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Introduction: Default mode network (DMN) is the most involved network in 
the study of brain development and brain diseases. Resting-state functional 
connectivity (rsFC) is the most used method to study DMN, but different studies 
are inconsistent in the selection of seed. To evaluate the effect of different seed 
selection on rsFC, we conducted an image-based meta-analysis (IBMA).

Methods: We identified 59 coordinates of seed regions of interest (ROIs) within the 
default mode network (DMN) from 11 studies (retrieved from Web of Science and 
Pubmed) to calculate the functional connectivity; then, the uncorrected t maps 
were obtained from the statistical analyses. The IBMA was performed with the  
t maps.

Results: We demonstrate that the overlap of meta-analytic maps across different 
seeds’ ROIs within DMN is relatively low, which cautions us to be cautious with 
seeds’ selection.

Discussion: Future studies using the seed-based functional connectivity method 
should take the reproducibility of different seeds into account. The choice of seed 
may significantly affect the connectivity results.
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1. Introduction

Our brain is a network of spatially distributed but functionally linked regions. Increasingly, 
and rightly, studies have treated the brain as an integrative network with regions neatly 
interacting functionally, using resting-state functional connectivity (Van den Heuvel and 
Hulshoff Pol, 2010). Resting-state functional connectivity (rsFC) refers to temporal dependence 
of neuronal activity patterns of anatomically separated brain regions when resting (Aertsen et al., 
1989; Friston et al., 1993; Biswal et al., 1995). Relevant studies contribute to our understanding 
of this spontaneous activity, which forms communication across brain regions (Rosazza 
et al., 2012).

Seed-based functional connectivity was the first method employed to identify the resting 
state networks and provided a direct way to examine the regions with robust functional 
connectivity with the seed ROI (Cole et al., 2010; Smitha et al., 2017). The mean resting-state 
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time series from the seed region correlated with the time series from 
other voxels of the entire brain results in a functional connectivity 
map (FC map). Thus, one could obtain the rsFC information of any 
meaningful voxel or brain region from the FC map. The map provides 
an elegant way to examine functional connectivity in the human brain 
(Van den Heuvel and Hulshoff Pol, 2010). This fundamental method 
has been applied in many studies (e.g., Cordes et al., 2000; Fox et al., 
2005; Ji et al., 2020). In particular, it has been widely deployed in 
disease prognostication. The findings reveal considerable variability 
in neuropsychiatric illnesses, including Parkinson’s disease (Bi et al., 
2020, 2021), schizophrenia (Yang et al., 2018), depression (Yu et al., 
2020) and migraine (Wei et al., 2020). Notably, to perform seed-based 
FC, the seed (i.e., ROI) needs to be defined. Specifically, the seed ROI 
can be  determined by activating the relevant task or using prior 
anatomical knowledge or standard brain atlases (Wu et al., 2018). 
However, there is no gold standard for selecting the seed. Given the 
multiplicity of available options (Sohn et al., 2015), the reproducibility 
across different seed ROIs is uncertain.

Cordes et al. (2000) noted that not every selected seed voxel yields 
the same functional connectivity map. However, whether and to what 
extent different seeds will significantly influence the results of the 
seed-based functional connectivity is unclear. The default mode 
network, the most fundamental resting-state network, is observed to 
be  active even when people are not engaged in any goal-directed 
cognitive activities and show a deactivation pattern (Shulman et al., 
1997; Bonnelle et al., 2012). The DMN is consist of medial prefrontal 
cortex (MPFC), posterior cingulate cortex/precuneus (PCC/PrC) and 
bilateral inferior parietal lobules (IPL) (Assaf et al., 2010). Zuo and 
Xing (2014) conducted a multisite analysis of resting-state metrics’ 
test–retest reliability. They found that the default mode network was 
one of the most reliable ones within the seven brain networks, 
including visual, somatomotor, dorsal attention, limbic, frontoparietal 
and DMN networks (Yeo et al., 2011). Sex differences were chosen to 
identify the statistical difference in the functional connectivity because 
sex can be easily tested across large scale datasets in the light of its 
objective nature (Chen et  al., 2018). Meanwhile, the functional 
differences in the human brain between men and women have been 
well investigated in previous resting-state studies. Allen et al. (2011) 
explored the effect of sex on the resting state networks (RSNs) and 
found females generate stronger intra-network connectivity and meles 
show stronger inter-network connectivity. Beltz et  al. (2015) 
investigate the sex-related differences in resting state brain function of 
smokers and identified greater connectivity within the DMN in 
women and greater connectivity within the reward network in men. 
Evidences from these studies supported the importance of sex 
differences in resting state studies.

