) 85.3% (2.6) 52.7% (3.7) 0.832 (0.015) 71.0% (2.6) 80.6% (2.9) 58.9% (2.7) 0.697 (0.013)

12 80.4% (2.8) 88.6% (2.4) 66.0% (5.5) 0.891 (0.011) 66.8% (1.7) 74.1% (2.7) 57.1% (2.2) 0.718 (0.024)

13 72.4% (1.3) 82.2% (1.3) 55.2% (4.1) 0.791 (0.017) 70.7% (1.3) 80.6% (2.6) 57.9% (3.2) 0.741 (0.015)

14 72.5% (2.5) 79.6% (2.3) 59.8% (5.1) 0.821 (0.021) 74.8% (2.4) 82.9% (3.9) 64.1% (1.9) 0.776 (0.015)

15 73.0% (2.7) 81.1% (2.6) 58.6% (6.1) 0.838 (0.019) 74.3% (2.9) 79.7% (2.6) 67.6% (4.8) 0.771 (0.022)

16 82.8% (1.9) 87.8% (2.6) 73.9% (4.3) 0.898 (0.015) 68.2% (2.0) 75.2% (3.3) 58.7% (2.7) 0.717 (0.021)

17 76.4% (2.4) 81.8% (3.2) 66.5% (4.8) 0.849 (0.017) 68.2% (2.1) 74.9% (2.1) 59.4% (3.1) 0.724 (0.023)

18 72.3% (2.5) 80.2% (2.4) 58.3% (3.8) 0.791 (0.015) 76.3% (2.4) 83.7% (3.2) 68.7% (2.7) 0.806 (0.022)

19 79.5% (1.8) 83.9% (1.8) 71.7% (4.4) 0.861 (0.014) 73.5% (3.5) 79.6% (3.6) 65.7% (4.7) 0.769 (0.017)

20 86.3% (1.4) 89.4% (1.9) 80.5% (2.5) 0.921 (0.007) 65.8% (2.6) 70.9% (2.2) 59.2% (3.8) 0.66 (0.022)

The bold values Table 2 are means the best performance of two classification tasks.

FIGURE 9

DICOM preprocessing result.
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clinician-computer interactions are required during algorithm 
execution. The clinicians only need to select several voxels within the 
glioma region and normal region, respectively. In addition, if the 
segmentation result is not satisfactory, the clinicians can increase the 
number of voxels selected or adjust the position of selected voxels. Of 
course, there are still certain deficiencies in the segmentation 
algorithm. For example, it cannot discriminate other brain areas related 

to tumors such as edema and necrosis. We will try to improve the Exp-
seg algorithm to make a more accurate segmentation in future research.

Overall, the CAD system proposed in this paper can assist the 
clinicians in diagnosing gliomas with machine learning models. Once 
the models have been trained, it can allow the clinicians to obtain the 
prediction results of new patients in a fast and simple way. Given the 
relative generality of our two-level classification framework, it is not 

FIGURE 10

Glioma diagnosis result.

FIGURE 11

Slice glioma segmentation. (A) The glioma region (surrounded by red line) and normal region (surrounded by yellow line). (B) The expanded region 
(between the two red lines) in 1th iteration. (C) The expanded glioma region (between the two lines) in 1th iteration. (D) The glioma region (surrounded 
by red line) in 1th iteration. (E) The expanded region (between the two red lines) in 2th iteration. (F) The expanded glioma region (between the two 
lines) in 2th iteration. (G) The final glioma region (surrounded by red line).
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only applicable to the diagnosis of gliomas but also to other brain 
conditions such as Alzheimer’s disease, Parkinson’s disease, Autism 
spectrum disorder, etc. Accordingly, we think that the CAD system 
could be a potential tool to analyze MRI images and assist in the 
intelligent diagnosis of brain diseases in clinical practice.
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