The present study aims two-fold: first, to identify whether the 
results contained in functional connectivity studies using different 
seeds are reproducible; second, to quantify the effect of the spatial 
location of seed ROIs on the seed-based functional connectivity.

2. Materials and methods

2.1. Participants and imaging protocols

MRI data were obtained from the Consortium for Reliability 
and Reproducibility (CoRR) (Zuo and Xing, 2014). The 36 

datasets from the CoRR originally included 1725 participants who 
underwent at least two scanning sessions. Here, we only chose the 
baseline RS-fMRI data to analyze the functional connectivity 
difference between males and females. With the above exclusion 
criteria, we made quality control. From this perspective, 1,290 
participants from 30 datasets were selected (age 25.797 ± 15.538, 
671 females, see Table 1 for details). Six datasets were excluded 
due to the loss of information or the small sample size of 
participants. Participants from the rest of the datasets were 
excluded if their head motion was excessive (more than 2.5 mm of 
maximal translation in any direction of x, y, or z or 2.5°of maximal 
rotation throughout scanning). To control the confounds of 
handedness, participants with non-right handedness were 
excluded. Participants with low-quality normalization or 

TABLE 1 Sample characteristics of CoRR dataset.

Dataset Sample size 
(N, male/
female)

Mean age 
(Years, M ± SD)

Age p

BMB_1 48 (23/25) 30.721 ± 7.200 0.792

BNU_1 53 (29/24) 23.321 ± 2.137 0.549

BNU_2 59 (33/26) 21.259 ± 0.795 0.502

BNU_3 43 (21/22) 22.302 ± 1.489 0.593

HNU_1 28 (15/13) 24.250 ± 2.205 0.770

IACAS 24 (24/11) 26.167 ± 3.908 0.906

IBA_TRT 32 (16/16) 25.969 ± 6.660 0.697

IPCAS_1 23 (5/18) 20.522 ± 1.675 0.685

IPCAS_2 31 (11/20) 13.355 ± 0.877 0.647

IPCAS_3 25 (4/21) 20.560 ± 1.557 0.549

IPCAS_4 18 (9/9) 23.278 ± 1.602 0.888

IPCAS_7 57 (19/38) 12.421 ± 2.719 0.610

IPCAS_8 7 (2/5) 57.143 ± 3.288 0.540

JHNU_1 25 (20/5) 23.640 ± 3.807 0.592

LMU_1 24 (12/12) 24.542 ± 1.719 0.730

LMU_2 40 (18/22) 50.825 ± 22.456 0.855

LMU_3 25 (16/9) 69.800 ± 7.927 0.791

MPG_1 15 (8/7) 24.800 ± 1.521 0.858

MRN_1 38 (20/18) 24.947 ± 11.409 0.954

NKI_2 36 (9/27) 13.167 ± 2.635 0.616

NYU_1 10 (3/7) 25.900 ± 4.067 0.562

NYU_2 164 (105/59) 19.979 ± 10.809 0.577

SWU_1 19 (6/13) 21.632 ± 1.770 0.746

SWU_2 22 (7/15) 20.772 ± 1.601 0.660

SWU_3 22 (7/15) 20.409 ± 1.681 0.971

SWU_4 221 (110/111) 19.982 ± 1.179 0.649

UM 71 (20/51) 65.930 ± 6.332 0.792

UPSM_1 71 (35/36) 15.528 ± 2.856 0.800

UWM 19 (12/7) 24.684 ± 3.110 0.746

XHCUMS 20 (13/7) 50.700 ± 6.018 0.702

Gender p 0.727
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incomplete brain coverage were excluded. In addition, age was 
matched (p > 0.5, two sample T-test) between male and female 
groups in each dataset.

2.2. Data preprocessing

All preprocessing of resting-state fMRI data was processed using 
RESTplus V1.24 (Jia et al., 2019). Initially, the first 10 time points were 
discarded to overcome the influence of instability when the scanner 
was switched on while participants adapted to the scanner’s noise. 
Second, a slice-timing correction was performed to correct the 
acquisition time delay for all volumes. Third, head motion correction. 
Fourth, individual structural images were co-registered to mean 
functional images; then, the co-registered structural images were 
segmented into gray matter (GM), white matter (WM), cerebrospinal 
fluid (CSF), bone, soft tissue and air/background (Kazemi and 
Noorizadeh, 2014). Parameters generated from step 4 were used to 
apply for functional images spatially normalized to Montreal 
Neurologic Institute space (the resampling voxel 
size = 3 mm × 3 mm × 3 mm). Fifth, normalized fMRI data were 
smoothed with a Gaussian kernel of 6 mm × 6 mm × 6 mm full-width 
at half maximum (FWHM). Sixth, the linear trend of the time course 
was removed. Next, head motion effects (using Friston 24 parameters) 
(Friston et al., 1996), global mean signals and white matter signals 
were regressed out to minimize confounds. Finally, data were 
temporally band-pass filtered (0.01 Hz – 0.08 Hz).

2.3. Functional connectivity calculation

Fifty-nine coordinates within DMN were extracted from the 11 
studies, and all coordinates were converted to Montreal Neurological 
Institute space. As for resting-state functional connectivity, we defined 
fifty-nine spherical regions of interests (ROIs) with a radius of 6 mm 
centered on the fifty-nine coordinates. The radius was defined in line 
with a prior study (Yu et al., 2020). After data preprocessing, the time 
course of each seed ROI was extracted, and functional connectivity 
was calculated by computing the Pearson correlation coefficient 
between the mean signal time course from the ROI and all other 
voxels in the entire brain.

3. Statistical analysis

To increase the normality of the distribution of correlation, all FC 
maps were transformed from r values to z values through Fisher’s r-to-
z transformation. Further, two-sample t-tests were performed using 
Data Processing & Analysis for Brain Imaging (DPABI) (Yan et al., 
2016) to compare the difference between males and females’ FC maps, 
which Fisher’s r-to-z transformation has processed. Finally, all t maps 
were used for subsequent image-based meta-analysis.

Meanwhile, to show the functional connectivity pattern of each 
seed in different gender, for each seed, we also calculated the one 
sample t test results of FC maps of different genders with center as 
covariate (Results maps see Supplementary Figures S2–S60 in the 
supplementary material).

3.1. Literature search

A literature search of relevant articles was conducted in Web 
of Science and PubMed as of December 13, 2020, using the 
keywords “default mode network” or “DMN.” First, the titles of 
highly cited papers on the topic labeled by the databases were 
recorded. Then, a full-text search for these articles was performed 
to assess the documents for those that provided coordinates of 
DMN nodes. Finally, the reference lists of articles with coordinates 
of DMN nodes were manually scanned for other articles that were 
not retrieved at the database search phase. When multiple articles 
reported exact coordinates, the earliest one was included. And if 
the coordinates reported in the papers were quoted, the source 
article was selected instead. When the coordinates of the same 
article were inconsistent in different references, the coordinates 
reported in the original research were included. As a result, 68 
articles were identified by our search. These criteria generated 59 
coordinates of DMN nodes from 11 articles that were retrieved 
from our searches.

3.2. Data extraction and coding

All coordinates were converted to Montreal Neurological Institute 
space using the tal2icbm transform (Lancaster et al., 2007). According 
to the converted coordinates, each seed was categorized into a brain 
region of anatomical automatic labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) (see Table 2 for details). Visualization of seeds 
and brain network were shown through the BrainNet Viewer software 
(Xia et al., 2013).

3.3. SDM Meta-analysis

We performed an image-based meta-analysis named 
Anisotropic Effect-Size Signed Difference Mapping (AES-SDM, 
version 5.15) to examine the FC differences between male and 
female. The AES-SDM approach uses full statistical images as input 
and allows both positive and negative values of the same map to 
be preserved (Joaquim Radua et al., 2014). This approach has been 
found valid and well described in previous studies (see Peters et al., 
2012; Radua et  al., 2012; Joaquim Radua et  al., 2014; Welton 
et al., 2015).

For each center, AES-SDM constructs an effect size and 
corresponding variance map from the unthresholded two sample 
T-map. The method uses a standard random-effects model, which 
considers sample size, study precision and between-study 
heterogeneity, to combine the maps of different effect sizes and 
variance of different centers. The random-effects model ensures that 
studies with larger sample size or lower variability contribute more 
to the meta-analysis results. A randomization test that randomizes 
the location of the voxels within the SDM gray matter template was 
performed to assess the statistical significance. Since the corrected 
p value in fMRI articles is seriously affected by methodological 
factors, AES-SDM uses a combination of two thresholds, in which 
four uncorrected p values (p = 0.005, p = 0.001, p = 0.0005; 
p = 0.0001) are applied separately as the main threshold. In addition, 
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TABLE 2 Montreal Neurological Institute (MNI) coordinates of 59 DMN regions of interest (ROIs).

Study ROI name Region Coordinates (x, y, z)

Lu et al. (2012) Angular_L (aal) Infer parietal ctx (−49, −65, 35)

Shulman et al. (1997) Angular_L (aal) Lateral parietal (−47, −66, 43)

Di et al. (2014) Angular_L (aal) Inferior parietal lobule (−50, −63, 32)

Smigielski et al. (2019) Angular_L (aal) Angular gyri (−50, −56, 30)

Lu et al. (2012) Angular_R (aal) Infer parietal ctx (56, −61,24)

Baliki et al. (2014) Angular_R (aal) Lateral parietal (46, −60, 32)

Shulman et al. (1997) Angular_R (aal) Inferior cortex (50, −55, 38)

Di et al. (2014) Angular_R (aal) Inferior parietal lobule (48, −69, 35)

Smigielski et al. (2019) Angular_R (aal) Angular gyri (52, −52, 32)

Andrews-Hanna et al. (2010) Calcarine_L (aal) Rsp (−14, −52, 8)

Baliki et al. (2014) Cingulum_Ant_L (aal) ACC (2, 36, 22)

Andrews-Hanna et al. (2010) Cingulum_Ant_L (aal) aMPFC (−6, 52, −2)

Sridharan et al. (2008) Cingulum_Mid_L (aal) PCC (−7, −43, 33)

Di et al. (2014) Cingulum_Post_L (aal) PCC (0, −52, 26)

Smigielski et al. (2019) Cingulum_Post_L (aal) PCC (1, −36, 30)

Sharp et al. (2011) Cingulum_Post_L (aal) PCC (−2, −46, 20)

Kucyi et al. (2014) Cingulum_Post_L (aal) PCC (−8, −50, 28)

Lu et al. (2012) Frontal_Inf_Orb_L (aal) Orbiatal frontal ctx (−49, 40, −11)

Shulman et al. (1997) Frontal_Inf_Orb_L (aal) Left infrior frontal cortex (−35, 49, −16)

Lu et al. (2012) Frontal_Inf_Orb_R (aal) Orbiatal frontal ctx (51, 34, −10)

Kucyi et al. (2013) Frontal_Med_Orb_L (aal) mPFC (−2, 58, −6)

Sridharan et al. (2008) Frontal_Med_Orb_L (aal) vmPFC (11) (−2, 36, −10)

Shulman et al. (1997) Frontal_Med_Orb_L (aal) Medial prefrontal cortex (10) (0, 51, −14)

Smigielski et al. (2019) Frontal_Med_Orb_L (aal) MPFC (−6, 44, −6)

Di et al. (2014) Frontal_Med_Orb_R (aal) MPFC (3, 54, −2)

Shulman et al. (1997) Frontal_Mid_L (aal) Left dorsolateral frontal cortex (−28, 34, 38)

Shulman et al. (1997) Frontal_Sup_L (aal) Dorsal-ventral axis (−10, 49, 38)

Shulman et al. (1997) Frontal_Sup_L (aal) Dorsal-ventral axis (−15, 63, 19)

Lu et al. (2012) Frontal_Sup_Medial_L (aal) MPFC/ACC (2, 60, 26)

Baliki et al. (2014) Frontal_Sup_Medial_L (aal) mPFC (−4, 58, 2)

Andrews-Hanna et al. (2010) Frontal_Sup_Medial_L (aal) dMPFC (0, 52, 26)

Shulman et al. (1997) Frontal_Sup_Medial_R (aal) Dorsal-ventral axis- (7, 57, 30)

Sharp et al. (2011) Frontal_Sup_Medial_R (aal) vMPFC (2, 54, 8)

Shulman et al. (1997) Frontal_Sup_Orb_L (aal) Right prefrontal cortex (−20, 63, −2)

Andrews-Hanna et al. (2010) Fusiform_L (aal) PHC (−28, −40, −12)

Lu et al. (2012) Hippocampus_L (aal) Parahipp gyrus/hipp (−26, −12, −23)

Baliki et al. (2014) Insula_L (aal) Inferior frontal gyrus (−38, 10, −12)

Kucyi et al. (2013) Occipital_Mid_L (aal) Temporooccicipital junction (−46, −76, 24)

Andrews-Hanna et al. (2010) Occipital_Mid_L (aal) pIPL (−44, −74, 32)

Andrews-Hanna et al. (2010) ParaHippocampal_L (aal) HF+ (−22, −20, −26)

Lu et al. (2012) ParaHippocampal_R (aal) Parahipp gyrus/hipp (28, −11, −25)

Shulman et al. (1997) ParaHippocampal_R (aal) Parahipp gyrus/hipp (24, −10, −24)

Shulman et al. (1997) Parietal_Inf_L (aal) Inferior parietal cortex (−55, −36, 47)

Lu et al. (2012) Precuneus_L (aal) PCC (0, −57, 35)

(Continued)
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a Z-based threshold is added to reduce the possibility of false-
positive results (we set z > 1.00, which is the default setting of 
AES-SDM). Meanwhile, 10 voxels were applied to threshold the 
cluster size.

4. Results

4.1. Meta analysis results of gender 
difference

The meta-analytic maps of 30 centers in each seed were shared 
online.1

4.2. Consistency of meta-analytic results

Meta-analysis can produce robust results and therefore be used 
here to investigate the reproducibility across different seeds. To 
evaluate the consistency of meta results among all DMN seeds, 
we calculated the overlap percentage of each voxel of all 59 meta-
analytic brain images at four meta uncorrected P thresholds 
(Figure 1). Specifically, a binarized mask was created for each meta-
analytic image. Further, we summed all the binary maps voxel-by-
voxel and calculated an overlap rate map. Specifically, all the 59 
meta-analytic maps firstly transformed into a binarized map which 
means that all the ono-zero values were transformed into 1 and zero 
values keep unchanged. For each voxel in the whole brain, the 
consistency value was calculated by dividing the sum of the values 
in all the 59 binarized maps by 59. The percentage of most voxels is 
less than 10% which showed very low overlap among these DMN 
seeds (Figures 2, 3). Compared with the whole brain voxel number, 

1 http://restfmri.net/CORR_meta_maps.zip

a minimal number of voxels exceed 50% regardless of the different 
thresholds of meta-analysis, which provide us with an intuitive 
distribution of the overlap among meta-analytic results.

4.3. Overlap between different brain 
regions of DMN

The Dice coefficient (Dice, 1945) was used to evaluate replicability 
between every two seeds of DMN, which is calculated by the formula:

 
Dice

V
V V
overlap=

×
+

2

1 2

V1 and V2 are the number of non-zero voxels in two IBMA images 
that are thresholded in the meta-analysis. Voverlap is the number of non-zero 
voxels in both images. Dice coefficient ranges from 0 to 1, in which 0 
represents no overlap and 1 represents good overlap. Figure 4 displays the 
Dice coefficient matrix across different DMN seeds. It is observed that the 
overlap among these seeds is not very good in general.

To measure the general overlap of different DMN brain regions 
without being affected by the extreme values, we calculated the median 
Dice coefficient of each seed (Figure 5). The median Dice coefficient of 59 
DMN seeds was from 0.043 which belongs to Temporal_Inf_L (−60, −24, 
−18) to 0.337 originating from Angular_R (46, −60, 32). It also revealed 
a poor overlap among these seeds, illustrating in Figure 4 that the overlaps 
of different DMN seeds are quite different.

4.4. Classification of different DMN seeds

To figure out which seed yielded better overlap results, we further 
calculated the average of all medians and considered the seeds above 
average with a higher overlap than those below average (see Figure 6). 
As Figure 6 shows, the nodes have a higher median Dice coefficient 

TABLE 2 (Continued)

Study ROI name Region Coordinates (x, y, z)

Fransson (2005) Precuneus_L (aal) PCC (0, −56, 30)

Shulman et al. (1997) Precuneus_L (aal) PCC (−4, −47, 45)

Andrews-Hanna et al. (2010) Precuneus_L (aal) PCC (−8, −56, 26)

Baliki et al. (2014) Precuneus_R (aal) PCC (2, −56, 26)

Andrews-Hanna et al. (2010) Rectus_L (aal) vMPFC (0, 26, −18)

Shulman et al. (1997) Rectus_R (aal) Inferior anterior cingulate (4, 33, −19)

Baliki et al. (2014) SupraMarginal_L (aal) Supramarginal gyrus (−56, −36, 26)

Andrews-Hanna et al. (2010) SupraMarginal_L (aal) TPJ (−54, −54, 28)

Shulman et al. (1997) Temporal_Inf_L (aal) Left inferior temporal gyrus (−52, −21, −22)

Andrews-Hanna et al. (2010) Temporal_Inf_L (aal) LTC (−60, −24, −18)

Lu et al. (2012) Temporal_Mid_L (aal) Infer temporal gyrus (−59, −6, −23)

Andrews-Hanna et al. (2010) Temporal_Mid_L (aal) TempP (−50, 14, −40)

Lu et al. (2012) Temporal_Mid_R (aal) Infer temporal gyrus (61, −12, −22)

Kucyi et al. (2013) Temporal_Mid_R (aal) Temporooccicipital junction (44, −64, 16)

Kucyi et al. (2013) Lingual_R (aal) PCC (6, −56, 2)

aal, Anatomical Automatic Labeling; R/L, right or left; ACC, anterior cingulate cortex; aMPFC, anterior medial prefrontal cortex; PCC, posterior cingulate cortex.
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with a relatively similar distribution. Therefore, we believe that the 
meta results of these seeds are much more consistent. And Figure 6B 
showed the distribution of seeds with a lower median Dice coefficient, 

which represents that these seeds showed lower overlap with other 
seeds belonging to DMN. The mean and median Dice coefficient of 
each seed was showed in the  Table 3.

FIGURE 1

The location of each seed. Seeds with the same name are marked with the same color (See Supplementary Figure S1 in the supplementary material for 
multiple view).

FIGURE 2

Overlap of different seeds. Meta-analytic results were transformed to binary images, and the percentage of each voxel was calculated after all binary 
images added together. The color bar indicates the overlap rate of each voxel. A–D present the results under four uncorrected thresholds of the meta-
analysis (p = 0.0001, p = 0.0005, p = 0.001, p = 0.005).
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5. Discussion

Seed-based functional connectivity is one of the most widely used 
methods in resting-state fMRI studies. It measures the linear temporal 
correlation between the seed regions and every other voxel in the 
whole brain. Assessing seed selection arbitrariness on studies’ results, 
the current meta-analysis revealed that the results of seed-based 
functional connectivity were exclusively affected by choice of seed. 
This was accomplished using image-based meta-analysis to identify 
seeds with relatively high reproducibility due to their high sensitivity. 

We  then performed several image-based meta-analyses with 59 
different DMN seeds from the retrieved articles. Among these meta-
analytic maps, a very low degree of spatial overlap has been displayed. 
The overlap rate of most voxels in the whole brain was less than 10%, 
and the median Dice coefficient of all 59 seeds fluctuated wildly.

Functional connectivity should be reliable, sensitive and specific 
to longitudinal changes (Dosenbach et al., 2010; Satterthwaite et al., 
2014). However, the reliability of functional imaging results has been 
criticized in recent years (Bennett and Miller, 2010). Many studies 
have estimated the test–retest reliability of resting-state functional 

FIGURE 3

Overlap percentage of different seeds. The value of each voxel in the overlap maps was extracted, and the voxel number under each overlap 
percentage was calculated. A–D present the results under four uncorrected thresholds of the meta-analysis (p = 0.0001, p = 0.0005, p = 0.001, p = 0.005).

FIGURE 4

The Dice coefficient matrix. The threshold-free Dice coefficient matrix of each seed with all other seeds represent the overlap of every two meta-
analytic maps. This is because the name of seeds between two short lines is the same (just different in location). The color bar indicates the Dice 
coefficient. The higher the Dice coefficient, the better the overlap.
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FIGURE 5

The Dice coefficient of each seed is shown using a boxplot. The red line in every box represents the median Dice coefficient, and the edges of the box 
represent the 25th and 75th percentiles. The whiskers extend to 1.5 interquartile range (IQR), and red “+” signs display values beyond 1.5 IQR. This note 
applies to the following Boxplots.

FIGURE 6

Classification of different seeds. (A) The seeds whose median Dice coefficient above average and their visualized network pattern. (B) The seeds whose 
median Dice coefficient below average and their visualized network pattern.
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connectivity, and the results ranged from poor to good (Shehzad et al., 
2009; Noble et al., 2017; Pannunzi et al., 2017). Our study supported 
the assumption that the reliability of functional connectivity across 
different seed ROIs is poor. Consistent with the finds of Noble et al. 
(2017), the different locations of seed region in previous studies lower 
the test–retest reliability of functional connectivity. Again, Wu et al. 
(2018) concluded that the seed-based functional connectivity patterns 
are unreliable. Although previous studies have proposed that different 
seed voxels produce different maps and the selection of seed regions 
would bias the results and restrict the functional connectivity map to 
the selected regions (Cordes et al., 2000; Van den Heuvel and Hulshoff 
Pol, 2010), our study provides quantitative evidence to support the 
proposition. There is a very low degree of overlap among all the meta-
analytic results, indicating that different seeds cannot produce the 
same functional map.

Although our study selected seeds from classic articles, the low 
Dice coefficient speaks for relatively low reproducibility across meta-
analytic results of different seeds. The arbitrary selection of seeds has 
been proven to influence functional connectivity results (Marrelec and 
Fransson, 2011). Even when the same strategy is used, the difference 
in location results in significant changes to the connectivity pattern in 
the DMN (Cole et  al., 2010; Hayasaka and Laurienti, 2010). In 
addition to static functional connectivity, the study has found that the 
reproducibility in dynamic functional connectivity is not high (Zhang 
et al., 2018). All of these give us a wake-up call that the selection of 
seeds should be thought through Cole et al. (2010) found that even the 
slightest spatial difference of seeds can affect the spatial characteristics 
of the resting-state networks. Thus, the selection of seed seems to 
be quite substantial. Sohn et al. (2015) discovered that inappropriate 
seeds would bring lower calculated connectivity and higher variance. 

TABLE 3 The mean and median Dice coefficient of each seed ROI.

ROI 
number

ROI name (x, y, z, MNI) Dice coefficient ROI 
number

ROI name (x, y, z, MNI) Dice coefficient

Mean Median Mean Median

1 Angular_L (−49, −65,35) 0.355 0.167 31 Frontal_Sup_Medial_L (0,52,26) 0.320 0.112

2 Angular_L (−47, −66,43) 0.336 0.161 32 Frontal_Sup_Medial_R (7,57,30) 0.345 0.111

3 Angular_L (−50, −63,32) 0.339 0.155 33 Frontal_Sup_Medial_R (2,54,8) 0.336 0.105

4 Angular_L (−50, −56,30) 0.262 0.154 34 Frontal_Sup_Orb_L (−20,63, −2) 0.202 0.105

5 Angular_R (56, −61,24) 0.212 0.152 35 Fusiform_L (−28, −40, −12) 0.260 0.102

6 Angular_R (46, −60,32) 0.354 0.150 36 Hippocampus_L (−26, −12, −23) 0.259 0.100

7 Angular_R (50, −55,38) 0.291 0.148 37 Insula_L (−38,10, −12) 0.080 0.098

8 Angular_R (48, −69,35) 0.274 0.148 38 Occipital_Mid_L (−46, −76,24) 0.242 0.095

9 Angular_R (52, −52,32) 0.290 0.146 39 Occipital_Mid_L (−44, −74,32) 0.307 0.093

10 Calcarine_L (−14, −52, 8) 0.227 0.146 40 ParaHippocampal_L (−22, −20, −26) 0.156 0.085

11 Cingulum_Ant_L (2,36,22) 0.159 0.140 41 ParaHippocampal_R (28, −11, −25) 0.265 0.084

12 Cingulum_Ant_L (−6,52, −2) 0.320 0.140 42 ParaHippocampal_R (24, −10, −24) 0.275 0.084

13 Cingulum_Mid_L (−7, −43,33) 0.341 0.139 43 Parietal_Inf_L (−55, −36,47) 0.083 0.083

14 Cingulum_Post_L (0, −52,26) 0.337 0.138 44 Precuneus_L (0, −57,35) 0.326 0.081

15 Cingulum_Post_L (1, −36,30) 0.281 0.137 45 Precuneus_L (0, −56,30) 0.342 0.081

16 Cingulum_Post_L (−2, 46,20) 0.284 0.136 46 Precuneus_L (−4, −47,45) 0.272 0.078

17 Cingulum_Post_L (−8, −50,28) 0.330 0.136 47 Precuneus_L (−8, −56,26) 0.332 0.071

18 Frontal_Inf_Orb_L (−49,40, −11) 0.239 0.135 48 Precuneus_R (2, −56,26) 0.339 0.070

19 Frontal_Inf_Orb_L (−35,49, −16) 0.170 0.133 49 Rectus_L (0,26, −18) 0.249 0.066

20 Frontal_Inf_Orb_R (51,34, −10) 0.261 0.133 50 Rectus_R (4,33, −19) 0.276 0.054

21 Frontal_Med_Orb_L (−2,58, −6) 0.301 0.131 51 SupraMarginal_L (−56, −36,26) 0.089 0.053

22 Frontal_Med_Orb_L (−2,36, −10) 0.301 0.130 52 SupraMarginal_L (−54, −54,28) 0.176 0.047

23 Frontal_Med_Orb_L (0,51, −14) 0.309 0.130 53 Temporal_Inf_L (−52, −21, −22) 0.306 0.047

24 Frontal_Med_Orb_L (−6,44, −6) 0.329 0.129 54 Temporal_Inf_L (−60, −24, −18) 0.324 0.044

25 Frontal_Med_Orb_R (3,54, −2) 0.310 0.128 55 Temporal_Mid_L (−59, −6, −23) 0.281 0.044

26 Frontal_Mid_L (−28,34,38) 0.213 0.122 56 Temporal_Mid_L (−50,14, −40) 0.276 0.038

27 Frontal_Sup_L (−10,49,38) 0.300 0.121 57 Temporal_Mid_R (61, −12, −22) 0.341 0.037

28 Frontal_Sup_R (−15,63,19) 0.195 0.121 58 Temporal_Mid_R (44, −64,16) 0.114 0.032

29 Frontal_Sup_Medial_L (2,60,26) 0.345 0.116 59 Lingual_R (6, −56, 2) 0.122 0.030

30 Frontal_Sup_Medial_L (−4,58,2) 0.320 0.114
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The overall replicability challenge is severe; therefore, any attempts to 
ascertain which seeds possess relatively higher reproducibility are a 
worthy pursuit. The dice coefficient matrix shows a very complex 
pattern of the overlap among these seeds in which some seeds generate 
a high Dice coefficient while some seeds are with low overlap. 
Different seeds yielded quite different results of reproducibility. 
Margulies et al. (2009) revealed that even a slight shift of seed location 
within the precuneus produced significant changes in the connectivity 
pattern. It is worth noting that the seeds with relatively high 
reproducibility should be  treated with caution. They may show 
different results in different diseases.

Some limitations deserve further investigation in future work. 
First, considering the prominence of DMN in current literature, 
we targeted DMN rather than other resting-state networks. Thus, the 
reproducibility across different seeds in other resting-state networks 
needs further investigation. Second, our study chose the sex difference 
as the model to explore the statistical difference due to its stability 
compared with disease. Therefore, caution should be  applied in 
interpreting our conclusions in the context of diseases. In respect of 
this, further research adopting a difference-in-disease model is 
needed. Third, due to lack of the psychiatric or neurologic history 
information of the participants, the exclusion criteria did not include 
the psychiatric or neurologic history. Thus, the interpretation of the 
results should be cautious. Fourth, although the present study revealed 
the poor reproducibility among different seed of the same network, 
future study should focus on finding out the robust seed.

6. Conclusion

This study demonstrates that the selection of seeds influences the 
functional connectivity pattern and generates inconsistent results 
among the seeds. Although previous studies have noted this issue, our 
study provides quantitative evidence through image-based meta-
analysis. There was a very low degree of spatial overlap among these 
meta-analytic results. From this perspective, researchers need to 
be  cautious in selecting the seed regions. Thus, special attention 
should be  paid to the seeds with extremely low reproducibility 
illustrated in our study.
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